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“ . . .it came up with streams and streams of information and it just took ages to scroll through it all -- and it 
never came up with anything particularly useful. . .I then tried to enter words that were more specific to 
what we wanted, but in the end I just gave up because I couldn't find anything." 

-Anonymous user in [2] 
 

“Last month we finally had an intern look at the most common search queries …the right answer for the top 
query wasn’t showing up until item 47.”  
    -Anonymous Shopping Site Executive in [13] 
 
 

ABSTRACT 
In the rush to open their website, e-commerce sites too often fail to support buyer 

decision making and search, resulting in a loss of sale and the customer’s repeat business. 
This paper reviews why this occurs and the failure of many B2C and B2B website 
executives to understand that appropriate decision support and search technology can’t be 
fully bought off-the-shelf. Our contention is that significant investment and effort is 
required at any given website in order to create the decision support and search agents 
needed to properly support buyer decision making. We provide a framework to guide 
such effort (derived from buyer behavior choice theory); review the open problems that 
e-catalog sites pose to the framework and to existing search engine technology; discuss 
underlying design principles and guidelines; validate the framework and guidelines with 
a case study; and discuss lessons learned and steps needed to better support buyer 
decision behavior in the future. Future needs are also pinpointed. 
 
 
1) INTRODUCTION 
 

The rapid rise of e-commerce is impressive – over half of today’s 80 million web 
users shop for or buy products online, and business to business purchasing is expected to 
rapidly eclipse that level [1]. However, in the rush to provide online presence, many 
eMarket sites have been built quickly, with little infrastructure and capabilities needed to 
run such an e-business. As we all know only too well, browsing, searching, and buying 
via online web catalogs can be a time consuming, frustrating task. BCG, for example, 
reports that over 80% of web shoppers have at some point left eMarkets without finding 
what they want and that 23% of all attempted e-shopping transactions end in failure [1]. 
Four of the top five failure modes are search-related (i.e., page loading times, couldn’t 
find product, system crashed, had to call customer service) although some of the blame 
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needs to be shared by other causes as well, a few of which are internet delays, overall 
website design, and reliability. 

This paper explores only those portions of these failure modes that are due to the 
functioning of the Decision Support System (DSS) and search software. In particular we 
examine DSS that operates at shopping sites. While the results in this paper apply to all 
shopping sites, they are particularly pertinent to sites that are mergers of multiple 
catalogs, sometimes called gateways, e-exchanges, or eMarkets. We refer to the dot com 
that creates the exchange as the market maker. The reader will see that the problems of 
merging multiple vendor catalogs into a seamlessly integrated and easily searchable, 
virtual shopping mall turn out to be formidable. In looking for a solution, this paper will 
postulate a design framework for DSS in online shopping sites and attempt a proof of 
concept test of the framework and infer lessons learned from a case study of an existing 
eMarket site. A single case study is insufficient to fully validate the framework, hence we 
only offer a single data point concept assessment.  

 
1.1) Who are the Sellers  
 

Market places on the web may be single vendors but increasingly they involve 
aggregator sites [19], online virtual interfaces that merge potentially 1,000s of vendors 
into a seemingly single marketplace. Exchanges vest control in the buyer since they foster 
cross-vendor shopping. To be successful, exchange sites must pay extra attention to the 
design of the DSS they provide for the buyers to browse and search their site. Benefits to 
the vendors arise when the exchange draws in and retains numerous prospects and 
potential customers that might never have visited each of the individual vendors’ sites. 
DSS can vital play a role in this process.  

Such sites exist today as business to consumer (B2C) mega-stores and as business 
to business (B2B) hubs which aggregate numerous small suppliers horizontally. B2C 
examples are Amazon.com (books, electronics, tools, garden supplies, etc.), 
Priceline.com (food, airline tickets, shows), and others.  B2B examples are 
EqualFooting.com (operations & maintenance supplies), NECX electronics exchange 
(semi-conductors, electronic components), etc. In the B2B cases, the sellers often are also 
buyers of other sellers’ goods. Typically the sellers participate in these markets to 
eliminate the middleman, to gain new customers, to keep up with competitors, and/or to 
appease shareholders. Many sellers are themselves new to information technology and 
often rely on the market-maker to try and automate and integrate their catalog as best as 
possible from the raw data they provide. 
 Forrester Research interviewed executives at 50 e-commerce sites in 2000 and 
found that while 90% state search is extremely or very important, most have invested 
minimal or no money or time in developing a good search engine, and over half admit 
they don’t even know how their engine is used or whether customers are unhappy with it 
[13]. The sites failed a bank of basic search tests that Forrester administered [12,13]. 
 
1.2) Who Are the Buyers  
 

Online shoppers to date include almost 15% of the country. The mass market has 
yet to show up in either the B2C or B2B forums, but projections indicate this will occur 
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rapidly over the next few years. To date we do know that the process of finding 
information via search engines is simply too complicated for internet-naive people to use 
without very high levels of support. And, some users who have had internet access for 
over a year (and who claim to 'surf' on a regular basis) are still having problems using 
search engines [2]. For example, Neilsen [3] gave users the task:  

You have the following pets: 
 - cats 
 - dogs 
Find information about your pets. 

Almost all users enter the query cats AND dogs. They typically find nothing, since the 
site does not include pages that mention both animals. Upon encountering a "no hits 
found" message, the vast majority of users concluded that there was no information 
available about these pets and departed from the site. Even sophisticated web-searchers 
made this mistake initially, though they soon recovered. In short, one must be very 
cautious in designing the search experience to support such users, be they in B2C or B2B 
marketplaces. 
 
1.3) What is an Online Catalog 
 

Before going further, it is worth elaborating on the definition of an online catalog 
and some of the design cha llenges it represents. An e-commerce catalog is the heart of a 
shopping site and it holds information on all the products one can buy at that site. The 
catalog is browsable like other website contents, but unlike the other contents, it usually 
is stored in a relational database product as are the transactions such as bid, buy, ship, etc. 
On the face of it, the reason a relational database is used is that the catalog is far more 
structured than the HTML documents typically found on a website.  However, the degree 
of structure is relative, and most product catalogs do not have nearly enough structure for 
DSS and search to work at their optimum [16].   

The basic logical structure of a product or item catalog may be described as four 
sets of Relations, R   = {R1, R2, R3, R4}: 

Product Hierarchies (R1) – These are the fields supplied by the website when 
users try to browse the catalog. As a result, R1 = <C1, …, CN> is a tuple of multi- level 
trees that taxonomize the contents of the catalog and whose leaf nodes point to actual 
products in the catalog. When merging each of the CN catalogs of multiple vendors on a 
dynamic, continuing basis, market makers encounter almost overwhelming taxonomic 
challenges to constructing R1, which in turn pose browsing design concerns – obstacles 
we return to in the case study.  

Product Descriptions (R2)  – This relation is a tuple, R2 = <D1, …, DK>, of 
k=1,K free text descriptions that suppliers create and which hold the information about 
products that suppliers believe users need. The DK are the document fragments utilized 
by search engines to support user queries and product search commands. Interestingly, 
while catalogs include a field called “product name”, most suppliers omit this field 
believing the “description” field is sufficient. When merging 100,000s and 1,000,000s of 
products, market-makers have no resources to supply this or other missing information, 
or to standardize free text descriptions the suppliers provide in the DK. As we will see 
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later, this makes for some formidable search engine design challenges – ones the field has 
yet to entirely overcome. 

Product Attributes and Values (R3)  – The catalogs also hold numerous 
parameters about each product (e.g., color, weight, length, manufacturer, price, condition 
(new, used), ava ilability, reviews, etc.). This is the information that is used to support 
parameter search and sorts such as by price or size or location. A universal feature of 
catalogs is that there are many products, the product lines are continually changing, and 
each of the 1,000s of leaf node categories of products has a different set of attributes. As 
a result, attributes are not stored as fields of a table. Rather, the m=1,M categories of 
attribute names are stored as data items as are their value settings. Thus R3 = <<A31, 
V31>, …, < A3M, V3M>> where A and V are vectors of a-v pairs that are equi- length for 
any given category. This and large numbers of unfilled in attribute fields are stumbling 
blocks few DSS designer have yet to fully eliminate in trying to support attribute or 
parameter search.  

Transactional Fields (R4)  – A final point about catalogs is that they must also be 
designed to support the full range of transactional activities such as customer registration 
and profiling, product purchases, purchase histories, shipping requests and status, 
payment choices and status, bids placed and received, and the like. That is, the database 
serves as the underlying organizing vehicle for the processes, tasks, and workflow 
surrounding each product. Successful catalogs hide these fields behind highly usable, 
visual metaphors such as the shopping cart, the activity center (where you can track your 
purchases and bids), and other web pages. These fields and their visual interfaces must be 
designed with DSS and user decision processes in mind. Too often, one encounters 
shopping sites that needlessly interrupt users’ buying steps, that fail to support how 
customers want to proceed, and/or that are unforgiving of user error. Overcoming these 
problems requires research and investment in better DSS technology. 
 
