
 1

Implications of Buyer Decision Theory for Design of eCommerce Websites

By

Barry G. Silverman1, Mintu Bachann2, Khaled Al-Akharas2
1- Dept. of Systems Engineering, University of Pennsylvania, 2- Equalfooting.com

contact: barryg@seas.upenn.edu

June 2001

“ . . .it came up with streams and streams of information and it just took ages to scroll through it all -- and it
never came up with anything particularly useful. . .I then tried to enter words that were more specific to
what we wanted, but in the end I just gave up because I couldn't find anything."

-Anonymous user in [2]

“Last month we finally had an intern look at the most common search queries …the right answer for the top
query wasn’t showing up until item 47.”
 -Anonymous Shopping Site Executive in [13]

ABSTRACT
In the rush to open their website, e-commerce sites too often fail to support buyer

decision making and search, resulting in a loss of sale and the customer’s repeat business.
This paper reviews why this occurs and the failure of many B2C and B2B website
executives to understand that appropriate decision support and search technology can’t be
fully bought off-the-shelf. Our contention is that significant investment and effort is
required at any given website in order to create the decision support and search agents
needed to properly support buyer decision making. We provide a framework to guide
such effort (derived from buyer behavior choice theory); review the open problems that
e-catalog sites pose to the framework and to existing search engine technology; discuss
underlying design principles and guidelines; validate the framework and guidelines with
a case study; and discuss lessons learned and steps needed to better support buyer
decision behavior in the future. Future needs are also pinpointed.

1) INTRODUCTION

The rapid rise of e-commerce is impressive – over half of today’s 80 million web
users shop for or buy products online, and business to business purchasing is expected to
rapidly eclipse that level [1]. However, in the rush to provide online presence, many
eMarket sites have been built quickly, with little infrastructure and capabilities needed to
run such an e-business. As we all know only too well, browsing, searching, and buying
via online web catalogs can be a time consuming, frustrating task. BCG, for example,
reports that over 80% of web shoppers have at some point left eMarkets without finding
what they want and that 23% of all attempted e-shopping transactions end in failure [1].
Four of the top five failure modes are search-related (i.e., page loading times, couldn’t
find product, system crashed, had to call customer service) although some of the blame

 2

needs to be shared by other causes as well, a few of which are internet delays, overall
website design, and reliability.

This paper explores only those portions of these failure modes that are due to the
functioning of the Decision Support System (DSS) and search software. In particular we
examine DSS that operates at shopping sites. While the results in this paper apply to all
shopping sites, they are particularly pertinent to sites that are mergers of multiple
catalogs, sometimes called gateways, e-exchanges, or eMarkets. We refer to the dot com
that creates the exchange as the market maker. The reader will see that the problems of
merging multiple vendor catalogs into a seamlessly integrated and easily searchable,
virtual shopping mall turn out to be formidable. In looking for a solution, this paper will
postulate a design framework for DSS in online shopping sites and attempt a proof of
concept test of the framework and infer lessons learned from a case study of an existing
eMarket site. A single case study is insufficient to fully validate the framework, hence we
only offer a single data point concept assessment.

1.1) Who are the Sellers

Market places on the web may be single vendors but increasingly they involve
aggregator sites [19], online virtual interfaces that merge potentially 1,000s of vendors
into a seemingly single marketplace. Exchanges vest control in the buyer since they foster
cross-vendor shopping. To be successful, exchange sites must pay extra attention to the
design of the DSS they provide for the buyers to browse and search their site. Benefits to
the vendors arise when the exchange draws in and retains numerous prospects and
potential customers that might never have visited each of the individual vendors’ sites.
DSS can vital play a role in this process.

Such sites exist today as business to consumer (B2C) mega-stores and as business
to business (B2B) hubs which aggregate numerous small suppliers horizontally. B2C
examples are Amazon.com (books, electronics, tools, garden supplies, etc.),
Priceline.com (food, airline tickets, shows), and others. B2B examples are
EqualFooting.com (operations & maintenance supplies), NECX electronics exchange
(semi-conductors, electronic components), etc. In the B2B cases, the sellers often are also
buyers of other sellers’ goods. Typically the sellers participate in these markets to
eliminate the middleman, to gain new customers, to keep up with competitors, and/or to
appease shareholders. Many sellers are themselves new to information technology and
often rely on the market-maker to try and automate and integrate their catalog as best as
possible from the raw data they provide.
 Forrester Research interviewed executives at 50 e-commerce sites in 2000 and
found that while 90% state search is extremely or very important, most have invested
minimal or no money or time in developing a good search engine, and over half admit
they don’t even know how their engine is used or whether customers are unhappy with it
[13]. The sites failed a bank of basic search tests that Forrester administered [12,13].

1.2) Who Are the Buyers

Online shoppers to date include almost 15% of the country. The mass market has
yet to show up in either the B2C or B2B forums, but projections indicate this will occur

 3

rapidly over the next few years. To date we do know that the process of finding
information via search engines is simply too complicated for internet-naive people to use
without very high levels of support. And, some users who have had internet access for
over a year (and who claim to 'surf' on a regular basis) are still having problems using
search engines [2]. For example, Neilsen [3] gave users the task:

You have the following pets:
 - cats
 - dogs
Find information about your pets.

Almost all users enter the query cats AND dogs. They typically find nothing, since the
site does not include pages that mention both animals. Upon encountering a "no hits
found" message, the vast majority of users concluded that there was no information
available about these pets and departed from the site. Even sophisticated web-searchers
made this mistake initially, though they soon recovered. In short, one must be very
cautious in designing the search experience to support such users, be they in B2C or B2B
marketplaces.

1.3) What is an Online Catalog

Before going further, it is worth elaborating on the definition of an online catalog
and some of the design cha llenges it represents. An e-commerce catalog is the heart of a
shopping site and it holds information on all the products one can buy at that site. The
catalog is browsable like other website contents, but unlike the other contents, it usually
is stored in a relational database product as are the transactions such as bid, buy, ship, etc.
On the face of it, the reason a relational database is used is that the catalog is far more
structured than the HTML documents typically found on a website. However, the degree
of structure is relative, and most product catalogs do not have nearly enough structure for
DSS and search to work at their optimum [16].

The basic logical structure of a product or item catalog may be described as four
sets of Relations, R = {R1, R2, R3, R4}:

Product Hierarchies (R1) – These are the fields supplied by the website when
users try to browse the catalog. As a result, R1 = <C1, …, CN> is a tuple of multi- level
trees that taxonomize the contents of the catalog and whose leaf nodes point to actual
products in the catalog. When merging each of the CN catalogs of multiple vendors on a
dynamic, continuing basis, market makers encounter almost overwhelming taxonomic
challenges to constructing R1, which in turn pose browsing design concerns – obstacles
we return to in the case study.

Product Descriptions (R2) – This relation is a tuple, R2 = <D1, …, DK>, of
k=1,K free text descriptions that suppliers create and which hold the information about
products that suppliers believe users need. The DK are the document fragments utilized
by search engines to support user queries and product search commands. Interestingly,
while catalogs include a field called “product name”, most suppliers omit this field
believing the “description” field is sufficient. When merging 100,000s and 1,000,000s of
products, market-makers have no resources to supply this or other missing information,
or to standardize free text descriptions the suppliers provide in the DK. As we will see

 4

later, this makes for some formidable search engine design challenges – ones the field has
yet to entirely overcome.

Product Attributes and Values (R3) – The catalogs also hold numerous
parameters about each product (e.g., color, weight, length, manufacturer, price, condition
(new, used), ava ilability, reviews, etc.). This is the information that is used to support
parameter search and sorts such as by price or size or location. A universal feature of
catalogs is that there are many products, the product lines are continually changing, and
each of the 1,000s of leaf node categories of products has a different set of attributes. As
a result, attributes are not stored as fields of a table. Rather, the m=1,M categories of
attribute names are stored as data items as are their value settings. Thus R3 = <<A31,
V31>, …, < A3M, V3M>> where A and V are vectors of a-v pairs that are equi- length for
any given category. This and large numbers of unfilled in attribute fields are stumbling
blocks few DSS designer have yet to fully eliminate in trying to support attribute or
parameter search.

Transactional Fields (R4) – A final point about catalogs is that they must also be
designed to support the full range of transactional activities such as customer registration
and profiling, product purchases, purchase histories, shipping requests and status,
payment choices and status, bids placed and received, and the like. That is, the database
serves as the underlying organizing vehicle for the processes, tasks, and workflow
surrounding each product. Successful catalogs hide these fields behind highly usable,
visual metaphors such as the shopping cart, the activity center (where you can track your
purchases and bids), and other web pages. These fields and their visual interfaces must be
designed with DSS and user decision processes in mind. Too often, one encounters
shopping sites that needlessly interrupt users’ buying steps, that fail to support how
customers want to proceed, and/or that are unforgiving of user error. Overcoming these
problems requires research and investment in better DSS technology.

1.4 What is a Decision Support System

 A decision support system (DSS) is an interactive information system that
provides information, models, and data manipulation tools to help make decisions in
semistructured and unstructured situations where no one knows exactly how the decision
should be made. The traditional DSS approach includes interactive problem solving,
direct use of models, and user-controllable methods for displaying and analyzing data and
formulating and evaluating alternative decisions [20,33]. This approach grew out of
dissatisfaction with the traditional limitations of Transaction Processing Systems and
Management information Systems. The former focused on record keeping and control of
repetitive clerical processes. The later provided reports for decision makers, but were
often inflexible and unable to produce the information in a form in which people could
use it effectively. In contrast, DSS were intended to support the mental processes of
people doing largely analytical work in less structured situations with unclear criteria for
success. DSSs are typically designed to solve the structured parts of the problem and help
isolate places where judgment and experience are required. The broad spectrum of
information systems with DSS label range from general tools such as spreadsheets, data
analysis, and graphics packages to highly customized simulation models or knowledge
based advisor system focusing on a specific situation.

