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ABSTRACT 
A major obstacle to online shopping is the lack of meaning understanding and precision 
in e-catalog searching engines. These are problems that Natural Language Query (NLQ) 
should be able to solve, but historically, has been unable to due to difficulties of scaling 
to the complexities and performance demands of large-scale online catalogs. Recent 
research, however, has now enabled NLQ search to hold its own in terms of timing while 
it improves precision and parsing capability.  

 
1) Introduction 

This article describes a bot or agent that uses restricted natural language to help 
users search product catalogs in large scale market exchanges. Market exchanges are sites 
that offer a virtual integration across multiple vendors’ catalogs so that users can browse, 
search, bid, finance, buy, and/or ship products. Market exchanges are a major form of e-
commerce in both the business to consumer and business to business segments: e.g., see 
Amazon.com or Ariba.com among many others.  

O-ver half of today’s 80 million web users shop for or buy products online, and 
business to business purchasing is expected to rapidly eclipse that level [1]. However, in 
the rush to provide online presence, many e-market sites have been built quickly, with 
little infrastructure and capabilities needed to run such an e-business.  For example, [1] 
reports that over 80% of web shoppers have at some point left e-markets without finding 
what they want and that 23% of all attempted e-shopping transactions end in failure. Four 
of the top five failure modes are search-related (i.e., page loading times, couldn’t find 
product, system crashed, had to call customer service). 

Research also shows that about 15% of online search failures are due to spelling 
errors and another 40% are due to customers using different terms from those in the 
website (e.g., patching vs. concrete): e.g., see [1,2]. Because they can’t interpret the 
meaning of the users’ query, keyword-based search engines typically are tuned to bring 
back innumerable hits of everything even remotely relevant, often burying the best choice 
deep within the list (or omitting it altogether) and providing little help for then searching 
just the returned set of items. Two approaches exist for improving keyword-based search, 
conceptual query (CQ) and natural language query (NLQ), and we will shortly describe 
these (see sidebar), but first let us examine the challenges that catalogs pose for any 
search method.  
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SIDEBAR:  Conceptual vs. Natural Language Query 
All query languages attempt to match the query string to database entries. Interested 
readers should consult [8, 9, 16-18], but for now we compare but two of the many 
approaches: 
Conceptual Query – Literally this refers to an expansion of the search terms with the 
help of a concept tree of closely related terms, however, in practice this also includes any 
other expansion such as via a thesaurus to generate synonyms. Generally prior to the 
expansion, the search string is tokenized, stop words are removed, and the tokens is then 
passed to traditional SQL for matching against the database entries. 
Natural Language Query – In addition to all the steps of conceptual query, this also 
includes a parser that attempts to identify and label the part of speech of each token in the 
search string. Such labels can assist in (1) reducing the expansion set to those with the 
same sense as the original and (2) helping the traditional SQL in narrowing its search.  
 

Part of the challenge that searching the content of shopping catalogs faces is the 
same challenge that the rest of the web faces – content that was created for human 
consumption, poses a challenge for machine interpretation or for use by other agents. To 
address this challenge, a significant military (DARPA) and W3C “semantic web” effort is 
underway to tag the semantics of the web so that content created by laypersons for use by 
other people is automatically and transparently marked up for machine and agent 
interpretation and use (using tools such as the W3C’s Resource Description Format or 
RDF, DARPA agent markup language or DAML, and ontology interface language or 
OIL, among others) [12, 13]. While we did not use this toolset in the work reported here, 
having it available and scaled up for industrial use would potentially turn catalogs into 
part of the fabric of the “semantic web” and would potentially ease the content 
interpretation of market catalogs such as in the case study mentioned here. One needs to 
test this idea to be sure. Also, the semantic web efforts just mentioned do not include 
research on natural language querying, so it would also be interesting and challenging to 
see to what extent natural language agents such as described in this paper can be 
extended to work in the broader domain of the semantic web. In general, agents such as 
described here are intended for narrow domains only, so the challenge would be to 
populate the web with many such, special purpose agents. 