1.4 What is a Decision Support System  
 
 A decision support system (DSS) is an interactive information system that 
provides information, models, and data manipulation tools to help make decisions in 
semistructured and unstructured situations where no one knows exactly how the decision 
should be made. The traditional DSS approach includes interactive problem solving, 
direct use of models, and user-controllable methods for displaying and analyzing data and 
formulating and evaluating alternative decisions [20,33]. This approach grew out of 
dissatisfaction with the traditional limitations of Transaction Processing Systems and 
Management information Systems. The former focused on record keeping and control of 
repetitive clerical processes. The later provided reports for decision makers, but were 
often inflexible and unable to produce the information in a form in which people could 
use it effectively. In contrast, DSS were intended to support the mental processes of 
people doing largely analytical work in less structured situations with unclear criteria for 
success. DSSs are typically designed to solve the structured parts of the problem and help 
isolate places where judgment and experience are required. The broad spectrum of 
information systems with DSS label range from general tools such as spreadsheets, data 
analysis, and graphics packages to highly customized simulation models or knowledge 
based advisor system focusing on a specific situation.   
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 In online shopping sites, buyers have decisions to work out and tasks to perform 
that require DSS software. In the next section we review the mental processes of buyers 
in detail. Here however, we are more generally focused on how DSS can be brought to 
bear in buying decision making. To address this we introduce Table 1, which illustrates 
the levels of DSS one typically adds to a (B2C or B2B) shopping website. These range 
from minimal DSS (level 1) to sophisticated (level 3). The levels also parallel the 
evolution of shopping DSS since the mid 90’s though one still finds late adoptors or low 
budget sites coming in at level 1, and no sites have yet fully developed level 3. 
 Level 1 DSS tend to use off-the-shelf general-purpose software to set up the 
shopping pages and the simplest of keyword-based search and browse technologies. 
These sites are “user pull” based and cost very little to construct. Generally, they are 
executed to address web-presence issues, and they offer little in the way of helping the 
buyer with anything but information access and the barest minimum of purchasing 
functionality. 
 At the next level are a series of efforts to better understand buyer mental 
processes and steps during a transaction and to offer numerous default settings and 
templates to help with the more well structured steps. DSS surveyed in the late 1990s by 
Miles et al, for example, focus on how to support the steps involved in comparing brands 
and products. Only a short while later another surveyed by Guttman et al, showed 
systems trying to extend this to the buying/negotiation/shipping steps. In the current 
paper, we integrate these approaches and extend the DSS further to cover still more 
decisions process such as finances, online help, and error management as well as natural 
language-based search.  
 At the highest level are the most recent shopping site features that have been 
developed in the current millennium. Here we see a shift to support the long-term 
relationship that the prospect and buyer have with the site via knowledge based 
prompting both within a transaction (as with level 2 approach) and across transactions.   
The current paper incorporates these features into its framework and suggests ways to 
push the state of the practice still further. To better understand this we turn now to a more 
in-depth look at buyer behavior theory and how DSS features seek to support the 
individual molar processes of buyer behavior and relationships. 
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Table 1 Alternate Forms That DSS May Take For Supporting Buyer Decision 
Making At Shopping Sites And Market Exchanges  
 
Level Of 
DSS 

DSS Characteristics  Examples /Frameworks 

1.Access 
Focused 
 

Scope: 
• All-Purpose Web Server & Search Tools Useful For Any Domain (Not 

Just Shopping) 
Prime Features:  
• Linear Search & Browse 
• Key Word Search 
• Web Server  
Cost & Effort: Turn Key Solutions Offered By Many Vendors But Many 
Shopping Website Functions And Pages Must Be Programmed 

Very Early Internet Era 
Shopping Sites 
Circa 1995 

2.Trans- 
action  
Focused 

Scope: 
• Shopping Focused Tool Set 
• Mental Model Of Buyer 
• Guided Choices 
Prime Features:  
• Shopping Site Data Structures And Web Server Applications 
• Templates & Default Settings For Product & Brand Selection Process 
• Templates & Default Settings Extended To Shipping/Buying/Bidding 
• Template & Default Settings Extended To Financing And Help Desk 
Cost & Effort: Focuses On Catalog Content Integration (And Quality) And 
Numerous GUI Issues  

Miles et al,  Survey Of 
13 Web Sites [25] 
 
Guttman et al, Survey Of 
Cross Market Site Agents 
[16] 
 
Silverman et al (This 
Paper) 

3.Rel-
lationship 
Focused 
 
 
 

Scope: 
• Customized Tuning To Prospect & Customer Mental Model At This Site 
• Knowledge Based Prompting  
Prime Features: 
• Trouble Management Systems (Human And Computerized Customer 

Relationship Management) 
• Cross Session Consumer Preferences And Personalization (Life Cycle 

Management) 
• Reminding/ Advertising/Extended Supply Chain (Client Organization 

Support Of Purchasing Function) 
• Natural Language “DO What I Mean” 
Cost & Effort: Must Embellish Vendor Offerings, Add Warehouse, And 
Integrate Several  Vendors’ Applications  

Many B2C Sites Attempt 
To  Offer These At 
Present But Few B2B 
Sites Yet Do 
 
Silverman et al, (This 
Paper)  
 
 

 
 
 
2) FRAMEWORK FOR DESIGN OF A DECISION SUPPORT SYSTEM FOR 

ONLINE SHOPPING 
 

 This section examines the buyer’s transaction and relationship based DSS 
literature and models more closely.  Unfortunately, there is no single source that one can 
turn to which will guide the design of the decision support functions that need to be built 
for effective support of users performing e-commerce tasks. Instead there are numerous 
sources, each presenting part of the solution: e.g., see [4-10] among many others.  What 
is needed is a synthesis of guidance, a DSS developer’s design guidance framework. In 
this section we present such a synthesis and explain its derivation. In subsequent sections 
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we attempt to evaluate a portion of the framework via a case implementation. It will be 
seen that the framework poses a larger research problem than the one paper can do justice 
to. 

Let us begin by examining the work of  Miles et al. [4]. They survey the buyer 
behavior literature and isolate an insightful three stage model of buyer behavior 
including: (1) initial identification and subsequent management of search criteria that 
happens as the search proceeds, (2) search (via browsing, engine, or other method) for a 
product based on the current criteria set – this is an information collection and 
intelligence building stage in which more is learned about the criteria, the products’ 
attributes, and the merchants of those products, and (3) comparison of products leading to 
a choice, or to a decision to abandon the search. Miles et al. point out that these are three 
categories of goal driven behavior that are not readily modeled as a hierarchy or 
sequence. The precedence of the stages is determined by on-screen information, multiple 
product searches might be interleaved (e.g., looking for a video camera and a television), 
and management of criteria and comparative results for one search might affect those of 
another. In short, there is no simple decision algorithm that one can deduce for this 
process.  

Instead, Miles et al. review 13 alternative types of shopping websites and use the 
lessons learned to construct a framework of design alternatives for DSS in online 
shopping. We summarize their framework in the innermost dashed box of Figure 1. Here 
one can see the 3 stages of buyer behavior across the top. The lower boxes express the 
range of DSS design options available to site developers. Thus alternative styles of 
product representations and form of parameter information presentations can be chosen to 
support the criteria management stage. Likewise the search stage is variously supported 
by sites that are browse- vs. search- vs. assistant-based (metaphor), and by different 
search technologies (keyword, concept, parameter, or natural language). Finally, in the 
compare stage developers choose DSS alternatives in terms of the scope (compare across 
multi-vendors at once?) and mode of information the user can view. This inner dashed 
box of Figure 1 takes a few liberties with the Miles et al. framework. For example, they 
omitted “Trouble Management,” which is a vital DSS design feature given the 
frustrations buyers are experiencing today on websites. In addition to adding this box, we 
have added a few bullets here and there to other boxes that modernize Miles et al. such as 
natural language. As another example, exchanges did not exist at the time of their 
research, and we now have the potential of designing not only for exchanges, but also 
across exchanges (see “X-exchange” bullet). Aside from these updates, the basic 
framework is a useful one. 