 5

 In online shopping sites, buyers have decisions to work out and tasks to perform
that require DSS software. In the next section we review the mental processes of buyers
in detail. Here however, we are more generally focused on how DSS can be brought to
bear in buying decision making. To address this we introduce Table 1, which illustrates
the levels of DSS one typically adds to a (B2C or B2B) shopping website. These range
from minimal DSS (level 1) to sophisticated (level 3). The levels also parallel the
evolution of shopping DSS since the mid 90’s though one still finds late adoptors or low
budget sites coming in at level 1, and no sites have yet fully developed level 3.
 Level 1 DSS tend to use off-the-shelf general-purpose software to set up the
shopping pages and the simplest of keyword-based search and browse technologies.
These sites are “user pull” based and cost very little to construct. Generally, they are
executed to address web-presence issues, and they offer little in the way of helping the
buyer with anything but information access and the barest minimum of purchasing
functionality.
 At the next level are a series of efforts to better understand buyer mental
processes and steps during a transaction and to offer numerous default settings and
templates to help with the more well structured steps. DSS surveyed in the late 1990s by
Miles et al, for example, focus on how to support the steps involved in comparing brands
and products. Only a short while later another surveyed by Guttman et al, showed
systems trying to extend this to the buying/negotiation/shipping steps. In the current
paper, we integrate these approaches and extend the DSS further to cover still more
decisions process such as finances, online help, and error management as well as natural
language-based search.
 At the highest level are the most recent shopping site features that have been
developed in the current millennium. Here we see a shift to support the long-term
relationship that the prospect and buyer have with the site via knowledge based
prompting both within a transaction (as with level 2 approach) and across transactions.
The current paper incorporates these features into its framework and suggests ways to
push the state of the practice still further. To better understand this we turn now to a more
in-depth look at buyer behavior theory and how DSS features seek to support the
individual molar processes of buyer behavior and relationships.

 6

Table 1 Alternate Forms That DSS May Take For Supporting Buyer Decision
Making At Shopping Sites And Market Exchanges

Level Of
DSS

DSS Characteristics Examples /Frameworks

1.Access
Focused

Scope:
• All-Purpose Web Server & Search Tools Useful For Any Domain (Not

Just Shopping)
Prime Features:
• Linear Search & Browse
• Key Word Search
• Web Server
Cost & Effort: Turn Key Solutions Offered By Many Vendors But Many
Shopping Website Functions And Pages Must Be Programmed

Very Early Internet Era
Shopping Sites
Circa 1995

2.Trans-
action
Focused

Scope:
• Shopping Focused Tool Set
• Mental Model Of Buyer
• Guided Choices
Prime Features:
• Shopping Site Data Structures And Web Server Applications
• Templates & Default Settings For Product & Brand Selection Process
• Templates & Default Settings Extended To Shipping/Buying/Bidding
• Template & Default Settings Extended To Financing And Help Desk
Cost & Effort: Focuses On Catalog Content Integration (And Quality) And
Numerous GUI Issues

Miles et al, Survey Of
13 Web Sites [25]

Guttman et al, Survey Of
Cross Market Site Agents
[16]

Silverman et al (This
Paper)

3.Rel-
lationship
Focused

Scope:
• Customized Tuning To Prospect & Customer Mental Model At This Site
• Knowledge Based Prompting
Prime Features:
• Trouble Management Systems (Human And Computerized Customer

Relationship Management)
• Cross Session Consumer Preferences And Personalization (Life Cycle

Management)
• Reminding/ Advertising/Extended Supply Chain (Client Organization

Support Of Purchasing Function)
• Natural Language “DO What I Mean”
Cost & Effort: Must Embellish Vendor Offerings, Add Warehouse, And
Integrate Several Vendors’ Applications

Many B2C Sites Attempt
To Offer These At
Present But Few B2B
Sites Yet Do

Silverman et al, (This
Paper)

2) FRAMEWORK FOR DESIGN OF A DECISION SUPPORT SYSTEM FOR

ONLINE SHOPPING

 This section examines the buyer’s transaction and relationship based DSS
literature and models more closely. Unfortunately, there is no single source that one can
turn to which will guide the design of the decision support functions that need to be built
for effective support of users performing e-commerce tasks. Instead there are numerous
sources, each presenting part of the solution: e.g., see [4-10] among many others. What
is needed is a synthesis of guidance, a DSS developer’s design guidance framework. In
this section we present such a synthesis and explain its derivation. In subsequent sections

 7

we attempt to evaluate a portion of the framework via a case implementation. It will be
seen that the framework poses a larger research problem than the one paper can do justice
to.

Let us begin by examining the work of Miles et al. [4]. They survey the buyer
behavior literature and isolate an insightful three stage model of buyer behavior
including: (1) initial identification and subsequent management of search criteria that
happens as the search proceeds, (2) search (via browsing, engine, or other method) for a
product based on the current criteria set – this is an information collection and
intelligence building stage in which more is learned about the criteria, the products’
attributes, and the merchants of those products, and (3) comparison of products leading to
a choice, or to a decision to abandon the search. Miles et al. point out that these are three
categories of goal driven behavior that are not readily modeled as a hierarchy or
sequence. The precedence of the stages is determined by on-screen information, multiple
product searches might be interleaved (e.g., looking for a video camera and a television),
and management of criteria and comparative results for one search might affect those of
another. In short, there is no simple decision algorithm that one can deduce for this
process.

Instead, Miles et al. review 13 alternative types of shopping websites and use the
lessons learned to construct a framework of design alternatives for DSS in online
shopping. We summarize their framework in the innermost dashed box of Figure 1. Here
one can see the 3 stages of buyer behavior across the top. The lower boxes express the
range of DSS design options available to site developers. Thus alternative styles of
product representations and form of parameter information presentations can be chosen to
support the criteria management stage. Likewise the search stage is variously supported
by sites that are browse- vs. search- vs. assistant-based (metaphor), and by different
search technologies (keyword, concept, parameter, or natural language). Finally, in the
compare stage developers choose DSS alternatives in terms of the scope (compare across
multi-vendors at once?) and mode of information the user can view. This inner dashed
box of Figure 1 takes a few liberties with the Miles et al. framework. For example, they
omitted “Trouble Management,” which is a vital DSS design feature given the
frustrations buyers are experiencing today on websites. In addition to adding this box, we
have added a few bullets here and there to other boxes that modernize Miles et al. such as
natural language. As another example, exchanges did not exist at the time of their
research, and we now have the potential of designing not only for exchanges, but also
across exchanges (see “X-exchange” bullet). Aside from these updates, the basic
framework is a useful one.

Another subtle difference of opinion is that Miles et al. indicated the bullets in
each box of the framework tend to be mutually exclusive. For example, they try to label a
site as search vs. browse metaphor, or keyword vs. parameter search. The benefit of time
has proven this to be a weak assumption, and many sites today increasingly seek to
support multiple features of the design space simultaneously. This is because no one
approach works all the time, and users have different cognitive styles and support needs.

 8

Figure 1 – Overview of Design Space for Online Buyer Decision Support

 The Miles et al. model of behavioral stages also ignores some of the later stages
of decision making such as price negotiation, how to get the product (shipping), and how
to pay for it (finance). Guttman et al. [5] survey the buyer behavior literature and
summarize it in terms of a 6 stage model that encompasses the Miles initial stages, these
three later stages just mentioned, and a final stage for user evaluation of the service they
got during the purchase. We plot most of these extra stages (all except post-purchase
evaluation) along the right side of Figure 1 – outer dashed box. Here we show them as
DSS design choices since how they are implemented effects the purchase choice, and
there are alternative ways to design them (i.e., choices of services to offer at the site).
Miles et al. does include the bidding and negotiation options in their design space
framework, but they omit the other boxes. We think that is a serious omission and offer
this framework as a revision. Guttman et al. [5] identified these as stages, but we rightly
feel they are subordinate to the comparison stage since they impact the buyer’s decision
of which product to select and which merchant to buy from. In that sense they are clearly
alternative services that the site developer might want to factor into their DSS design.
Finally, Guttman et al.’s finance stage has been reinterpreted here in the following sense.
That is, the idea of instant credit and loans over the web did not exist at the time of their
survey and so they meant similarly “paying options.” We extend this here to include the
newer financial services that market exchange sites can now offer.
 The components in the two dashed boxes of Figure 1 that have been discussed
thus far are primarily in support of the transactional model of behavior (the level 2 of
earlier Table 1). Although our refinements to the finance box move past level 2, at this
point we want to introduce further refinements that move a DSS to level 3. In particular
three further framework extensions are needed as are depicted across the base of Figure
1. First, most shopping sites today include or are building a data warehouse that captures
and helps to track customer transactions, all user interactions be they registered

Ident i fy &
M a n a g e
Criteria

Search for
Products &
M e r c h a n t s

C o m p a r e
Alternatives

& C h o o s e

Buyer
Behaviora l
Stage

DSS
Design
C h o i c e s
(Current
Transact ion)

Product
Representa t ion

•Table
•T e x t

•Image

Product
Parameters

•List ings
•T e c h Explntns

•R e v i e w s

Site
Metaphor
•B r o w s e
•Search

•Bot /Wizard

Search Type
•Keyword

•C o n c e p t u a l
•Parameter

•N a t u r a l L a n g .