This article is about shopping sites, however, so we turn our attent ion now to 
challenges that uniquely arise in that domain. One challenge is the question of the 
incompleteness and inconsistency of the product descriptions across sellers. Some 
descriptions include partial parameter information (e.g., 2”, black) while others focus on 
how the product might be used, and still others are highly terse and omit most details. A 
second challenge is the difficulty of matching the buyer’s search terms to the wording in 
the descriptive fields. Where exact term matches don’t exist, one must consider issues 
related to word stemming, spelling errors, abbreviations, synonyms, and related 
problems. A third challenge is that numeric attributes are poorly and incompletely 
represented in these descriptions, yet some users will want to search by size, weight, 
height, etc. A universal feature of catalogs is that there are many products, the product 
lines are continually changing, and each of the 1,000s of categories of products has a 
different set of attributes. As a result, attributes are not stored as fields of a table. Rather, 
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the attribute names are stored as data items as are their value settings, a fact that makes 
search more difficult. 

Shopping catalogs often include many dozens of tables (some have 1,000s) in 
order to describe the products being offered and to support all the services and user 
needs. In order to improve runtime performance, a denormalized field called a “munge” 
is often used as the target for the search engine. This munge places into its sub-fields 
copies of each of the searchable fields of the catalog such as item name, item ID, 
category name and ID, model or part number, description, price, maker, condition, and all 
attribute-value pairs. In effect the munge is like a document on each product in the 
catalog. Since most search algorithms can’t infer the sub-fields to search, they will search 
the entire munge. For example, keyword search will search across all sub-fields of the 
full munge for a strict match on terms, while CQ will traverse the same ground but with 
the ability to look for synonyms, alphabetically similar terms, and related 
conceptualizations. NLQ, in turn, is the only search strategy that infers the labels or field 
names of each token in the query string and, hence, can then send the (conceptual) search 
to the precise “subfields” of the catalog in which the query’s tokens should exist provided 
they are in the database.  

The reason that CQ does worse than NLQ is that it must deal with term semantics 
and ambiguities in the absence of a parser. NLQ, on the other hand, can parse the entire 
query string, label its tokens, and may hold an interactive conversation about the query to 
confirm its interpretation. NLQ researchers argue that CQ languages can be improved by 
adding a parser with a grammar restricted to the domain of the database. Such parsers 
have less-than-general interpretation power, but still can offer much needed trouble 
management improvements and in helping the interface conform to the user’s language. 
Several in-the- lab systems purport to provide these extensions such as [3, 9, 14, 15], and 
some of them offer formal slotted grammars (with semantically typed slots) for merging 
the natural language approach atop conceptual querying.  

Proponents of pure CQ in turn argue that the natural language extensions tend to 
be impractical, and indeed none of the NLQ systems just cited have been evaluated on a 
large scale. They argue that the “natural language problem” is too difficult and remains 
unsolved on any reasonable scale. As a result, most large scale relational database 
management products (eg, Oracle, Sybase, DB II, or Alta Vista Search Engine) that are 
widely used by market exchanges and other large scale e-commerce sites, include CQ 
features for those who choose to deploy them, but exclude NLQ. There are some smaller 
(less formally defined) NLQ systems that appear to work atop specific databases or 
environments: eg [4,5].  Also, there is a push to add natural language self-help or 
chatterbots to many e-commerce websites, but these bots handle site navigation and 
document retrieval issues, and they are entirely incapable of processing catalog or 
database search requests, a fact that adds fuel to the arguments that only conceptual query 
is scalable: e.g., see [9]. In sum, there are no examples of NLQ working in large scale e-
commerce catalog shopping sites, and one is tempted to believe the proponents of CQ 
rather than NLQ. 
 
2) System Architecture and Algorithm 

This section provides an overview of how the agent performs NLQ. We make the 
assumption that a Markov decision process is suitable to analyze the semantics and 
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morphosyntactics of the user’s query. Specifically, at any moment in time, the agent is in 
one of a finite number of states (s=1,S) and must choose one of a finite set of actions 
(a=1,A) to transition to the next state. More specifically, optimizing a Markov decision 
process is a dynamic programming problem that maximizes E(U), the expected 
discounted rewards across future periods as follows: 

  T 

Max V* = E [  Σ  U(st, at) ]       (1) 
            t=1 
 
where, 

V* = optimum value point (in terms of precision and recall) 
U( ) = reward function or utility from selecting action at at state st 
 

Equation (1) may be solved if one loops across iterations (t=1,T) and for each 
iteration, one then loops across all states (s=1,S) to find the action or set of actions that 
maximizes both current and future rewards so as to avoid local optima. This expansion is 
captured by finding the maximal value of the following function after testing all possible 
actions, a=1,A: 