Another subtle difference of opinion is that Miles et al. indicated the bullets in 
each box of the framework tend to be mutually exclusive. For example, they try to label a 
site as search vs. browse metaphor, or keyword vs. parameter search. The benefit of time 
has proven this to be a weak assumption, and many sites today increasingly seek to 
support multiple features of the design space simultaneously. This is because no one 
approach works all the time, and users have different cognitive styles and support needs. 
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Figure 1 – Overview of Design Space for Online Buyer Decision Support 

 
 The Miles et al. model of behavioral stages also ignores some of the later stages 
of decision making such as price negotiation, how to get the product (shipping), and how 
to pay for it (finance). Guttman et al. [5] survey the buyer behavior literature and 
summarize it in terms of a 6 stage model that encompasses the Miles initial stages, these 
three later stages just mentioned, and a final stage for user evaluation of the service they 
got during the purchase. We plot most of these extra stages (all except post-purchase 
evaluation) along the right side of Figure 1 – outer dashed box. Here we show them as 
DSS design choices since how they are implemented effects the purchase choice, and 
there are alternative ways to design them (i.e., choices of services to offer at the site). 
Miles et al. does include the bidding and negotiation options in their design space 
framework, but they omit the other boxes. We think that is a serious omission and offer 
this framework as a revision. Guttman et al. [5] identified these as stages, but we rightly 
feel they are subordinate to the comparison stage since they impact the buyer’s decision 
of which product to select and which merchant to buy from. In that sense they are clearly 
alternative services that the site developer might want to factor into their DSS design. 
Finally, Guttman et al.’s finance stage has been reinterpreted here in the following sense. 
That is, the idea of instant credit and loans over the web did not exist at the time of their 
survey and so they meant similarly “paying options.” We extend this here to include the 
newer financial services that market exchange sites can now offer. 
  The components in the two dashed boxes of Figure 1 that have been discussed 
thus far are primarily in support of the transactional model of behavior (the level 2 of 
earlier Table 1). Although our refinements to the finance box move past level 2, at this 
point we want to introduce further refinements that move a DSS to level 3. In particular 
three further framework extensions are needed as are depicted across the base of Figure 
1. First, most shopping sites today include or are building a data warehouse that captures 
and helps to track customer transactions, all user interactions be they registered 
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customers or casual prospects (the clickstream), and psycho-demographic profile 
information on customers and prospects that is either volunteered and/or purchased from 
a variety of sources: e.g., see [8]. This data is analyzed offline and in real-time to build 
descriptive and predictive models of user shopping and buying patterns (what works, 
what doesn’t work, what trouble is driving them away). From the buyer’s perspective, 
this is the kind of memory one expects from local store owners that recognize their 
customers preferences and recall the kinds of things they have bought in the past.  The 
second extension to the framework is personalization software (e.g., see [9]) to help 
provide personalized service that many users want, focusing their search and offering 
time saving suggestions and value-added content. This works by combining warehouse 
information with business rules, matching approaches, and/or correlation functions (e.g., 
collaborative filtering) to help decide what products, product info, and content will be 
most attractive to and useful for that user. This type of software can effect the items 
emphasized and displayed in each of the other boxes of the framework in Figure 1.  

Buyer decision support need not be entirely software based. A final extension to 
the framework lies in the ability of users to receive human help during their sessions. At 
one end of the spectrum, many shopping sites include an email button for submitting 
problems to a helpdesk person who will respond within a few hours or days. In order to 
better help users, many other shopping sites now include a 24x7 call center for immediate 
help in browsing and searching the site, in placing bids or securing financing, and the 
like. The customer service representatives at the call center might operate as a telephone 
bank, or they might be given help desk software. This software is called a Customer 
Relationship Management (CRM) package as it utilizes the results of the warehouse to 
help the representative manage the overall relationship with and workflow for that 
customer, not just the single incident or session difficulty associated with the phone call: 
e.g., see [10]. 

These three new blocks across the base of the DSS framework raise interesting 
temporal and scope dimensions that were previously absent from the framework. The 
Miles and Guttman type framework are based around a single transaction view of the 
customer. While there is a timeline to such a transaction, it tends to be finite- usually on 
the order of minutes or hours for the sale, a few days involved in support of users who 
wish to track the purchase and, a month or so (hopefully) for assuring payment and 
possible returns and re-crediting. The extensions we include here shift the framework 
towards an “infinite” timeline, or at least toward lifetime-scale management of prospect 
and customer information. One can think of  a doubling of complexity, where one must 
mange not only the current shopping experience but also the process of attracting 
prospects and new customers as well as the customer retention process. The reasons for 
accepting this added complexity are widely published. For example market analysis [32] 
indicates that it cost six times more to sell to a new than to an existing customer, and that 
a firm can boost it’s profits 85% by increasing its annual customer retention by only 5%. 
From this perspective, putting into place customer relationship management capability 
(help desk) is well worth it since 70% of complaining customers will do business with a 
company again if it quickly mediates any snafus.  

Also only about 2% at most of those who visit a website wind up making a 
purchase. So keeping that 2% is vital and a key to that retention is the mining for 
prospects and attracting more customers so there is a bigger pie for that 2% to be drawn 
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from. In short the marketing theory suggest the extensions to the DSS framework across 
the base of Figure 1, and we have added them. However there is a large difference 
between just doing the right thing vs. doing the thing right. This is true of every block in 
Figure 1, a point we believe warrants significant study as will be further addressed below.  

To summarize, Figure 1 provides a framework that overviews the space of design 
options that a shopping website developer must consider when constructing DSS for the 
online buyers. Assembling a DSS with all these features is a significant undertaking 
though it is getting easier. Only a couple of years ago, in 1999, Guttman indicated there 
were no centralized shopping sites (agents) that also included the right hand side of 
Figure 1 (bid, ship, finance). Likewise in 1998 when Miles et al researched their 
framework (published in 1999), natural language was not an option, trouble management 
was rarely, if ever, offered on the web, gateways and market exchanges had yet to be 
created, and personalization, warehouses, and CRM software did not exist for web 
marketplace deployment. Even though their original framework is only a subset of Figure 
1’s framework, Miles et al. indicated the design point options in their framework 
significantly exceeded the implementations on the web. Today there are still unexplored 
design points/options, but there are many hundreds of web-based shopping sites and one 
can often find an implementation of any given design point or a close approximation to it. 
Further, there are typically two to four dozen application providers offering pre-packaged 
solutions for many of the boxes of the Figure 1 framework (e.g., personalization, CRM, 
search engines, etc.) and a growing number of service sites one can embed that provide 
other components of Figure 1 (e.g., shipping, finance). 

The problem confronting the website DSS developer today is that each of these 
packages pose a feature-explosion – which ones to choose for their users? This is no 
small issue and the software package features take nearly as much time to integrate with 
the online catalogs as it does to build a preliminary version of the feature set from 
scratch. Also, there is a significant vendor inter-operability problem. Since no application 
provider yet operates across the full design space of Figure 1, one must seek a mix of 
software buys and builds that overcome innumerable inter-operability issues. This is 
leading at least some dot coms to avoid all application providers and try and build the full 
range of DSS features on their own. Finally, there is a shortage of lessons learned and 
evaluation literature that can help guide the DSS designer through this maze. What 
works, what doesn’t work, what is reducing user frustration, etc.? How does the website 
developer sort out the options that the application provider packages offer? Which 
packages help reduce the problems raised at the outset of this paper and which don’t? 
 This paper offers only a few answers to this large set of design questions. The 
framework of Figure 1 bounds the space of design questions, and the case study 
presented in the rest of this paper explores how one group navigated through the 
framework, their rationale for various design decisions, and some lessons learned. Also in 
this case study we attempt a two level analysis. On one level we focus on the overall 
framework without worrying about which design points work best (Sect. 3). After 
completing that effort we then examine some of the design points with particular 
attention on search and browse (Sect. 4). As such one can view section 3.0 as verification 
of our framework for design of level 2 and 3 types of DSS, while Section 4 goes into 
design points that fall largely within a level 2 DSS.  Numerous studies are needed to 
examine all the design points issues, and we had to choose which ones to focus on first. 
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Many more case studies are needed before the entire extent of this design space will be 
well understood.  
 
3) CASE STUDY VALIDATION OF THE DSS DESIGN FRAMEWORK  
 

This case study is of a B2B dot com that has features on their website for each of 
the boxes of Figure 1’s framework. Further, these features are often designed to offer 
more than one of the options in the boxes of the framework. In this section we overview 
the website and the current status of its design. Then we turn to an in depth discussion for 
a select few design features and address the challenges, efforts underway to overcome 
them, and lessons learned to date. 

Specifically, the case study website is EqualFooting.com (www.equalfooting.com), a 
B2B online marketplace for the “maintenance, repair, and operations” (MRO) sector: 
e.g., see [29]. This means basically EqualFooting sells industrial and construction 
supplies – something like a Home Depot for small contractors only with an order of 
magnitude more products than Home Depot offers. The company’s official launch date 
was February 2000 and by June 2000 they were handling one million hits per day (by 
about 23,000 separate users daily). Also, at this writing their catalog integrates almost 
half a million products offered by over 2,000 sellers.  

The unified catalog is assembled on an outsourced basis and is then stored 
internally in an Oracle database on multiple processors to balance user load.  A hidden 
mirror site exists on the opposite side of the country to further address redundancy and 
load issues. Atop the catalog is a webserver (WebLogic) and a Java implementation of 
about ½ million lines of code, as of this writing, that performs all the functions of the 
website and that connect the users’ web-browsing clients to the remote servers holding 
the catalog. At present this involves a three-tier model -- Java Server Pages, webserver, 
and database -- although it is being evolved into an Enterprise Java Beans architecture 
later this year. 

Figure 2 shows the view of the homepage for EF’s website as of this writing. This 
screen shows 3 main entry points for customers--- search and browse on the left hand, 
instant finance and credit on the middle and shipping choices on the right. This 
presentation is different than the typical B2C homepage many readers are probably used 
to and it highlights the fact that B2B customers have a different set of priorities. Since 
they typically order larger supplies and need them for meeting their own customers 
needs, shipping can be a bigger issue than for retail customers. Likewise, instant line of 
credit and finance is important and transcends just putting the purchase on a credit card. 
We will discuss each of these panels further in what follows.   