S c o p e o f
C o m p a r i s o n
•Single sel ler
•Mult i -seller
•X -exchange

M o d e o f
C o m p a r i s o n

•Tabular
•Graphica l

•Reviews

Price
Negot ia t ion

•N o n e
•e-B idd ing

•Cal l support

Shipping
Opt ions

•one
•m a n y

Finance
C e n t e r

•L i n e o f C r e d i t
•Instant loan

•L e a s e

Personal izat ion
•Display

•Product In fo
•Content

•Sugges t ions

User Preferences
•Past Buying Habi t s

•Psycho -Demographics
•Likely Tendencies

Cus tomer He lp
•Call-In

•2 4 x 7 S p p t
•C R M s o f t w a r e

•Live chat

Trouble Mgt
•Help /FAQ

•Error Recovery

Cross -
Transact ion
C o n c e r n s

Updated
Miles et al .

Modif ied
G u t m a n e t a l .

 9

customers or casual prospects (the clickstream), and psycho-demographic profile
information on customers and prospects that is either volunteered and/or purchased from
a variety of sources: e.g., see [8]. This data is analyzed offline and in real-time to build
descriptive and predictive models of user shopping and buying patterns (what works,
what doesn’t work, what trouble is driving them away). From the buyer’s perspective,
this is the kind of memory one expects from local store owners that recognize their
customers preferences and recall the kinds of things they have bought in the past. The
second extension to the framework is personalization software (e.g., see [9]) to help
provide personalized service that many users want, focusing their search and offering
time saving suggestions and value-added content. This works by combining warehouse
information with business rules, matching approaches, and/or correlation functions (e.g.,
collaborative filtering) to help decide what products, product info, and content will be
most attractive to and useful for that user. This type of software can effect the items
emphasized and displayed in each of the other boxes of the framework in Figure 1.

Buyer decision support need not be entirely software based. A final extension to
the framework lies in the ability of users to receive human help during their sessions. At
one end of the spectrum, many shopping sites include an email button for submitting
problems to a helpdesk person who will respond within a few hours or days. In order to
better help users, many other shopping sites now include a 24x7 call center for immediate
help in browsing and searching the site, in placing bids or securing financing, and the
like. The customer service representatives at the call center might operate as a telephone
bank, or they might be given help desk software. This software is called a Customer
Relationship Management (CRM) package as it utilizes the results of the warehouse to
help the representative manage the overall relationship with and workflow for that
customer, not just the single incident or session difficulty associated with the phone call:
e.g., see [10].

These three new blocks across the base of the DSS framework raise interesting
temporal and scope dimensions that were previously absent from the framework. The
Miles and Guttman type framework are based around a single transaction view of the
customer. While there is a timeline to such a transaction, it tends to be finite- usually on
the order of minutes or hours for the sale, a few days involved in support of users who
wish to track the purchase and, a month or so (hopefully) for assuring payment and
possible returns and re-crediting. The extensions we include here shift the framework
towards an “infinite” timeline, or at least toward lifetime-scale management of prospect
and customer information. One can think of a doubling of complexity, where one must
mange not only the current shopping experience but also the process of attracting
prospects and new customers as well as the customer retention process. The reasons for
accepting this added complexity are widely published. For example market analysis [32]
indicates that it cost six times more to sell to a new than to an existing customer, and that
a firm can boost it’s profits 85% by increasing its annual customer retention by only 5%.
From this perspective, putting into place customer relationship management capability
(help desk) is well worth it since 70% of complaining customers will do business with a
company again if it quickly mediates any snafus.

Also only about 2% at most of those who visit a website wind up making a
purchase. So keeping that 2% is vital and a key to that retention is the mining for
prospects and attracting more customers so there is a bigger pie for that 2% to be drawn

 10

from. In short the marketing theory suggest the extensions to the DSS framework across
the base of Figure 1, and we have added them. However there is a large difference
between just doing the right thing vs. doing the thing right. This is true of every block in
Figure 1, a point we believe warrants significant study as will be further addressed below.

To summarize, Figure 1 provides a framework that overviews the space of design
options that a shopping website developer must consider when constructing DSS for the
online buyers. Assembling a DSS with all these features is a significant undertaking
though it is getting easier. Only a couple of years ago, in 1999, Guttman indicated there
were no centralized shopping sites (agents) that also included the right hand side of
Figure 1 (bid, ship, finance). Likewise in 1998 when Miles et al researched their
framework (published in 1999), natural language was not an option, trouble management
was rarely, if ever, offered on the web, gateways and market exchanges had yet to be
created, and personalization, warehouses, and CRM software did not exist for web
marketplace deployment. Even though their original framework is only a subset of Figure
1’s framework, Miles et al. indicated the design point options in their framework
significantly exceeded the implementations on the web. Today there are still unexplored
design points/options, but there are many hundreds of web-based shopping sites and one
can often find an implementation of any given design point or a close approximation to it.
Further, there are typically two to four dozen application providers offering pre-packaged
solutions for many of the boxes of the Figure 1 framework (e.g., personalization, CRM,
search engines, etc.) and a growing number of service sites one can embed that provide
other components of Figure 1 (e.g., shipping, finance).

The problem confronting the website DSS developer today is that each of these
packages pose a feature-explosion – which ones to choose for their users? This is no
small issue and the software package features take nearly as much time to integrate with
the online catalogs as it does to build a preliminary version of the feature set from
scratch. Also, there is a significant vendor inter-operability problem. Since no application
provider yet operates across the full design space of Figure 1, one must seek a mix of
software buys and builds that overcome innumerable inter-operability issues. This is
leading at least some dot coms to avoid all application providers and try and build the full
range of DSS features on their own. Finally, there is a shortage of lessons learned and
evaluation literature that can help guide the DSS designer through this maze. What
works, what doesn’t work, what is reducing user frustration, etc.? How does the website
developer sort out the options that the application provider packages offer? Which
packages help reduce the problems raised at the outset of this paper and which don’t?
 This paper offers only a few answers to this large set of design questions. The
framework of Figure 1 bounds the space of design questions, and the case study
presented in the rest of this paper explores how one group navigated through the
framework, their rationale for various design decisions, and some lessons learned. Also in
this case study we attempt a two level analysis. On one level we focus on the overall
framework without worrying about which design points work best (Sect. 3). After
completing that effort we then examine some of the design points with particular
attention on search and browse (Sect. 4). As such one can view section 3.0 as verification
of our framework for design of level 2 and 3 types of DSS, while Section 4 goes into
design points that fall largely within a level 2 DSS. Numerous studies are needed to
examine all the design points issues, and we had to choose which ones to focus on first.

 11

Many more case studies are needed before the entire extent of this design space will be
well understood.

3) CASE STUDY VALIDATION OF THE DSS DESIGN FRAMEWORK

This case study is of a B2B dot com that has features on their website for each of
the boxes of Figure 1’s framework. Further, these features are often designed to offer
more than one of the options in the boxes of the framework. In this section we overview
the website and the current status of its design. Then we turn to an in depth discussion for
a select few design features and address the challenges, efforts underway to overcome
them, and lessons learned to date.

Specifically, the case study website is EqualFooting.com (www.equalfooting.com), a
B2B online marketplace for the “maintenance, repair, and operations” (MRO) sector:
e.g., see [29]. This means basically EqualFooting sells industrial and construction
supplies – something like a Home Depot for small contractors only with an order of
magnitude more products than Home Depot offers. The company’s official launch date
was February 2000 and by June 2000 they were handling one million hits per day (by
about 23,000 separate users daily). Also, at this writing their catalog integrates almost
half a million products offered by over 2,000 sellers.

The unified catalog is assembled on an outsourced basis and is then stored
internally in an Oracle database on multiple processors to balance user load. A hidden
mirror site exists on the opposite side of the country to further address redundancy and
load issues. Atop the catalog is a webserver (WebLogic) and a Java implementation of
about ½ million lines of code, as of this writing, that performs all the functions of the
website and that connect the users’ web-browsing clients to the remote servers holding
the catalog. At present this involves a three-tier model -- Java Server Pages, webserver,
and database -- although it is being evolved into an Enterprise Java Beans architecture
later this year.

Figure 2 shows the view of the homepage for EF’s website as of this writing. This
screen shows 3 main entry points for customers--- search and browse on the left hand,
instant finance and credit on the middle and shipping choices on the right. This
presentation is different than the typical B2C homepage many readers are probably used
to and it highlights the fact that B2B customers have a different set of priorities. Since
they typically order larger supplies and need them for meeting their own customers
needs, shipping can be a bigger issue than for retail customers. Likewise, instant line of
credit and finance is important and transcends just putting the purchase on a credit card.
We will discuss each of these panels further in what follows.

 The website's tabs across the top Figure 2 support other stages of Figure 1 such
as entering the market as a seller, registration and profile (My Account), a transaction
history and bookmark capability (Activity Center), Member Benefits, and AboutUs (press
room). Also, shown near the upper right are the shopping cart, how to contact the 24x7
customer service (800 number), and various links to background sources. The tabs and
upper right links are omnipresent no matter which function the user is performing.

Since launch the company has released a new version of the site every six weeks,
and as of this writing is about to release the fourth version. While the color scheme, look
and feel, and basic user interface have, so far, remained consistent between releases,

 12

major new capabilities appear with each release. For example, the initial version omitted
finance, while the third release included “instant decisioning” for equipment leases and
the fourth version includes real- time processing of bank loans, lines of credit, and Small
Business Association loans through a variety of partner institutions. The rapidly
increasing demand by users for new features such as financing and shipping has lead to
revision of the original website business model, and these are now horizontals being
marketed in their own right and embedded in other websites.
 At launch there was no personalization and no learning about users as shown at
the bottom of the framework diagram of earlier Figure 1. The only tracking of customers
was through a weekly logfile printout. This included only summary statistics on gross
number of users, sellers, transactions, bids, sales, and the like. By mid-year however, a
full transactional and clickstream capture capability had been implemented, a star schema
for the warehouse had been deployed, standard reports were designed on every aspect of
website usage and commercial operation, software for online analytical processing was
installed, an appropriate analytical staff was hired, and the warehouse went live. New
releases are currently being planned with greater datamining capability, an expanded
focus for the warehouse to grow into a marketing tool including prospect information,
and not just customer profiles, histories and clickstreams. As of this writing there is still
no personalization tool deployed for the website, but personalization solutions and
application service providers are currently being evaluated. And launches of initial
personalization features are planned. Having the warehouse operational was a precursor
to developing the insights needed to successfully deploy personalization features.

Figure 2 – Homepage of the Case Study Website - Equalfooting.com

 13

In terms of non-computerized DSS for the users, a multi- person staff mans the
customer support centeorn a 24x7 basis. These “Customer Service Representatives” help
by phone, or alternatively in the background, at some point in the processing, of many (if
not most) of the bids and transactions since many of the sellers are small businesses with
little skill in handling the sudden influx of electronic traffic they have experienced since
launch. At launch, the support center was equipped with disparate telephone
management, email queuing, electronic guidebooks, and other support systems. Plus they
had to logon to the site as the buyer or seller in order to perform transactions on their
behalf and/or help them. In the interim they have purchased a Customer Relationship
Management (CRM) solution that integrates all these subsystems together, helps manage
the overall workflow and unified help queue, provides automated helpdesk capabilities,
and provides an independent path into the catalog, including enforced logging of call
center representative actions on behalf of users. Integrating the full extent of this
“solution” into the website software is taking months of effort by over a dozen
individuals, including a number of manually coded extensions and features to get it to
work.

In summary this study served as a proof of concept for the DSS framework of
Figure 1. One might be tempted to conclude at this point that while this updates the
literature on DSS frameworks, that indeed many B2C sites already use the block elements
(perhaps with different emphasis on their homepage) and that the literature was lagging
the practice. Such statements fail to understand that the DSS approach cannot be
successful based upon breadth of coverage alone. Success vs. failure of the DSS and
indeed of the overall shopping experience depends on how each block is implemented.
For that reason we turn now to an evaluation of principles governing design points within
the DSS framework.

4) MIGRATING FROM SEARCH TO DECISION SUPPORT

The prior section illustrated how all the major blocks of the Figure 1 framework
are being implemented by the case study website, but what about the finer details of the
framework? This is the transition from “doing the right things” to “doing those things
right”. How are the individual design tradeoffs and choices in any given DSS step made
and supported? And, how do the choices in the DSS steps solve the significant challenges
raised earlier in the description of product catalogs? As mentioned earlier, examining
design points for every block of Figure 1 is a large-scale, long-term undertaking that we
have only just begun. In deciding where to begin, we started with high priority area—that
which was identified at the outset of this paper as being key to 4 out of the 5 failure
modes of shopping sites. That is, this section examines design points concerning decision
support for search and browse tasks. These are the boxes of a level 2 type of DSS
contained within the inner dashed box of earlier of Figure 1.

The problem is that the available capability from catalog product and application
vendors for deploying these features is handicapped by a number of factors that lead to
the type of problems cited in the introduction. This is a strong statement that we will
support in the ensuing subsections after a few introductory remarks. Specifically, the next

 14

four subsections will provide a critique of currently available search and browse
capabilities and try to explain the root causes of the common observed failure modes. We
will provide this critique through a mix of techniques including explanation of
constraints, description of failure modes, illustrations of critical incidents drawn from log
files at the case study site, and comparative performance evaluation.

Rather than present all the difficulties first and then separately address their
solutions, we instead interweave a discussion of principles for solving the failure mode
right after defining and explaining the failure mode. For each principle we also include
illustrations of how to apply it to improve the shopping experience. The goal of this
discussion is to allow the reader to gain a sense that these problems can be mitigated, but
only by investing effort in their solution. As we proceed the reader will see that one must
use every bit of information in the catalogs, plus a wide array of DSS and search
techniques to make headway and reduce user frustration. Even with such a wide-scale
approach, the problems do not disappear easily, and one must go beyond what the
application providers offer.

Before proceeding, it is worth introducing some notation. The most common form
of search on the web and in product catalogs is what is called keyword search. This is
defined as a match between the t= 1,T terms in the query string (Q t) and their
counterparts somewhere in the j=1,J terms in the kth document (Djk) being searched. Here
a document is a record in the product database. If the match is exact, the similarity (Sim)
equals unity and the pointer to the document or product is returned.Let us state this as:

 T
Sim (Q, Dk) = { Σ Sim(Qt , Djk) }/ T (1)
 t =1

Where,
 Sim(Q, Dk) = score of the kth document against the query string
 Sim(Qt , Djk) = score for the tth term in the query string where score is (0,1) when

t and j (don’t match, match)
 T = number of terms in the search string

A perfect match occurs where Sim (Q, Dk) = 1. In general (non-catalog) web
searching, most engines will return partial matches often by reducing the threshold to
some reasonable number (Sim(Q, Dk)<1), but they will sort the documents in descending
score so those closest to 1.0 will appear first. Also, when searching on the web, S(Q t, Djk)
is most often computed as a weighted dot product of the respective term vectors, Qt and
Djk: e.g., see [29, 30]. However, in catalog search, a strict keyword match is often
utilized, where the boolean AND is assumed between all the terms of the vector Qt. Thus,
equation (1) is often utilized in a form like what is shown here. As an example of this
conjunctive form of keyword matching, in response to a search for “green chair” most
product catalog engines will attempt to find a record with the terms “green “AND”
chair”, while most websites searching engines will also return every document with
“green” or “chair” but these single term hits will appear lower on the list of returned
items. Neither of those approaches will find records and documents about “olive seat” or
other synonymous terms.
 As a final introductory note to this section, the Equal Footing effort postulated
that four principles were central. Clearly there are many more than four design principles
required for good shopping sites however we have chosen to highlight these four

 15

principles since they attempt to convey the key ideas of buyer behavior theory. We
briefly summarize them here and we amplify them as they are utilized in subsequent
sections:
• P1: Use Natural Language Search – Buyer behavior theory indicates that users will

spend substantial time searching and comparing products and makers. To facilitate
this effort, just as with a good human sales representative, the search should
culminate in what the user wants and not be confounded by how they said it.
However current search technologies is almost exclusively keyword matching, which
means the given search will only match on exactly what was typed and not what was
meant. Solving this dilemma implies use of natural language techniques including
synonymizing, spell-checking, and related capabilities to translate the term vector Qt
from the users language into the lexicon of the catalog. To continue the example, the
search should find green chairs, olive chairs, chatreuse seats, aquamarine arm chairs,
and so on.

• P2: Build Domain-Specific Search Agents – The advantage of studying buyer
behavior is that one learns the mental process of this class of users is different from
that of document searching users on the web. Given such differences one should not
try to impose the same type of search engine process on buyers. This includes two
connected ideas: the first is that generic search engines won’t suffice. The second idea
is that once you drop the idea of a generic, one-size-fits-all search engine you need to
replace it with an alternative. That alternative should be an agent that understands the
domain of buyer behavior and that supports the mental process it connotes. Just as a
good store provides sales people in the aisles to help with your selection process (e.g.,
look for green chairs under kitchen furniture, lawn and garden, and home
furnishings), a domain-specific DSS also should operate autonomously to learn the
users’ goals and to help them accomplish their desires (i.e., an agent able to interpret
user Sim(Q, Dk) intent). This implies finding and deploying a domain-specific
grammar so that the terms in Qt may be extracted and parsed to improve retrieval.

• P3: Treat Search as a Process –Since the buyer behavior theory focuses on the non-
linear, iterative processes of elimination that buyers go through, any new form of
search should be supportive of this elimination-by-aspects type of reasoning. The
idea is that search might not succeed on the first try, and that similarity finding is a
process of narrowing and eventual convergence after several interactions with the
user. A goal here is to make the interactions transparent and error forgiving. For
example one should readily be able to accumulate green chairs from multiple
“departments” Place them side by side for comparison (something you can’t do in an
actual store), and reach a happy conclusion.

• P4: Use and Manage Knowledge to Speed Search – Buyer behavior theory suggest
that users do not just blindly search but they use personal taste and preference,
criteria, brand, lexicon, and other knowledge to help shorten the search. Users in
stores won’t walk every aisle to find a specfic item. They expect signs and sales
people to help them. Their search on the web should be similarly shortened by this
new type of agent. If they search for “green chairs” they shouldn’t have to look at
“green seat covers for automobiles”. This is similar to the old idea in artificial
intelligence of adding knowledge to speed and help focus the search. The catalog
provides a lot of knowledge about product categories, taxonomies, and ontologies that

 16

should be managed and utilized (the CM mentioned earlier and the k of the Djk).
Likewise a domain specific grammar should utilize meta-knowledge about the
structure and representation of products in catalogs (the j in Djk plus the R3). Finally,
knowledge to help the search process could be culled from every other possible
source: e.g., textbooks, the data warehouse, and from users themselves.

4.1) Capturing and Representing the Catalog Taxonomies

 As mentioned earlier, the product hierarchy fields hold the multi- level browse tree
that one encounters on the web as a set of links from the top of the catalog to the leaf
nodes that point to the actual items or products available for sale at that site. The category
names and levels in item hierarchies are usually carefully chosen to tell the user the
structure of the product offerings, the organization of the catalog, and where to find
products. The hierarchy is a taxonomy or ontology of the entire catalog. From the users’
perspective, a well-designed hierarchy is often bushy in the middle with many pathways
to reach leaf nodes. This is an error- forgiving design so the user’s “aim” doesn’t have to
be very good yet they can still browse down the tree and find the items they’re interested
in. Thus a user who doesn’t know that “grease” is catalogued under “abrasives” will still
have a chance to find it.