 The website's tabs across the top Figure 2 support other stages of Figure 1 such 
as entering the market as a seller, registration and profile (My Account), a transaction 
history and bookmark capability (Activity Center), Member Benefits, and AboutUs (press 
room). Also, shown near the upper right are the shopping cart, how to contact the 24x7 
customer service (800 number), and various links to background sources. The tabs and 
upper right links are omnipresent no matter which function the user is performing.  

Since launch the company has released a new version of the site every six weeks, 
and as of this writing is about to release the fourth version. While the color scheme, look 
and feel, and basic user interface have, so far, remained consistent between releases, 
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major new capabilities appear with each release. For example, the initial version omitted 
finance, while the third release included “instant decisioning” for equipment leases and 
the fourth version includes real- time processing of bank loans, lines of credit, and Small 
Business Association loans through a variety of partner institutions. The rapidly 
increasing demand by users for new features such as financing and shipping has lead to 
revision of the original website business model, and these are now horizontals being 
marketed in their own right and embedded in other websites.  
 At launch there was no personalization and no learning about users as shown at 
the bottom of the framework diagram of earlier Figure 1. The only tracking of customers 
was through a weekly logfile printout. This included only summary statistics on gross 
number of users, sellers, transactions, bids, sales, and the like. By mid-year however, a 
full transactional and clickstream capture capability had been implemented, a star schema 
for the warehouse had been deployed, standard reports were designed on every aspect of 
website usage and commercial operation, software for online analytical processing was 
installed, an appropriate analytical staff was hired, and the warehouse went live. New 
releases are currently being planned with greater datamining capability, an expanded 
focus for the warehouse to grow into a marketing tool including prospect information, 
and not just customer profiles, histories and clickstreams. As of this writing there is still 
no personalization tool deployed for the website, but personalization solutions and 
application service providers are currently being evaluated. And launches of initial 
personalization features are planned. Having the warehouse operational was a precursor 
to developing the insights needed to successfully deploy personalization features. 
 

Figure 2 – Homepage of the Case Study Website - Equalfooting.com 
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In terms of non-computerized DSS for the users, a multi- person staff mans the 
customer support centeorn a 24x7 basis. These “Customer Service Representatives” help 
by phone, or alternatively in the background, at some point in the processing, of many (if 
not most) of the bids and transactions since many of the sellers are small businesses with 
little skill in handling the sudden influx of electronic traffic they have experienced since 
launch. At launch, the support center was equipped with disparate telephone 
management, email queuing, electronic guidebooks, and other support systems. Plus they 
had to logon to the site as the buyer or seller in order to perform transactions on their 
behalf and/or help them. In the interim they have purchased a Customer Relationship 
Management (CRM) solution that integrates all these subsystems together, helps manage 
the overall workflow and unified help queue, provides automated helpdesk capabilities, 
and provides an independent path into the catalog, including enforced logging of call 
center representative actions on behalf of users. Integrating the full extent of this 
“solution” into the website software is taking months of effort by over a dozen 
individuals, including a number of manually coded extensions and features to get it to 
work. 

In summary this study served as a proof of concept for the DSS framework of 
Figure 1. One might be tempted to conclude at this point that while this updates the 
literature on DSS frameworks, that indeed many B2C sites already use the block elements 
(perhaps with different emphasis on their homepage) and that the literature was lagging 
the practice. Such statements fail to understand that the DSS approach cannot be 
successful based upon breadth of coverage alone. Success vs. failure of the DSS and 
indeed of the overall shopping experience depends on how each block is implemented.   
For that reason we turn now to an evaluation of principles governing design points within 
the DSS framework.  

 
4) MIGRATING FROM SEARCH TO DECISION SUPPORT 
 

The prior section illustrated how all the major blocks of the Figure 1 framework 
are being implemented by the case study website, but what about the finer details of the 
framework? This is the transition from “doing the right things” to “doing those things 
right”. How are the individual design tradeoffs and choices in any given DSS step made 
and supported? And, how do the choices in the DSS steps solve the significant challenges 
raised earlier in the description of product catalogs? As mentioned earlier, examining 
design points for every block of Figure 1 is a large-scale, long-term undertaking that we 
have only just begun. In deciding where to begin, we started with high priority area—that 
which was identified at the outset of this paper as being key to 4 out of the 5 failure 
modes of shopping sites. That is, this section examines design points concerning decision 
support for search and browse tasks. These are the boxes of a level 2 type of DSS 
contained within the inner dashed box of earlier of Figure 1. 

The problem is that the available capability from catalog product and application 
vendors for deploying these features is handicapped by a number of factors that lead to 
the type of problems cited in the introduction. This is a strong statement that we will 
support in the ensuing subsections after a few introductory remarks. Specifically, the next 
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four subsections will provide a critique of currently available search and browse 
capabilities and try to explain the root causes of the common observed failure modes. We 
will provide this critique through a mix of techniques including explanation of 
constraints, description of failure modes, illustrations of critical incidents drawn from log 
files at the case study site, and comparative performance evaluation.     

Rather than present all the difficulties first and then separately address their 
solutions, we instead interweave a discussion of principles for solving the failure mode 
right after defining and explaining the failure mode. For each principle we also include 
illustrations of how to apply it to improve the shopping experience. The goal of this 
discussion is to allow the reader to gain a sense that these problems can be mitigated, but 
only by investing effort in their solution.  As we proceed the reader will see that one must 
use every bit of information in the catalogs, plus a wide array of DSS and search 
techniques to make headway and reduce user frustration. Even with such a wide-scale 
approach, the problems do not disappear easily, and one must go beyond what the 
application providers offer. 

Before proceeding, it is worth introducing some notation. The most common form 
of search on the web and in product catalogs is what is called keyword search. This is 
defined as a match between the t= 1,T terms in the query string (Q t) and their 
counterparts somewhere in the j=1,J terms in the kth document (Djk) being searched. Here 
a document is a record in the product database. If the match is exact, the similarity (Sim) 
equals unity and the pointer to the document or product is returned.Let us state this as: 

    T 
Sim (Q, Dk)  =   { Σ      Sim(Qt  , Djk ) }/ T    (1) 
   t =1 

Where, 
 Sim(Q, Dk)  = score of the kth document against the query string 
 Sim(Qt  , Djk ) = score for the tth term in the query string where score is (0,1) when  

t and j (don’t match, match) 
 T = number of terms in the search string 

A perfect match occurs where Sim (Q, Dk) = 1. In general (non-catalog) web 
searching, most engines will return partial matches often by reducing the threshold to 
some reasonable number  (Sim(Q, Dk)<1), but they will sort the documents in descending 
score so those closest to 1.0 will appear first. Also, when searching on the web, S(Q t, Djk) 
is most often computed as a weighted dot product of the respective term vectors, Qt  and  
Djk: e.g., see [29, 30]. However, in catalog search, a strict keyword match is often 
utilized, where the boolean AND is assumed between all the terms of the vector Qt. Thus, 
equation (1) is often utilized in a form like what is shown here. As an example of this 
conjunctive form of keyword matching, in response to a search for “green chair” most 
product catalog engines will attempt to find a record with the terms “green “AND” 
chair”, while most websites searching engines will also return every document with 
“green” or “chair” but these single term hits will appear lower on the list of returned 
items. Neither of those approaches will find records and documents about  “olive seat” or 
other synonymous terms.   
 As a final introductory note to this section, the Equal Footing effort postulated 
that four principles were central. Clearly there are many more than four design principles 
required for good shopping sites however we have chosen to highlight these four 
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principles since they attempt to convey the key ideas of buyer behavior theory.    We 
briefly summarize them here and we amplify them as they are utilized in subsequent 
sections: 
• P1: Use  Natural Language Search – Buyer behavior theory indicates that users will 

spend substantial time searching and comparing products and makers. To facilitate 
this effort, just as with a good human sales representative, the search should 
culminate in what the user wants and not be confounded by how they said it. 
However current search technologies is almost exclusively keyword matching, which 
means the given search will only match on exactly what was typed and not what was 
meant. Solving this dilemma implies use of natural language techniques including 
synonymizing, spell-checking, and related capabilities to translate the term vector Qt 
from the users language into the lexicon of the catalog.  To continue the example, the 
search should find green chairs, olive chairs, chatreuse seats, aquamarine arm chairs, 
and so on.  

• P2: Build Domain-Specific Search Agents – The advantage of studying buyer 
behavior is that one learns the mental process of this class of users is different from 
that of document searching users on the web. Given such differences one should not 
try to impose the same type of search engine process on buyers. This includes two 
connected ideas: the first is that generic search engines won’t suffice. The second idea 
is that once you drop the idea of a generic, one-size-fits-all search engine you need to 
replace it with an alternative. That alternative should be an agent that understands the 
domain of buyer behavior and that supports the mental process it connotes. Just as a 
good store provides sales people in the aisles to help with your selection process (e.g., 
look for green chairs under kitchen furniture, lawn and garden, and home 
furnishings), a domain-specific DSS also should operate autonomously to learn the 
users’ goals and to help them  accomplish their desires (i.e., an agent able to interpret 
user Sim(Q, Dk) intent). This implies finding and deploying a domain-specific 
grammar so that the terms in Qt may be extracted and parsed to improve retrieval. 