Unfortunately, as product catalogs grow in size and, particularly, as 1,000s of
different catalogs are merged (each with their own unique hierarchy), it becomes
increasingly manpower intensive and difficult to establish a common taxonomic structure
for a marketplace. The individual manufacturers and suppliers generally can’t afford the
extra manpower to conform to market makers’ categorization scheme. A common
compromise is that the market makers create the upper layers of the hierarchy so that it
conforms to their concerns for browsability, understandability, and error forgiveness. At
the lower layers of the hierarchy, they often meld in the sub-hierarchies of different
suppliers/manufacturers where they exist and create branches where needed. The result is
a pragmatic compromise, though it lacks the rigor of an industry-approved standard.

One alternative is for each industrial sector to adopt a standard for naming and
taxonomic indexing of items. In the field of book publishing there is the Dewey Decimal
System and all new books (each with unique ISBN numbers) are categorized within that
taxonomy before being sold. Within other industries, however, the world is rarely so
standardized. Still principle P4 is important, and one can find groups working on it.

Several attempts to provide standard taxonomies such as the United Nations’
SPSC commodity codes [23] or the US Government Supply Agency’s “National Stock
Numbers” are promising in the mid-term but are insufficiently developed at this date. For
example, the UN/SPSC only provided 78% coverage of the over 13,000 categories of
products in Equalfooting.com’s maintenance and repair item catalog. To adopt it, one
would have to petition the standards setting group to extend the taxonomy to cover all the
products in a given catalog, a catalog that is continually and rapidly growing. Further, the
UN taxonomy introduces non- intuitive category names (e.g., nuclear fuel rods are
indexed under “lubricating preparations”); limits itself to 5 levels of categories even
though it covers the entire world economy (this is insufficient depth to provide adequate
distinction between lower level taxonomic categories in a given industrial sector); and
imposes strict tree structures so that leaf nodes may have only a single pathway to them.

 17

This makes them unappealing for browsing purposes. Similar pragmatic concerns also
currently exist with the category hierarchy for the US’ National Stock Numbers.
 The market-maker generated category hierarchies provide a rich resource for
figuring out how to overcome the concerns with the evolving product hierarchy
standards. In the future, one can expect that communications will occur between these
groups and that industrial sector standards will evolve into taxonomies useful for e-
commerce. In the interim, the market-makers’ category trees serve as the best source of
product location information that browsers have and that search engines could and should
make use of.

4.2.) Integrating Browse and Search

Research shows that about 50% of the users are search-dominant, about 20% are
browser-dominant, and the rest use mixed strategies [3]. This implies both the browsing
catalog and search engine box should be on almost every page the user sees. Further, the
mixed strategy users may want to be able to search within a category they have browsed
to. Most engines reviewed in the next section can be programmed to permit such usage
but that is not the default capability. Websites need to provide a button for users to toggle
so they can perform “within category” search, rather than the across full catalog default
option that search generally utilizes. This button may not be found by most users, but
some will eventually grow to notice it. Different from this is the within-category sort,
usually by one or more parameters – a topic we address in Section 4.4.
 There are a number of guidelines for catalog browsing mentioned in the literature
that are good to follow, although, we won’t be able to provide the space to look at all of
these here. A few worth mentioning are to: (1) display picture icons with each item in the
catalog, (2) make sure the “buy” and “bid” buttons are available in each view of a
product (single liner, high level, full detail) so as not to interrupt user buying decisions,
and (3) bring search engine users to a category table before taking them to the lengthy list
of hits of their query. This last item slows their search, but injects a screen that reduces
the kind of experience mentioned in the opening quote of this paper. Figure 3 provides an
example of such a screen for a search on “safety gloves”. Here we see that rather than
immediately sending 626 hits to the screen, the user encounters an intermediate page that
lists all the categories that hold different types of safety gloves, along with the number of
gloves included in that category (Principle P3). This helps them better focus their search
(Principle P4), and simultaneously learn a bit about the catalog. If they toggle a category,
they will see a listing of all the gloves in that category with a picture icon plus buy/bid
icons next to each line of the listing. Alternatively, the bottom of the page on Figure 3
links them directly to placing low cost bids (request for quotations) for gloves, including
the ability to describe the exact kind of glove they want and how much they are willing to
pay for it, thereby bypassing the need to do any more search or browsing at all.

 18

Figure 3 – An Example of How Integrating Browsing With Search Reduces User
Frustration About Receiving 626 Hits They Don’t Know How to Sort Through.

An examination of the Equalfooting clickstream shows that some of the more adept users
logon to the site and very quickly come to this type of page, briefly drilling into a given
catalog item to inspect some of its attributes, and then immediately request a quotation
(ask sellers to give them low cost bids). They tend to publish several such requests in the
space of a few minutes of search and browse activity. The principles and guidelines just
mentioned seem quite suitable for helping them.

In contrast, the more common, and less adept users logon and have a far more
frustrating experience. The search button logfile shows innumerable examples of people
searching the identical item multiple times like this person who repeats the search 4 times
for “hard hats” (note: all subjects discussed in this article are anonymous users drawn
from the transaction logs and clickstreams)
Date Search Type Search String Matches
05/04/2000 01:36:33 Keyword hard hats 213
05/04/2000 01:38:34 Keyword hard hats 213
05/04/2000 01:39:07 Keyword hard hats 213
05/04/2000 01:39:40 Keyword hard hats 213
This is an example search for a broad item (e.g., like safety gloves), then drilling down
through the category table to peruse the choices. Presumably the users don’t know how to
use the BACK button on their browser (which would be much faster than re-searching
EF’s catalog), so they hit GO again and repeat the slower search so they can return to the
category page (Figure 3) and explore categories they didn’t drill into before. Our primary
lesson learned here was that most users aren’t adept at using their browser, and that the
best way to support them is to allow them to effortlessly search and browse as they wish.
To better support this pattern of searching, we made it a priority to increase the search
engine speed by an order of magnitude, a goal we achieved in mid-2000 by upgrading
from Oracle 8.1 to 8i and from a few internal tuning changes.

 19

 To date, we still haven’t been able to explain the behavior of a few users such as
the following one who reached the category table and even though it indicates 0 hits, they
repeat their identical search, sometimes multiple times. However, given what product this
category of user often seems to be looking for, we’re not sure we want them lurking
about our website anyway:
Date Search Type Search String Matches
05/11/2000 09:15:13 Keyword GUILLOTINE No Matches
05/11/2000 09:16:33 Keyword GUILLOTINE No Matches

4.3) Improving Keyword Search of Product Description Fields: The Munge

To date most catalog search engines do not use the field(s) holding item category
hierarchies to help guide their search for products. As mentioned in Section 1.3, they rely
heavily on a second relation that holds the item description (document fragments), what
we defined earlier as R2 = <D1, …, DK>. This is a free text field that suppliers and
manufacturers generate and use in their hard copy catalogs. Its contents (coverage,
quality, and clarity) are at the discretion of the individual vendors. Often, these fields
hold the suppliers’ insights about what information the buyers will want to see. However,
there may be little consistency between different suppliers’ conceptualizations of buyer
needs, so the descriptions will be difficult to compare.

The market maker’s role is to assure that these descriptions get captured into the
product database and used by the search engine. For example, at Equalfooting.com the
catalog includes two description fields – the so-called short and long description --
although, many suppliers omit the long description. An example of a short description is
‘2" PURE BRISTLE PAINT BRUSH’, while the corresponding long description for that item
is ‘2" Professional quality MASTER PAINTER brush. 100% pure black china bristle.
Handcrafted in the U.S.A. This is a $10.00 retail brush that we are closing out while they
last.’ Interestingly, while the e-catalog includes a field called “item name” the suppliers
have no such data to provide for that field. They use the short description in place of a
name in their hard copy catalogs. The category tree “bread crumb trail” to browse down
to this item in the e-catalog provides significant information about what it’s name ought
to be though: Product Catalog > Industrial Supplies > Painting Supplies > Paint Brushes.
So one could get the search engine to use (leaf node) category names as surrogates for
item names. Although this is not generally the practice elsewhere, EqualFooting does add
this leaf node into a field called the “munge” that holds all descriptions. This leaf node
name is one more piece of knowledge about what the item is (Principle P4) and it helps
the search process. Also added to this munge are the full set of product attributes and
value fields (as further free text entries) so that the search engine can try and match
parameter queries against these items directly. Thus, the Dk used here combine
information from R1, R2, and R3 to try and make the Dk into more robust document
fragments.
 In general, several challenges confront one attempting to support search of item
description fields, a few of which the munge is an attempt to deflect. First, is the question
of the completeness and consistency of the product descriptions across sellers. Some
descriptions include partial parameter information (e.g., 2”, black) while others focus on
how the product might be used, and still others are highly terse and omit most details.

 20

Second is the difficulty of matching the buyer’s search terms to the wording in the
descriptive fields. Where exact term matches don’t exist, one must consider issues related
to word stemming, spelling errors, abbreviations, synonyms, and related problems. A
third challenge is that numeric attributes are poorly and incompletely represented in these
descriptions, yet some users will want to search by size, weight, height, voltage, and
many other quantitative parameters. Unfortunately, the item description fields do not
permit structured search of attribute information. For example, if searching the item
description field for 2” brushes, a keyword search engine doesn’t know this is a width
attribute and it would return hits on any occurrence of 2 and brushes. Thus the engine
will return 2 ½ inch brushes, brushes made at 2 Downing Lane, and so on. Finally, there
is the challenge of trying to figure out the user’s intent and underlying search goal. We
address these challenges and some solutions to them in Sections 3.4 and 3.5.