• P3: Treat Search as a Process –Since the buyer behavior theory focuses on the non-
linear, iterative processes of elimination that buyers go through, any new form of 
search should be supportive of this elimination-by-aspects type of reasoning.  The 
idea is that search might not succeed on the first try, and that similarity finding is a 
process of narrowing and eventual convergence after several interactions with the 
user. A goal here is to make the interactions transparent and error forgiving. For 
example one should readily be able to accumulate green chairs from multiple 
“departments” Place them side by side for comparison (something you can’t do in an 
actual store), and reach a happy conclusion.  

• P4: Use and Manage Knowledge to Speed Search – Buyer behavior theory suggest 
that users do not just blindly search but they use personal taste and preference, 
criteria, brand, lexicon, and other knowledge to help shorten the search. Users in 
stores won’t walk every aisle to find a specfic item. They expect signs and sales 
people to help them. Their search on the web should be similarly shortened by this 
new type of agent. If they search for “green chairs” they shouldn’t have to look at 
“green seat covers for automobiles”.    This is similar to the old idea in artificial 
intelligence of adding knowledge to speed and help focus the search. The catalog 
provides a lot of knowledge about product categories, taxonomies, and ontologies that 
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should be managed and utilized (the CM mentioned earlier and the k of the Djk). 
Likewise a domain specific grammar should utilize meta-knowledge about the 
structure and representation of products in catalogs (the j in Djk plus the R3). Finally, 
knowledge to help the search process could be culled from every other possible 
source: e.g., textbooks, the data warehouse, and from users themselves.  

  
4.1) Capturing and Representing the Catalog Taxonomies  
 
  As mentioned earlier, the product hierarchy fields hold the multi- level browse tree 
that one encounters on the web as a set of links from the top of the catalog to the leaf 
nodes that point to the actual items or products available for sale at that site. The category 
names and levels in item hierarchies are usually carefully chosen to tell the user the 
structure of the product offerings, the organization of the catalog, and where to find 
products. The hierarchy is a taxonomy or ontology of the entire catalog. From the users’ 
perspective, a well-designed hierarchy is often bushy in the middle with many pathways 
to reach leaf nodes. This is an error- forgiving design so the user’s “aim” doesn’t have to 
be very good yet they can still browse down the tree and find the items they’re interested 
in. Thus a user who doesn’t know that “grease” is catalogued under “abrasives” will still 
have a chance to find it.  

Unfortunately, as product catalogs grow in size and, particularly, as 1,000s of 
different catalogs are merged (each with their own unique hierarchy), it becomes 
increasingly manpower intensive and difficult to establish a common taxonomic structure 
for a marketplace. The individual manufacturers and suppliers generally can’t afford the 
extra manpower to conform to market makers’ categorization scheme. A common 
compromise is that the market makers create the upper layers of the hierarchy so that it 
conforms to their concerns for browsability, understandability, and error forgiveness. At 
the lower layers of the hierarchy, they often meld in the sub-hierarchies of different 
suppliers/manufacturers where they exist and create branches where needed. The result is 
a pragmatic compromise, though it lacks the rigor of an industry-approved standard.  

One alternative is for each industrial sector to adopt a standard for naming and 
taxonomic indexing of items. In the field of book publishing there is the Dewey Decimal 
System and all new books (each with unique ISBN numbers) are categorized within that 
taxonomy before being sold. Within other industries, however, the world is rarely so 
standardized. Still principle P4 is important, and one can find groups working on it. 

Several attempts to provide standard taxonomies such as the United Nations’ 
SPSC commodity codes [23] or the US Government Supply Agency’s “National Stock 
Numbers” are promising in the mid-term but are insufficiently developed at this date. For 
example, the UN/SPSC only provided 78% coverage of the over 13,000 categories of 
products in Equalfooting.com’s maintenance and repair item catalog. To adopt it, one 
would have to petition the standards setting group to extend the taxonomy to cover all the 
products in a given catalog, a catalog that is continually and rapidly growing. Further, the 
UN taxonomy introduces non- intuitive category names (e.g., nuclear fuel rods are 
indexed under “lubricating preparations”); limits itself to 5 levels of categories even 
though it covers the entire world economy (this is insufficient depth to provide adequate 
distinction between lower level taxonomic categories in a given industrial sector); and 
imposes strict tree structures so that leaf nodes may have only a single pathway to them. 
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This makes them unappealing for browsing purposes. Similar pragmatic concerns also 
currently exist with the category hierarchy for the US’ National Stock Numbers.  
 The market-maker generated category hierarchies provide a rich resource for 
figuring out how to overcome the concerns with the evolving product hierarchy 
standards. In the future, one can expect that communications will occur between these 
groups and that industrial sector standards will evolve into taxonomies useful for e-
commerce. In the interim, the market-makers’ category trees serve as the best source of 
product location information that browsers have and that search engines could and should 
make use of. 
 
4.2.) Integrating Browse and Search 
 

Research shows that about 50% of the users are search-dominant, about 20% are 
browser-dominant, and the rest use mixed strategies [3]. This implies both the browsing 
catalog and search engine box should be on almost every page the user sees. Further, the 
mixed strategy users may want to be able to search within a category they have browsed 
to. Most engines reviewed in the next section can be programmed to permit such usage 
but that is not the default capability. Websites need to provide a button for users to toggle 
so they can perform “within category” search, rather than the across full catalog default 
option that search generally utilizes. This button may not be found by most users, but 
some will eventually grow to notice it. Different from this is the within-category sort, 
usually by one or more parameters – a topic we address in Section 4.4. 
 There are a number of guidelines for catalog browsing mentioned in the literature 
that are good to follow, although, we won’t be able to provide the space to look at all of 
these here. A few worth mentioning are to: (1) display picture icons with each item in the 
catalog, (2) make sure the “buy” and “bid” buttons are available in each view of a 
product (single liner, high level, full detail) so as not to interrupt user buying decisions, 
and (3) bring search engine users to a category table before taking them to the lengthy list 
of hits of their query. This last item slows their search, but injects a screen that reduces 
the kind of experience mentioned in the opening quote of this paper. Figure 3 provides an 
example of such a screen for a search on “safety gloves”. Here we see that rather than 
immediately sending 626 hits to the screen, the user encounters an intermediate page that 
lists all the categories that hold different types of safety gloves, along with the number of 
gloves included in that category (Principle P3). This helps them better focus their search 
(Principle P4), and simultaneously learn a bit about the catalog. If they toggle a category, 
they will see a listing of all the gloves in that category with a picture icon plus buy/bid 
icons next to each line of the listing. Alternatively, the bottom of the page on Figure 3 
links them directly to placing low cost bids (request for quotations) for gloves, including 
the ability to describe the exact kind of glove they want and how much they are willing to 
pay for it, thereby bypassing the need to do any more search or browsing at all. 
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Figure 3 – An Example of How Integrating Browsing With Search Reduces User 
Frustration About Receiving 626 Hits They Don’t Know How to Sort Through. 

  
An examination of the Equalfooting clickstream shows that some of the more adept users 
logon to the site and very quickly come to this type of page, briefly drilling into a given 
catalog item to inspect some of its attributes, and then immediately request a quotation 
(ask sellers to give them low cost bids). They tend to publish several such requests in the 
space of a few minutes of search and browse activity. The principles and guidelines just 
mentioned seem quite suitable for helping them.  

In contrast, the more common, and less adept users logon and have a far more 
frustrating experience. The search button logfile shows innumerable examples of people 
searching the identical item multiple times like this person who repeats the search 4 times 
for “hard hats” (note: all subjects discussed in this article are anonymous users drawn 
from the transaction logs and clickstreams)  
Date   Search Type Search String Matches 
05/04/2000 01:36:33 Keyword hard hats 213 
05/04/2000 01:38:34 Keyword hard hats 213 
05/04/2000 01:39:07 Keyword hard hats 213 
05/04/2000 01:39:40 Keyword hard hats 213 
This is an example search for a broad item (e.g., like safety gloves), then drilling down 
through the category table to peruse the choices. Presumably the users don’t know how to 
use the BACK button on their browser (which would be much faster than re-searching 
EF’s catalog), so they hit GO again and repeat the slower search so they can return to the 
category page (Figure 3) and explore categories they didn’t drill into before. Our primary 
lesson learned here was that most users aren’t adept at using their browser, and that the 
best way to support them is to allow them to effortlessly search and browse as they wish. 
To better support this pattern of searching, we made it a priority to increase the search 
engine speed by an order of magnitude, a goal we achieved in mid-2000 by upgrading 
from Oracle 8.1 to 8i and from a few internal tuning changes.  
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 To date, we still haven’t been able to explain the behavior of a few users such as 
the following one who reached the category table and even though it indicates 0 hits, they 
repeat their identical search, sometimes multiple times. However, given what product this 
category of user often seems to be looking for, we’re not sure we want them lurking 
about our website anyway: 
Date   Search Type Search String  Matches 
05/11/2000 09:15:13 Keyword GUILLOTINE   No Matches 
05/11/2000 09:16:33 Keyword GUILLOTINE  No Matches 
 
4.3) Improving Keyword Search of Product Description Fields: The Munge  
 

To date most catalog search engines do not use the field(s) holding item category 
hierarchies to help guide their search for products. As mentioned in Section 1.3, they rely 
heavily on a second relation that holds the item description (document fragments), what 
we defined earlier as R2 = <D1, …, DK>. This is a free text field that suppliers and 
manufacturers generate and use in their hard copy catalogs. Its contents (coverage, 
quality, and clarity) are at the discretion of the individual vendors. Often, these fields 
hold the suppliers’ insights about what information the buyers will want to see. However, 
there may be little consistency between different suppliers’ conceptualizations of buyer 
needs, so the descriptions will be difficult to compare.  

The market maker’s role is to assure that these descriptions get captured into the 
product database and used by the search engine. For example, at Equalfooting.com the 
catalog includes two description fields – the so-called short and long description -- 
although, many suppliers omit the long description. An example of a short description is 
‘2" PURE BRISTLE PAINT BRUSH’, while the corresponding long description for that item 
is ‘2" Professional quality MASTER PAINTER brush. 100% pure black china bristle. 
Handcrafted in the U.S.A. This is a $10.00 retail brush that we are closing out while they 
last.’ Interestingly, while the e-catalog includes a field called “item name” the suppliers 
have no such data to provide for that field. They use the short description in place of a 
name in their hard copy catalogs.  The category tree “bread crumb trail” to browse down 
to this item in the e-catalog provides significant information about what it’s name ought 
to be though: Product Catalog > Industrial Supplies > Painting Supplies > Paint Brushes. 
So one could get the search engine to use (leaf node) category names as surrogates for 
item names. Although this is not generally the practice elsewhere, EqualFooting does add 
this leaf node into a field called the “munge” that holds all descriptions. This leaf node 
name is one more piece of knowledge about what the item is (Principle P4) and it helps 
the search process. Also added to this munge are the full set of product attributes and 
value fields (as further free text entries) so that the search engine can try and match 
parameter queries against these items directly. Thus, the Dk used here combine 
information from R1, R2, and R3 to try and make the Dk into more robust document 
fragments. 
 In general, several challenges confront one attempting to support search of item 
description fields, a few of which the munge is an attempt to deflect. First, is the question 
of the completeness and consistency of the product descriptions across sellers. Some 
descriptions include partial parameter information (e.g., 2”, black) while others focus on 
how the product might be used, and still others are highly terse and omit most details. 
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Second is the difficulty of matching the buyer’s search terms to the wording in the 
descriptive fields. Where exact term matches don’t exist, one must consider issues related 
to word stemming, spelling errors, abbreviations, synonyms, and related problems. A 
third challenge is that numeric attributes are poorly and incompletely represented in these 
descriptions, yet some users will want to search by size, weight, height, voltage, and 
many other quantitative parameters. Unfortunately, the item description fields do not 
permit structured search of attribute information. For example, if searching the item 
description field for 2” brushes, a keyword search engine doesn’t know this is a width 
attribute and it would return hits on any occurrence of 2 and brushes. Thus the engine 
will return 2 ½ inch brushes, brushes made at 2 Downing Lane, and so on. Finally, there 
is the challenge of trying to figure out the user’s intent and underlying search goal. We 
address these challenges and some solutions to them in Sections 3.4 and 3.5. 
 
4.4) Trouble Management Design Issues: Complementing Keyword Search 
 

Earlier we mentioned that most users encounter search failure and frustration due 
to sites having poor DSS and being unable to properly support them. Research shows that 
about 15% of online search failures are due to spelling errors and another 40% are due to 
customers using different terms from those in the website (e.g., patching vs. concrete): 
e.g., see [1-3, 13]. Because they can’t interpret the meaning of the users’ query, search 
engines typically are tuned to bring back innumerable hits of everything even remotely 
relevant, often burying the best choice deep within the list (or omitting it altogether) and 
providing little help for then searching just the returned set of items. In short, when users 
get in trouble, most shopping sites provide little in the way of  “trouble management”.  

Some usability engineers [2, 3] argue that search engines should aim to 
communicate the concept that searching on the Internet is a process rather than an event. 
It is relatively rare to find something useful as a result of a first search. An important 
design goal is therefore to engineer this view of search as a process into the interface 
itself. This has obvious implications for the wording of the instructions used, for example 
expressing search results as "suggestions" rather than "hits". This is Principle P3. 

A recent example at our website prior to our trouble management approach lead 
to the following logfile that illustrates a customer who’s a weak speller, but fortunately 
he understands this principle and is a persistent searcher. 
Date   Search Type Search String  Matches 
05/15/2000 12:14:33 Keyword cobbelstone  No Matches 
05/15/2000 12:15:04 Keyword drivway No Matches 
05/15/2000 12:15:20 Keyword driveway 1 
05/15/2000 12:15:43 Keyword asfalt  No Matches 
05/15/2000 12:19:28 Keyword stone  73 
05/15/2000 12:19:58 Keyword curb  14 
05/15/2000 12:21:45 Keyword stone  73 
Many other users are not nearly so patient and persistent. Shopping sites shouldn’t have 
to rely on subtle messages, and user patience alone. They also need to offer improved 
DSS capability that anticipates error, helps with corrective suggestions, and supports the 
user at their current skill level – an error forgiving approach.  
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However, most shopping websites use keyword searching engines that are ill-
prepared for trouble management. These engines can ignore upper and lower case letters, 
and retrieve hits regardless of capitalization, but they aren’t so good on more serious 
error corrections. Few of them correct spelling errors. Also, keyword searches have a 
tough time distinguishing sense -- words that are spelled the same way, but mean 
something different (i.e. hard cider, a hard stone, a hard exam, and the hard drive on a 
computer). This often results in hits that are completely irrelevant to the query. Some 
search engines also have trouble with so-called stemming-- i.e., it should recognize the 
word "big" also implies a hit on the word "bigger"; it should equate singular and plural 
words (e.g., work, works); and recognize alternate verb tenses that differ from the word 
entered by only an "ing," or an "ed". Search engines also cannot return hits on keywords 
that mean the same, but are not actually entered in the query. A query on heart disease 
would not return a document that used the word "cardiac" instead of "heart." That 
requires expansion of the search to include synonymous terms. Finally, strip words 
alternatively often need to be removed from a search string or are missing from a title that 
can cause an engine to fail to notice a match – e.g., articles like "a," "an," and "the."   

Unlike keyword search systems, natural language and concept-based search 
systems use all these capabilities (spelling, sense, stemming, synonyms, stripping, etc.) to 
try and determine what you mean, not just wha t you say.  In the best circumstances, a 
conceptual search returns hits on documents that are "about" the subject/theme being 
explored, even if the words in the document don't precisely match the words entered into 
the query (this is Principle P1). Fortuna tely, many commercially available search engines 
today have conceptual based searching features that help one to manage trouble and user 
error. Table 2 shows some of our efforts to compare and contrast five such engines. 
These engines include two very robust, full- featured systems -- Oracle’s Intermedia, (free 
to those using Oracle as the database for their catalog) and AltaVista’s search engine 
(used by Amazon): e.g., see [14, 15]. In addition are three intriguing specialty engines 
including EasyAsk [16] which provides small-scale, tightly focused catalogs with very 
powerful conceptual searching; Frictionless [17] which offers a decision theory model for 
parameter and attribute search (used by Lycos Shop); and one we call Brand X (due to 
non-disclosure agreement) which attempts to use probabilistic match to manage trouble.  

Table 2 shows that one can support the integrated browse and search ideas 
mentioned earlier by programming an interface to any of these engines, although 
EasyAsk has some of this already built in. In terms of keyword search, we were able to 
install three of the engines atop a version of our 250,000- item catalog, so they could 
search the “short and long description” fields. We then tested these engines on a range of 
keyword searches, a few of which are in Table 2. First we tried single word tests three of 
which are shown. The catalog has 226 actual hammers, although many other items are 
related like jackhammer, hammer drills, hammer chisel bits, and the like. None of the 
engines agree on the number of hammers Also, as explained earlier, we have Oracle set 
up to search a field that merges all other catalog fields into one (the “munge”) so it picks 
up 805 extra hits on an electronic parts manufacturer whose name is C-H CUTLER 
HAMMER Inc. In terms of the ‘cord’ and ‘20-amps’ searches, we think Oracle is the 
closest to what is actually in the catalog. With the “cord” search, we can’t explain the 
differences since this term only appears in description fields, although with “20-amps” 
we suspect the variations of the other two engines are that Oracle could also search the 
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attributes (which are dumped into the munge), not just the descriptions. So this is not a 
fair test of the other engines. 