4.4) Trouble Management Design Issues: Complementing Keyword Search

Earlier we mentioned that most users encounter search failure and frustration due
to sites having poor DSS and being unable to properly support them. Research shows that
about 15% of online search failures are due to spelling errors and another 40% are due to
customers using different terms from those in the website (e.g., patching vs. concrete):
e.g., see [1-3, 13]. Because they can’t interpret the meaning of the users’ query, search
engines typically are tuned to bring back innumerable hits of everything even remotely
relevant, often burying the best choice deep within the list (or omitting it altogether) and
providing little help for then searching just the returned set of items. In short, when users
get in trouble, most shopping sites provide little in the way of “trouble management”.

Some usability engineers [2, 3] argue that search engines should aim to
communicate the concept that searching on the Internet is a process rather than an event.
It is relatively rare to find something useful as a result of a first search. An important
design goal is therefore to engineer this view of search as a process into the interface
itself. This has obvious implications for the wording of the instructions used, for example
expressing search results as "suggestions" rather than "hits". This is Principle P3.

A recent example at our website prior to our trouble management approach lead
to the following logfile that illustrates a customer who’s a weak speller, but fortunately
he understands this principle and is a persistent searcher.
Date Search Type Search String Matches
05/15/2000 12:14:33 Keyword cobbelstone No Matches
05/15/2000 12:15:04 Keyword drivway No Matches
05/15/2000 12:15:20 Keyword driveway 1
05/15/2000 12:15:43 Keyword asfalt No Matches
05/15/2000 12:19:28 Keyword stone 73
05/15/2000 12:19:58 Keyword curb 14
05/15/2000 12:21:45 Keyword stone 73
Many other users are not nearly so patient and persistent. Shopping sites shouldn’t have
to rely on subtle messages, and user patience alone. They also need to offer improved
DSS capability that anticipates error, helps with corrective suggestions, and supports the
user at their current skill level – an error forgiving approach.

 21

However, most shopping websites use keyword searching engines that are ill-
prepared for trouble management. These engines can ignore upper and lower case letters,
and retrieve hits regardless of capitalization, but they aren’t so good on more serious
error corrections. Few of them correct spelling errors. Also, keyword searches have a
tough time distinguishing sense -- words that are spelled the same way, but mean
something different (i.e. hard cider, a hard stone, a hard exam, and the hard drive on a
computer). This often results in hits that are completely irrelevant to the query. Some
search engines also have trouble with so-called stemming-- i.e., it should recognize the
word "big" also implies a hit on the word "bigger"; it should equate singular and plural
words (e.g., work, works); and recognize alternate verb tenses that differ from the word
entered by only an "ing," or an "ed". Search engines also cannot return hits on keywords
that mean the same, but are not actually entered in the query. A query on heart disease
would not return a document that used the word "cardiac" instead of "heart." That
requires expansion of the search to include synonymous terms. Finally, strip words
alternatively often need to be removed from a search string or are missing from a title that
can cause an engine to fail to notice a match – e.g., articles like "a," "an," and "the."

Unlike keyword search systems, natural language and concept-based search
systems use all these capabilities (spelling, sense, stemming, synonyms, stripping, etc.) to
try and determine what you mean, not just wha t you say. In the best circumstances, a
conceptual search returns hits on documents that are "about" the subject/theme being
explored, even if the words in the document don't precisely match the words entered into
the query (this is Principle P1). Fortuna tely, many commercially available search engines
today have conceptual based searching features that help one to manage trouble and user
error. Table 2 shows some of our efforts to compare and contrast five such engines.
These engines include two very robust, full- featured systems -- Oracle’s Intermedia, (free
to those using Oracle as the database for their catalog) and AltaVista’s search engine
(used by Amazon): e.g., see [14, 15]. In addition are three intriguing specialty engines
including EasyAsk [16] which provides small-scale, tightly focused catalogs with very
powerful conceptual searching; Frictionless [17] which offers a decision theory model for
parameter and attribute search (used by Lycos Shop); and one we call Brand X (due to
non-disclosure agreement) which attempts to use probabilistic match to manage trouble.

Table 2 shows that one can support the integrated browse and search ideas
mentioned earlier by programming an interface to any of these engines, although
EasyAsk has some of this already built in. In terms of keyword search, we were able to
install three of the engines atop a version of our 250,000- item catalog, so they could
search the “short and long description” fields. We then tested these engines on a range of
keyword searches, a few of which are in Table 2. First we tried single word tests three of
which are shown. The catalog has 226 actual hammers, although many other items are
related like jackhammer, hammer drills, hammer chisel bits, and the like. None of the
engines agree on the number of hammers Also, as explained earlier, we have Oracle set
up to search a field that merges all other catalog fields into one (the “munge”) so it picks
up 805 extra hits on an electronic parts manufacturer whose name is C-H CUTLER
HAMMER Inc. In terms of the ‘cord’ and ‘20-amps’ searches, we think Oracle is the
closest to what is actually in the catalog. With the “cord” search, we can’t explain the
differences since this term only appears in description fields, although with “20-amps”
we suspect the variations of the other two engines are that Oracle could also search the

 22

attributes (which are dumped into the munge), not just the descriptions. So this is not a
fair test of the other engines.

Table 2 – Comparative Overview of Feature Sets Offered By Illustrative Concept

Based Search Engines
Criterion Oracle 8i

InterMedia
Alta
Vista SE 3.0

Brand X Easy
Ask

Friction
less

Search Methods Keyword &
Concept

Keyword &
Concept

Probabilistic
Match

Concept Decision
Theory

Integrated Browse &
Search

API call API call API call Built In API call

Keyword Search:
Single
Word
Trials

Hammer
Cord
20-amps

1,512 hits
 480 hits
 679 hits

605 hits
930 hits
 7 hits

480 hits
 2 hits
 0 hits

--
--
--

--
--
--

Multiply-
Worded
ItemTrials

Electric
 Chain Saw
Bolt Cutter

1 (4) hits
30 hits

 0(1) hits
35 hits

427 (466)hits
593 hits

--
--

--
--

Conceptual Search:
Stemming Built in Built in Built in Built in NA
Strip Word Removal Built in API call NA
Spell
Checking

pwer
powr
hamer
recepticel

--
--
--
--

Per
Power
Hammer
--

--
--
hammer
receptacle

Built in NA

Synonym Table Extendable Extendable API call Extendable NA
Strip Word Removal API call API call API call API call NA

Parameter Search:
UserPrefs NA NA NA NA Built in
Parameter Single sort

Multi-sort
API call API call API call API call Built in

Compare Programmable Programmable Programmabl
e

Programmabl
e

Built in

Miscellaneous:
Catalog Crawler Built in Built in API call Built in Built in

In terms of the multiple word searches, Oracle found the correct number of hits

for “electric chain saw” and “bolt cutter”, while AltaVista was close (though disturbingly
made key misses). Numbers in parentheses are for the search on just the words: “chain
saw”. These engines use AND search and only return items that have all words of the
search. Brand X, on the other hand, exclusively uses a probabilistic matching algorithm
that retrieves hits for each word in the phrase, supposedly placing hits that have all three
words higher on the list. Oracle can support probabilistic matching, but we did not turn it

 23

on for this test. The lessons of this comparison exercise are that one needs a full- featured
search engine so as to avoid getting trapped into a single approach, like probabilistic
match (or decision theory). It is important to be able to tune the engine and turn on and
off various features. In this regard, both full featured engines appear about equally robust:
Oracle and AltaVista.

In terms of the conceptual-based searching features, most of the engines reviewed
offer a relatively full complement of these features. Oracle omits any spelling checker,
however, Java source code for a robust spelling checker that works as well as what we
tested in any of the others can be purchased from the web fo r under $1,000: e.g., see [18].
In terms of parameter search, only Frictionless includes a robust version of this out of the
box. The other engines could be made to support this, but significant programming and
API calls are needed. In the next few sections we explore what is needed to install and
activate conceptual-based search and parameter search. The reader will see that there is
no panacea and a lot of effort is needed not only to program the features, but also to
research and decide how best to deploy them. In fact, adding these capabilities atop one
of the search engines is the first step of introducing a new querying engine paradigm:
e.g., see [21, 22] – what P2 calls a domain specific search agent.

4.4.1) Obstacles to Setting Up Natural Language Search (P1)

The natural language and/or conceptual search features are not the default

settings, are difficult to set up and operate, and require significant investment and effort
before being useful in any given site. Further, not all engines offer the same features or
provide the same degree of trouble management capability. As an example, to adapt
Oracle Intermedia to support EqualFooting, has required about a man-year of effort so
far. One task was to design the agent algorithm as the next section describes in more
detail. Another task was to integrate that agent with the Oracle search engine and with the
catalog. A third task was to create the three dictionaries always needed for conceptual
search – spelling, stripping, and synonyms – as these are domain-specific items.
Although it came with 100,000 words it was necessary to embellish the spell checker’s
dictionary by adding: (1) the top 1,000 mis-spelled words from the user search log and
their corrections, (2) proper names of all manufacturers and suppliers (the spell-checker
assumes initially that all proper names are errors) and how they might be mis-spelled, and
(3) many dozens of acronyms with proper spelling (e.g., CD, DVD, HVAC, etc.).