 
Table 2 – Comparative Overview of Feature Sets Offered By Illustrative Concept 

Based Search Engines 
Criterion Oracle 8i 

InterMedia 
Alta 
Vista SE 3.0 

Brand X Easy 
Ask 

Friction 
less 

Search Methods Keyword & 
Concept 

Keyword & 
Concept 

Probabilistic 
Match 

Concept  Decision 
Theory 

      
Integrated Browse & 
Search 

API call API call API call Built In API call 

Keyword Search:  
Single 
Word  
Trials 

Hammer 
Cord 
20-amps 

1,512 hits 
   480 hits 
   679 hits 

605 hits 
930 hits 
    7 hits 

480 hits 
    2 hits 
    0 hits 

-- 
-- 
-- 

-- 
-- 
-- 

Multiply- 
Worded 
ItemTrials 

Electric    
 Chain Saw 
Bolt Cutter 

 
1 (4) hits 
30 hits 

 
  0(1) hits 
35 hits 

 
427 (466)hits 
593 hits 

 
-- 
-- 

 
-- 
-- 

Conceptual Search:  
Stemming Built in Built in Built in Built in NA 
Strip Word Removal Built in  API call  NA 
Spell 
Checking 

pwer 
powr 
hamer 
recepticel 

-- 
-- 
-- 
-- 

Per 
Power 
Hammer 
-- 

-- 
-- 
hammer 
receptacle 

Built in NA 

Synonym Table Extendable Extendable API call Extendable NA 
Strip Word Removal API call API call API call API call NA 

Parameter Search:  
UserPrefs  NA NA NA NA Built in 
Parameter Single sort 

Multi-sort 
API call API call API call API call Built in 

Compare  Programmable Programmable Programmabl
e 

Programmabl
e 

Built in 

Miscellaneous:  
Catalog Crawler Built in Built in API call Built in Built in 

 
In terms of the multiple word searches, Oracle found the correct number of hits 

for “electric chain saw” and “bolt cutter”, while AltaVista was close (though disturbingly 
made key misses). Numbers in parentheses are for the search on just the words: “chain 
saw”. These engines use AND search and only return items that have all words of the 
search. Brand X, on the other hand, exclusively uses a probabilistic matching algorithm 
that retrieves hits for each word in the phrase, supposedly placing hits that have all three 
words higher on the list. Oracle can support probabilistic matching, but we did not turn it 
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on for this test.  The lessons of this comparison exercise are that one needs a full- featured 
search engine so as to avoid getting trapped into a single approach, like probabilistic 
match (or decision theory).  It is important to be able to tune the engine and turn on and 
off various features. In this regard, both full featured engines appear about equally robust: 
Oracle and AltaVista. 

In terms of the conceptual-based searching features, most of the engines reviewed 
offer a relatively full complement of these features. Oracle omits any spelling checker, 
however, Java source code for a robust spelling checker that works as well as what we 
tested in any of the others can be purchased from the web fo r under $1,000: e.g., see [18]. 
In terms of parameter search, only Frictionless includes a robust version of this out of the 
box. The other engines could be made to support this, but significant programming and 
API calls are needed. In the next few sections we explore what is needed to install and 
activate conceptual-based search and parameter search. The reader will see that there is 
no panacea and a lot of effort is needed not only to program the features, but also to 
research and decide how best to deploy them. In fact, adding these capabilities atop one 
of the search engines is the first step of introducing a new querying engine paradigm: 
e.g., see [21, 22]  – what P2 calls a domain specific search agent. 
 

4.4.1) Obstacles to Setting Up Natural Language  Search (P1)  
 
The natural language and/or conceptual search features are not the default 

settings, are difficult to set up and operate, and require significant investment and effort 
before being useful in any given site. Further, not all engines offer the same features or 
provide the same degree of trouble management capability. As an example, to adapt 
Oracle Intermedia to support EqualFooting, has required about a man-year of effort so 
far. One task was to design the agent algorithm as the next section describes in more 
detail. Another task was to integrate that agent with the Oracle search engine and with the 
catalog. A third task was to create the three dictionaries always needed for conceptual 
search – spelling, stripping, and synonyms – as these are domain-specific items. 
Although it came with 100,000 words it was necessary to embellish the spell checker’s 
dictionary by adding: (1) the top 1,000 mis-spelled words from the user search log and 
their corrections, (2) proper names of all manufacturers and suppliers (the spell-checker 
assumes initially that all proper names are errors) and how they might be mis-spelled, and 
(3) many dozens of acronyms with proper spelling (e.g., CD, DVD, HVAC, etc.).  

Likewise, Oracle Intermedia includes a synonym processor, but provides no 
thesaurus. Growing this thesaurus involved many false starts and deadends. For example, 
it is tempting to try and use an existing general purpose thesaurus such as WordNet from 
Princeton. This includes 95,000 words and all their synonyms, however, this thesaurus 
brings back too many synonyms, many of which are inappropriate (racial slurs, curses, 
body parts, religious terms, etc.). Plus most of the specialty terms of the domain are 
omitted (e.g., chain saw, Phillips head, and safety gloves). An alternative was to extract 
all the unique terms from the catalog and to manually create synonyms for these, 
however, this rapidly exploded into too large a task. In the end, a thesaurus was 
incrementally grown from studies of the user search logs (initial search string vs. 
eventually successful string), and from having the call center author synonyms for the 
1,000 most frequently non-matched terms that actually exist in the catalog under a 
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different name. On average, about 3 synonyms were created per term. Also, we added 
synonyms for each of the multi-term descriptors of the 13,000 nodes of the catalog’s 
browse tree by creating altered spellings of these (e.g., smashed out the spaces, added 
hyphens instead of spaces, and created single word equivalents).  
  

4.4.2) Domain-Specific, Natural Language Agent (P2) 
 

 This article began by mentioning how e-commerce executives have ignored the 
search process, relegating it to off-the-shelf technology that doesn’t work out. Subsequent 
sections explained how the components of a robust, conceptual-based, and trouble 
management search approach can be purchased, and then adapted with domain specific 
knowledge such as the additions to the dictionary and thesaurus mentioned above. In this 
section, we come full circuit to the notion that one must build a domain-specific search 
agent that sits between the user and the domain- independent search technologies in order 
to pull all the pieces together and to support the buyer decision making and trouble 
avoiding needs of the users. 
 But building such an agent need not be an overwhelming task. First of all, as just 
mentioned, such an agent sits between the user and existing components – so half of the 
task is taken care of just by calling up these components at the appropriate time within 
the decision support framework. The other half of the task is dispensed with by 
instantiating the domain knowledge elements of a rule-sequence phrase parser as 
commonly used in the information extraction community: e.g., see [21, 24, 26].  This is 
the old idea of rule-based inferencing, applied to the information extraction task. Figure 4 
overviews this agent and we explain it further below. 
 
Figure 4 – Overview of Search Agent Architecture & Query Extract/Refine Process 

  
Specifically, a rule-sequence phrase parser takes an initial search string or phrase, 

and then iteratively labels and subsequently modifies these labels by applying a sequence 
of transformation rules which attempt to reduce the remaining ambiguities and residual 
errors left in place by the previous rules. To facilitate this transformation process we first 
tokenizing the terms in the search phrase, Q. Next we eliminate stop or strip words (“find 
me a”, “get all”, and opening and closing quotes) by comparing the search string to a 
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negative dictionary. Finally, a stemming algorithm must be applied such as in Porter [27]. 
The result is a new version of the query we label as Q’. A similar process is performed on 
the document base resulting in D’. 

One can view the rule-sequence processor as a finite state automaton that 
minimizes mean error for each term in Q’ across the range of possible states that that 
term can assume. States for a given term, t, are label settings determined by the various 
transformation rules (unlabelled token, object, attribute, etc.). More precisely, we may 
state the objective function in a mathematical (or dynamic) programming formalism as: 
 

Min  Z  =  E(s) 
(s=1,S) 
 

Subject to,    
        T 

E(s) =   {   Σ   et(s)}/ I        (2)      
     t=1 

 
et(s) =   { Sim (Qts’, Djk

’) } - { Sim (Qts-1’, Djk
’) } 

Qts’ = Φr(Qt’) 
Stopping rule: et   < β  

 
Where, 
 Z = objective function to minimize the mean error across states, E(s) 
 t = number of terms in the search string, as in Eq. (1) 

s = current state counter for the query string  
 s-1 = prior state before latest rule transformations 

Sim (Qts’, Djk
’)   = score of the tth query token against the j=1,J terms of the kth  

document. Score is (0,1) depending on whether a match occurs.  
 Φr = application of one of a number of possible transformation rules that changes  

the state, s, of the query string by tagging or labeling some terms within it.  
β = threshold 
 
One need only come up with a reasonable sequence of transformation rules (r 

=1,R) to utilize this approach. As an example transformation rule, mis-spelled words 
must be flagged and iteration included to the user requesting them to accept the suggested 
or alternate corrections, or to add their own. In product catalog domains, another set of 
transformation sequences that leap out is the concept that searches are usually for objects 
with attributes of a certain value. Thus many searches are for various orderings of OAV 
triplets (‘mini sized amps’, ‘hammer colored red’), or some variant where the O is sought 
initially and then the AVs are subsequently used for comparison and search refinement 
(bolt cutter followed by size, price, and availability). Even more common are searches for 
one or more V of a given type of O where the A is suppressed (AA Eveready batteries, 
½” no.8 slotted screws, desk chair). In shopping domains, OAV triplets can be thought of 
as a parsing sub-grammar. In fact a sub-grammar can be derived for objects and another 
for attribute-value pairs. By crawling the catalog and extracting all unique terms along 
with indexes to their locations, one can readily construct these sub-grammars. The 
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resulting KB lookup tables can be utilized by transformation rules of the phrase parser to 
infer and insert O, A, and V labels onto the various terms of the search phrase. Where 
labeling isn’t immediately possible, still another transformation rule might attempt to 
expand the query terms via synonyms and then repeat the OAV lookup table process. 