Likewise, Oracle Intermedia includes a synonym processor, but provides no
thesaurus. Growing this thesaurus involved many false starts and deadends. For example,
it is tempting to try and use an existing general purpose thesaurus such as WordNet from
Princeton. This includes 95,000 words and all their synonyms, however, this thesaurus
brings back too many synonyms, many of which are inappropriate (racial slurs, curses,
body parts, religious terms, etc.). Plus most of the specialty terms of the domain are
omitted (e.g., chain saw, Phillips head, and safety gloves). An alternative was to extract
all the unique terms from the catalog and to manually create synonyms for these,
however, this rapidly exploded into too large a task. In the end, a thesaurus was
incrementally grown from studies of the user search logs (initial search string vs.
eventually successful string), and from having the call center author synonyms for the
1,000 most frequently non-matched terms that actually exist in the catalog under a

 24

different name. On average, about 3 synonyms were created per term. Also, we added
synonyms for each of the multi-term descriptors of the 13,000 nodes of the catalog’s
browse tree by creating altered spellings of these (e.g., smashed out the spaces, added
hyphens instead of spaces, and created single word equivalents).

4.4.2) Domain-Specific, Natural Language Agent (P2)

 This article began by mentioning how e-commerce executives have ignored the
search process, relegating it to off-the-shelf technology that doesn’t work out. Subsequent
sections explained how the components of a robust, conceptual-based, and trouble
management search approach can be purchased, and then adapted with domain specific
knowledge such as the additions to the dictionary and thesaurus mentioned above. In this
section, we come full circuit to the notion that one must build a domain-specific search
agent that sits between the user and the domain- independent search technologies in order
to pull all the pieces together and to support the buyer decision making and trouble
avoiding needs of the users.
 But building such an agent need not be an overwhelming task. First of all, as just
mentioned, such an agent sits between the user and existing components – so half of the
task is taken care of just by calling up these components at the appropriate time within
the decision support framework. The other half of the task is dispensed with by
instantiating the domain knowledge elements of a rule-sequence phrase parser as
commonly used in the information extraction community: e.g., see [21, 24, 26]. This is
the old idea of rule-based inferencing, applied to the information extraction task. Figure 4
overviews this agent and we explain it further below.

Figure 4 – Overview of Search Agent Architecture & Query Extract/Refine Process

Specifically, a rule-sequence phrase parser takes an initial search string or phrase,

and then iteratively labels and subsequently modifies these labels by applying a sequence
of transformation rules which attempt to reduce the remaining ambiguities and residual
errors left in place by the previous rules. To facilitate this transformation process we first
tokenizing the terms in the search phrase, Q. Next we eliminate stop or strip words (“find
me a”, “get all”, and opening and closing quotes) by comparing the search string to a

Buyer at
Browser

Oracle
Search
Engine
(Retrieval)

Product
Catalog

(R)

Intermed.
Feedback
(Spell check)

Search
Query

SQL
Query

Intermed.
Results
(Synset results)

T
o
k
e
n
i
z
e
r

S
Q
L

B
u
i
l
d
e
r

Search Agent
(Extract, Refine Query)

Manager/
Parser

(Min E(s))

Dictionaries
•Strip
•Spell

•Synset

Product
Catalog KBs

•Objects
•Attributes

•Values

Query
Transfor-

mation
Rulesets

(Φr)

Hits

Iterations

 25

negative dictionary. Finally, a stemming algorithm must be applied such as in Porter [27].
The result is a new version of the query we label as Q’. A similar process is performed on
the document base resulting in D’.

One can view the rule-sequence processor as a finite state automaton that
minimizes mean error for each term in Q’ across the range of possible states that that
term can assume. States for a given term, t, are label settings determined by the various
transformation rules (unlabelled token, object, attribute, etc.). More precisely, we may
state the objective function in a mathematical (or dynamic) programming formalism as:

Min Z = E(s)
(s=1,S)

Subject to,
 T

E(s) = { Σ et(s)}/ I (2)
 t=1

et(s) = { Sim (Qts’, Djk

’) } - { Sim (Qts-1’, Djk
’) }

Qts’ = Φr(Qt’)
Stopping rule: et < β

Where,
 Z = objective function to minimize the mean error across states, E(s)
 t = number of terms in the search string, as in Eq. (1)

s = current state counter for the query string
 s-1 = prior state before latest rule transformations

Sim (Qts’, Djk
’) = score of the tth query token against the j=1,J terms of the kth

document. Score is (0,1) depending on whether a match occurs.
 Φr = application of one of a number of possible transformation rules that changes

the state, s, of the query string by tagging or labeling some terms within it.
β = threshold

One need only come up with a reasonable sequence of transformation rules (r

=1,R) to utilize this approach. As an example transformation rule, mis-spelled words
must be flagged and iteration included to the user requesting them to accept the suggested
or alternate corrections, or to add their own. In product catalog domains, another set of
transformation sequences that leap out is the concept that searches are usually for objects
with attributes of a certain value. Thus many searches are for various orderings of OAV
triplets (‘mini sized amps’, ‘hammer colored red’), or some variant where the O is sought
initially and then the AVs are subsequently used for comparison and search refinement
(bolt cutter followed by size, price, and availability). Even more common are searches for
one or more V of a given type of O where the A is suppressed (AA Eveready batteries,
½” no.8 slotted screws, desk chair). In shopping domains, OAV triplets can be thought of
as a parsing sub-grammar. In fact a sub-grammar can be derived for objects and another
for attribute-value pairs. By crawling the catalog and extracting all unique terms along
with indexes to their locations, one can readily construct these sub-grammars. The

 26

resulting KB lookup tables can be utilized by transformation rules of the phrase parser to
infer and insert O, A, and V labels onto the various terms of the search phrase. Where
labeling isn’t immediately possible, still another transformation rule might attempt to
expand the query terms via synonyms and then repeat the OAV lookup table process.

Finally, one can add all kinds of domain-specific rules for any given catalog. In
the hardware domain some of these pertain to recognizing and labeling the notation. For
example, a number followed by ‘ is feet or “ is inches, while a number followed by # is
probably a weight. Likewise, the term “made by” is a two value predicate often preceded
by an object and superseded by a manufacturer (so C-H Cutler Hammer or just Hammer
can be discerned as the object or the maker). Or other rules might be added about two
measures linked together, like ½ x 8 for screws. One of the advantages of the rule-based
approach is that rules can be added on the fly, and as more get added, the better the
search engine becomes. Thus one can peruse sources such as [28] and manually extract
rules over time, or one can try to deploy machine learning approaches and add newly
discovered patterns as convenient.
 Using this approach EF has been able to demonstrate improvements in search
response. Table 3 summarizes some illustrative test results where the first column shows
the feature being tested, the search string used in a given test is in the second column, and
the last two columns show the hits with the keyword (munge) vs. agent search approach.
The base case tests of the first set of rows show that the agent recognizes terms within the
OAV framework. Thus it finds ‘cords’ missed by the munge due to synonyms, avoids
confusing hammer as a maker rather than just as a tool, and is not stymied by the strict
spelling of chainsaw without a space between chain and saw (another thesaurus success).
Likewise the agent’s spell checker is successfully demonstrated in the second set of rows,
while the third set of rows illustrates a couple of tests of the stripping and stemming
transformations. In both these sets of rows, the keyword search of the munge comes up
with no hits whatsoever. In the fourth set of tests, the keyword search of the munge
produces either far too many hits (e.g., finding boxes of 20 fuses that are 30 amps each,
etc.) or none, while the grammar is able to recognize the attribute-value pairings correctly
in both tests. Finally, where the attribute is omitted in the final set of rows, this seems to
help the keyword approach come closer to the Agent. However, closer inspection of the
results from the keyword search show it is retrieving irrelevant items such as products
that need an AA battery in order to be operated, white gloves made by Red Devil, and so
on. The items retrieved by the agent, on the other hand, are all AA batteries and red
gloves actually for sale in the catalog.

These results are promising, and EF is currently attempting to scale up the agent
search approach to handle the full subgrammar of the 201,000 attribute-value pairs and
the 18,000 categories of objects in its catalog. Also, work is underway to add more
domain rules, fully integrate all the components, exhaustively test the performance, and
refine it where needed. Plans call for all this to be completed and for it to be moved to the
production website before the end of the calendar year. However, the approach is
modular and parts may be deployed as they mature. For example, the synonym list and
stemming are already in use at the production website, while stripping and spell checking
will soon be activated. Also the approach works in tandem with the keyword search.
Where the agent can’t parse a search string, the keyword approach takes over. Thus an
answer is always found if one exists.

 27

Table 3 – Illustrative Results from Initial Tests of the Domain-Specific Agent

Trouble Management
Feature Being Tested

Search String Used in Test Keyword
Search of
Munge

Agent
Search

cord 480 544
hammer 1,512 378

Base case:
single word search

chainsaw 0 2
hamer 0 378 Rule Transforms: Spell

checking teh chansaw 0 2
List the cords 0 544 Rule Transforms: Stripping

stemming, object recognition Find me all hammers 0 378
20 amp fuses 495 59 Rule Transforms: OAV

triplet recognition 30,000 btu air conditioner 0 1
Aa batteries 33 10 Rule Transforms: Value and

Object recognition red gloves 13 5

5) CONCLUSIONS AND NEXT STEPS

This article offers a framework and guidance for developing decision support and
search technology appropriate for aiding buyer behavior at e-commerce catalog sites. We
presented and evaluated the full DSS framework in broad-brush and then provided fine-
grained research on design points for the search and browse portions of the overall
framework. In future research we hope to extend our fine-grained analysis to the
remaining blocks of the full framework, but we began with browse and search since it is
so central to a majority of the failure modes of the online shopping experience. The
lessons learned in this research can be summarized as follows:

Do The Right Thing: The decision support framework points out that buyers
seek to refine the ir decision criteria as they uncover and compare products. They must do
this untroubled by a morass of challenges that online catalogs pose, some of which are:
missing ontologic and taxonomic standards, inconsistent terminology across sellers in a
given market, separation of category from product descriptor fields, lack of product name
information in the catalog, incompatible use of terms in the catalog vs. user-chosen term,
missing data, attribute or parameter names exist as data rather than as field names, and so
on. These pose problems for search technology that few engines currently on the market
are able to overcome. Further, the framework also points out that online buyers need
more than just product search, and when deciding on purchases they also seek to perform
comparative studies, engage in low cost bidding activity, and obtain shipping, financing,
and availability information. In addition, they seem to desire stores that remember their
preferences and offer personalized service, though they aren’t willing to spend much time
divulging private information, and they resent sites that get it wrong.

Supported by a case study analysis, this article amply demonstrates that no
application providers in this industry currently support the range of features one needs to
deploy to help manage the trouble that arises when buyers search catalogs. E-Commerce
websites currently must make up for this missing industrial capability by taking

 28

responsibility for design, programming, integrating, testing, and rolling out of the needed
feature sets on their own. Often one can utilize the help of multiple off- the-shelf
components, but these pose significant integration and feature extension needs.
 Do The Thing Right: Derived from theory and supported by a real world case
study, the DSS framework helps readers to understand that designing search and decision
support for e-commerce is a very different issue than designing it for information
retrieval tasks on the web. Yet few B2B e-commerce website executives currently seem
to be aware of this difference, and too often they attempt to use off-the-shelf web
searching technology where it doesn’t apply. Even in B2C shopping sites where they
seem to understand the framework in general terms (i.e., at the block level), closer
examination of the design points shows these sites still suffer many of the same failure
modes as B2B sites.

This article also presents four principles to guide design of the needed feature
sets, focusing on minimizing the failure modes of the browse and search subset of the
overall DSS framework as a starting point example (in the future we hope to research
principles for other portions of the framework): use natural language search (P1), build
domain-specific agents (P2), treat search as a process (P3), and use and manage
knowledge to facilitate search (P4). The second half of the case study explores how these
principles guided the development of an improved decision support capability. This
improved capability was developed with the help of off-the-shelf technology for
conceptual based search. However, that technology did not work out of the box, plus it
only supported portions of the buyer decision support framework proposed here. Effort
was needed to embellish this technology by adding significant website screen
functionality; by crawling the catalog to extract, index, and grow a domain-specific
thesaurus, dictionary, and catalog knowledge bases; and by inserting an intelligent agent
between the user and the search engine to support buyer needs. This agent is based on
transformational rules that one can add incrementally to increasingly complement and
supplement keyword-based search. The case study serves as an example of what was
needed at this site, though we believe the principles and lessons learned could be
generalized to other sites as well.
 There is no intent here to suggest that “one size fits all” in terms of a solution to
buyer decision support needs. The framework attempts to point out the space of
functionality one must consider when assembling decision support for online buyers. The
approach in the case study was one path through all the boxes of the framework. Further
indepth case studies would be useful to help fully define the framework. In the interim,
however, the principles followed here and approach pursued in the case study can serve
as a point of departure for other e-commerce catalog sites that are seeking guidance.

In terms of generalizations, one other thing the case study does point out is that
industrial application providers still need to go a long distance before they can offer e-
commerce websites the range of support that is essential to their survival. Vendor after
vendor show up at each online catalog executive’s doorstep claiming to have all the
features needed, often claiming that the expense of their solution (usually deep into six
figures just to get started) and the list of other clients who bought it is proof that they’re
right. The website executives have little basis of comparison and few defenses against
this onslaught, given how distracted they are by other demands of startup. The framework
and lessons learned offered here, however, serve to point out that easy solutions do not

 29

exist. At present, one cannot buy the needed functionality off-the-shelf, the industrial
application providers just aren’t at that stage as yet. The current state of the practice
requires that off-the-shelf components be substantially extended and that one must plan
for significant integration and domain-specific development effort. This problem is
endemic and it won’t fade away quickly. Website executives beware! If you want
customer-keeping technology, be prepared to assemble from parts that aren’t all there yet.

REFERENCES

1. AltaVista Search Engine (AVSE) version 3.1, available from www.altavista.com
2. Angwin, J. (July 10, 2000). (front section) “EqualFooting Proves Funding Is

Easy, For B-to-Bs With Something to Sell,” Wall Street Journal – Interactive
Edition.

3. Anon, (2000a).“Points eCRM Architecture: Providing Future Technology
Today,” avail. from www.teampoint.com.

4. Anon, (March 2000b). “Winning the Online Consumer: Insights Into Consumer
Behavior,” Cambridge: Boston Consulting Group, www.bcg.com.

5. Anon, (1999). “Why Most B-To-B Sites Fail,” Cambridge: Forrester Research,
Dec. (www.forrester.com)

6. Anon, (March 2000c). “Revolutionizing the Search for Products at e-Commerce
Sites,” Littleton: Easy Ask Inc, www.easyask.com.

7. Anon, (2000d).“Datasheets on Frictionless Search Engine,” avail. at
http://www.frictionless.com/solutions/datasheetfo rm.html

8. Anon, (2000e). “Using the UN/SPSC: Why Coding and Classifying Products is
Critical to Success in Electronic Commerce,” Granada Research, (avail. from
www.unspsc.org/h_using.htm)

9. Anon, (1998). Oracle 8 ConText Cartridge: Workbench Users Guide, Redwood
City: Oracle.

10. Aridor, Y., Carmel, D. Lempel, R. et al. (July 2000). “Knowledge Agents on the
Web,” in Cooperating Intelligent Agents Workshop Proceedings, Boston:
ICMAS.

11. Beckwith, R., Miller. GA. Tengi, R. “Design and Implementation of the WordNet
12. LexicalDatabase and Searching Software,” http://www.cogsci.princeton.edu/~wn/
13. Cohen, WW. (1998). “A Web-based Information System that Reasons with

Structured Collections of Text,” Autonomous Agents Conf. Proc., pp. 400-407.
14. Ettlinger, S. (1998). The Complete Illustrated Guide to Everything Sold in

Hardware Stores, New york: Macmillan.
15. Faloutsos, C., Oard, D. (1995). “A Survey of Information Retrieval and Filtering

Methods,” avail. As UMIACS-TR-95-33, College Park: U of MD.
16. Guttman, RH., Moukas, AG., Maes, P. (1999). “Agent-Mediated Electronic

Commerce: A Survey,” in M.Klusch (ed), Intelligent Information Agents, Berlin:
Springer, avail. from http://ecommerce.media.mit.edu. (Also, a version of this
paper exists as Maes, P, Guttman, R, and Moukas, A, "The Role of Agents as
Mediators in Electronic Commerce." Special Issue of Knowledge Engineering
Review on Practical Applications of Agents, summer 1998).

 30

17. Hagen, PR., Manning, H., Paul, Y. (June 2000). “Must Search Stink?”,
Cambridge: Forrester Research. (www.forrester.com)

18. http://www.kdnuggets.com/
19. Jonker, CM. (July 2000). “ICEBERG: Context mappings,” in Cooperating

Intelligent Agents Workshop Proceedings, Boston: ICMAS. July 2000.
20. Keen G. W. P, Morton S. M., (1978). Decision Support Systems: An

Organizational Perspective , Reading Addison-Wesley
21. Kalakota, R., Robinson, M. (1999). e-Business: Roadmap for Success, Reading:

Addison-Wesley.
22. Kaplan, S., Sawhney, M. (May-June 2000). “E-Hubs: The New B2B

Marketplaces,” Harvard Business Review pp. 97-103.
23. Miles, GE., Howes, A. Davies, A. (2000). “A Framework for Understanding

Human Factors in Web Based Electronic Commerce,” in Int. J. Human-Computer
Studies, v. 52, 2000, pp. 131-163.

24. Neilsen, J. (July 15, 1997). “Search and you may find” Alert Box, avail. at
http://www.useit.com/alertbox/9707b.html

25. O’Keefe, RM., McEachern, T. (1998). “Web Based Customer Decision Support
Systems, Commun. Of the ACM, v.41, pp. 71-78.

26. Pazienza, MT (ed.), (1999). Information Extraction: Towards Scalable, Adaptable
Systems, New York: Springer.

27. Peppers, D., Rogers, M. (1999). Enterprise One to One: Tools for Competing in
the Interactive Age, New York: Doubleday.

28. Pollock, A., Hockley, A. (March 1997). “What's Wrong with Internet Searching,”
D-LibMagazine, Ipswich, UK: BT Laboratories. avail. at
www.dlib.org/dlib/march97/bt/03pollock.html

29. Porter, MF. “An Algorithm for Suffix Stripping,” avail. with coded
implementations at www.muscat.co.uk/~martin/def.txt.

30. Sentry Spelling Checker avail at http://www.wintertree-
software.com/dev/ssce/java/index.html

31. Silverman, BG. (1992). Critiquing Human Error: A Knowledge Based Human-
Computer Collaborative Approach, London: Academic Press.

32. Vilain, M. (1998). “Inferential Information Extraction,” in MT Pazienza (ed.)
Information Extraction: Towards Scalable, Adaptable Information Systems, pp.
95-119 New York: Springer.

33. Voorhees, EM. (1999). “Natural Language Processing and Information
Retrieval,” in Pazienza, MT (ed.), Information Extraction: Towards Scalable,
Adaptable Systems, pp. 32-48, New York: Springer.

34. Whinston B. A., Holsapple W. C., Bonczek H. R., (1981). Foundations of
Decision Support Systems , New York: Academic Press, Inc.