Finally, one can add all kinds of domain-specific rules for any given catalog. In 
the hardware domain some of these pertain to recognizing and labeling the notation. For 
example, a number followed by ‘ is feet or “ is inches, while a number followed by # is 
probably a weight. Likewise, the term “made by” is a two value predicate often preceded 
by an object and superseded by a manufacturer (so C-H Cutler Hammer or just Hammer 
can be discerned as the object or the maker). Or other rules might be added about two 
measures linked together, like ½ x 8 for screws. One of the advantages of the rule-based 
approach is that rules can be added on the fly, and as more get added, the better the 
search engine becomes. Thus one can peruse sources such as [28] and manually extract 
rules over time, or one can try to deploy machine learning approaches and add newly 
discovered patterns as convenient. 
 Using this approach EF has been able to demonstrate improvements in search 
response. Table 3 summarizes some illustrative test results where the first column shows 
the feature being tested, the search string used in a given test is in the second column, and 
the last two columns show the hits with the keyword (munge) vs. agent search approach. 
The base case tests of the first set of rows show that the agent recognizes terms within the 
OAV framework. Thus it finds ‘cords’ missed by the munge due to synonyms, avoids 
confusing hammer as a maker rather than just as a tool, and is not stymied by the strict 
spelling of chainsaw without a space between chain and saw (another thesaurus  success). 
Likewise the agent’s spell checker is successfully demonstrated in the second set of rows, 
while the third set of rows illustrates a couple of tests of the stripping and stemming 
transformations. In both these sets of rows, the keyword search of the munge comes up 
with no hits whatsoever. In the fourth set of tests, the keyword search of the munge 
produces either far too many hits (e.g., finding boxes of 20 fuses that are 30 amps each, 
etc.) or none, while the grammar is able to recognize the attribute-value pairings correctly 
in both tests. Finally, where the attribute is omitted in the final set of rows, this seems to 
help the keyword approach come closer to the Agent. However, closer inspection of the 
results from the keyword search show it is retrieving irrelevant items such as products 
that need an AA battery in order to be operated, white gloves made by Red Devil, and so 
on. The items retrieved by the agent, on the other hand, are all AA batteries and red 
gloves actually for sale in the catalog. 

These results are promising, and EF is currently attempting to scale up the agent 
search approach to handle the full subgrammar of the 201,000 attribute-value pairs and 
the 18,000 categories of objects in its catalog. Also, work is underway to add more 
domain rules, fully integrate all the components, exhaustively test the performance, and 
refine it where needed. Plans call for all this to be completed and for it to be moved to the 
production website before the end of the calendar year. However, the approach is 
modular and parts may be deployed as they mature. For example, the synonym list and 
stemming are already in use at the production website, while stripping and spell checking 
will soon be activated. Also the approach works in tandem with the keyword search. 
Where the agent can’t parse a search string, the keyword approach takes over. Thus an 
answer is always found if one exists. 
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Table 3 – Illustrative Results from Initial Tests of the Domain-Specific Agent 

Trouble Management 
Feature Being Tested 

Search String Used in Test Keyword  
Search of 
Munge 

Agent  
Search 

cord    480 544 
hammer 1,512 378 

Base case:  
single word search  

chainsaw 0 2 
hamer 0 378 Rule Transforms: Spell 

checking teh chansaw 0 2 
List the cords 0 544 Rule Transforms: Stripping 

stemming, object recognition Find me all hammers 0 378 
20 amp fuses 495 59 Rule Transforms: OAV 

triplet recognition 30,000 btu air conditioner 0 1 
Aa batteries 33 10 Rule Transforms: Value and 

Object recognition red gloves 13 5 
 
 
5) CONCLUSIONS AND NEXT STEPS 
 

This article offers a framework and guidance for developing decision support and 
search technology appropriate for aiding buyer behavior at e-commerce catalog sites. We  
presented and evaluated the full DSS framework in  broad-brush and then provided  fine-
grained  research on design points for the search and browse portions of the overall 
framework. In future research we hope to extend our fine-grained analysis to the 
remaining blocks of the full framework, but we began with browse and search since it is 
so central to a majority of the failure modes of the online shopping experience. The 
lessons learned in this research can be summarized as follows: 

Do The Right Thing: The decision support framework points out that buyers 
seek to refine the ir decision criteria as they uncover and compare products. They must do 
this untroubled by a morass of challenges that online catalogs pose, some of which are: 
missing ontologic and taxonomic standards, inconsistent terminology across sellers in a 
given market, separation of category from product descriptor fields, lack of product name 
information in the catalog, incompatible use of terms in the catalog vs. user-chosen term, 
missing data, attribute or parameter names exist as data rather than as field names, and so 
on. These pose problems for search technology that few engines currently on the market 
are able to overcome. Further, the framework also points out that online buyers need 
more than just product search, and when deciding on purchases they also seek to perform 
comparative studies, engage in low cost bidding activity, and obtain shipping, financing, 
and availability information. In addition, they seem to desire stores that remember their 
preferences and offer personalized service, though they aren’t willing to spend much time 
divulging private information, and they resent sites that get it wrong. 

Supported by a case study analysis, this article amply demonstrates that no 
application providers in this industry currently support the range of features one needs to 
deploy to help manage the trouble that arises when buyers search catalogs. E-Commerce 
websites currently must make up for this missing industrial capability by taking 
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responsibility for design, programming, integrating, testing, and rolling out of the needed 
feature sets on their own. Often one can utilize the help of multiple off- the-shelf 
components, but these pose significant integration and feature extension needs. 
 Do The Thing Right: Derived from theory and supported by a real world case 
study, the DSS framework helps readers to understand that designing search and decision 
support for e-commerce is a very different issue than designing it for information 
retrieval tasks on the web. Yet few B2B e-commerce website executives currently seem 
to be aware of this difference, and too often they attempt to use off-the-shelf web 
searching technology where it doesn’t apply. Even in B2C shopping sites where they 
seem to understand the framework in general terms (i.e., at the block level), closer 
examination of the design points shows these sites still suffer many of the same failure 
modes as B2B sites. 

This article also presents four principles to guide design of the needed feature 
sets, focusing on minimizing the failure modes of the browse and search subset of the 
overall DSS framework as a starting point example ( in the future we hope to research 
principles for other portions of the framework): use natural language  search (P1), build 
domain-specific agents (P2), treat search as a process (P3), and use and manage 
knowledge to facilitate search (P4). The second half of the case study explores how these 
principles guided the development of an improved decision support capability. This 
improved capability was developed with the help of off-the-shelf technology for 
conceptual based search. However, that technology did not work out of the box, plus it 
only supported portions of the buyer decision support framework proposed here. Effort 
was needed to embellish this technology by adding significant website screen 
functionality; by crawling the catalog to extract, index, and grow a domain-specific 
thesaurus, dictionary, and catalog knowledge bases; and by inserting an intelligent agent 
between the user and the search engine to support buyer needs. This agent is based on 
transformational rules that one can add incrementally to increasingly complement and 
supplement keyword-based search. The case study serves as an example of what was 
needed at this site, though we believe the principles and lessons learned could be 
generalized to other sites as well. 
 There is no intent here to suggest that “one size fits all” in terms of a solution to 
buyer decision support needs. The framework attempts to point out the space of 
functionality one must consider when assembling decision support for online buyers. The 
approach in the case study was one path through all the boxes of the framework. Further 
indepth case studies would be useful to help fully define the framework. In the interim, 
however, the principles followed here and approach pursued in the case study can serve 
as a point of departure for other e-commerce catalog sites that are seeking guidance. 

In terms of generalizations, one other thing the case study does point out is that 
industrial application providers still need to go a long distance before they can offer e-
commerce websites the range of support that is essential to their survival. Vendor after 
vendor show up at each online catalog executive’s doorstep claiming to have all the 
features needed, often claiming that the expense of their solution (usually deep into six 
figures just to get started) and the list of other clients who bought it is proof that they’re 
right. The website executives have little basis of comparison and few defenses against 
this onslaught, given how distracted they are by other demands of startup. The framework 
and lessons learned offered here, however, serve to point out that easy solutions do not 
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exist. At present, one cannot buy the needed functionality off-the-shelf, the industrial 
application providers just aren’t at that stage as yet. The current state of the practice 
requires that off-the-shelf components be substantially extended and that one must plan 
for significant integration and domain-specific development effort. This problem is 
endemic and it won’t fade away quickly. Website executives beware! If you want 
customer-keeping technology, be prepared to assemble from parts that aren’t all there yet. 
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