        S 

Zt(s,a)   =   U(st, at) + δ   Σ    π(st, at, st+1) Vt-1
*( st+1)     (2) 

   st+1=1 
where, 
 
π(st, at, st+1) = the transition probability of being in state st+1 immediately after taking  

action at from state st 
Vt-1

*( st+1) = Zt-1(st+1,argmaxa(Zt-1(s,a)) where argmaxa finds the maximal action 
 
Thus, recursive equation (2) summarizes the standard computable “value iteration” 
formulation. To use this we must define the permissible states and actions, the reward 
function, the transition probabilities, and the other terms of the equation within the 
context of catalog search problems. We refer the interested reader to [11] for these details 
and provide only an overview of these items in what follows and in Figure 1.  

As a language parser the agent iteratively labels each stripped and stemmed  token 
of the query and subsequently modifies these labels by applying a sequence of 
transformation rules which attempt to reduce the remaining ambiguities and residual 
errors left in place by the previous rules.   In doing so it labels the state of each term in 
the query, where state is defined within  a sub-grammar.  The sub-grammar we created 
here is called “OAV Triplet Grammar.” OAV triplets, or object-attribute-value triplets, 
are meta-data describing what’s in catalogs much the same way RDFs describe the 
content of the web [12, 13].   Specifically, in product catalog domains, searches are 
usually for objects with attributes of a certain value. This is something of a noun phrase 
that includes adjectives.  For example, some triplets in various orderings might be: ‘mini 
sized amps’ or ‘hammer colored red’. The order of the triplets is a task for the agent to 
discover. Thus a common order variant occurs where the O is sought initially and then 
the AVs are subsequently used for comparison and search refinement (bolt cutter 
followed by size, price, and availability). Even more common are searches for one or 
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more V of a given type of O where the A is suppressed (eg, AA Eveready batteries, ½” 
no.8 slotted screws, or desk chair). 

In addition to the rules of the sub-grammar, one obviously must also derive the 
vocabulary for any given instantiation or catalog. In shopping domains, the vocabularies 
can be derived for objects and another for attribute-value pairs by crawling the fields of 
the relational catalog database and by extracting all unique terms (item names are object 
name, attributes are parameter names, and parameter settings are attribute values). We 
show this tool for crawling the catalog and extracting the KB values at the base of  Figure 
1. Using such a tool, one can readily construct the sub-grammar and its vocabulary for 
any given electronic catalog. The result is stored in KB lookup tables (base of agent in 
Figure 1) so it can be utilized by transformation rules of the phrase parser to infer and 
insert O, A, and V labels onto the various terms of any given search phrase. Also at the 
bottom right of the agent box are shown other rules (Φr) that are used to infer OAV 
meanings from queries. 

It is not sufficient that the vocabulary extracted from the catalog provides 100% 
coverage of the lexicon of a given shopping site if the users of the site are unaware of that 
lexicon or prone to misusing it. To help overcome such semantic impasses, the tokens in 
the query string are first stemmed, subsequently expanded for synonyms, and ultimately 
checked for spelling (bottom left of the agent in Figure 1). This is supported by adding 
the dictionaries and KBs across the base of Figure 1. 
 
 
Figure 1 – Overview of The EQUIsearch Agent as a Meaning Translator In the 
Interface Between Users and Traditional Search Engines 
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3) Comparison Testing of EQUIsearch’s Capabilities 
Earlier we said that EQUIsearch is complementary to commercial search engines 

for online catalogs. To illustrate that point, this section provides an empirical evaluation 
of query performance both with and without the EQUIsearch Agent for a major 
commercial search engine relevant to e-commerce catalogs. In general, search engine 
performance can be measured in terms of four methods: retrieval effectiveness metrics 
(e.g., recall, precision), user satisfaction measures, transaction log analysis, and the 
critical incident technique. Silverman et al [10] examine the last three of these. In the 
current study, we provide a comparison based on effectiveness metrics. 
 
 
3.1) Measuring Query Effectiveness (recall, precision) 

The information retrieval literature defines effectiveness as a measure of the 
ability of the system to satisfy the user in terms of the relevance or pertinence of items 
retrieved [8, 12]. Pertinence is assumed to mean 'aboutness' and 'appropriateness', that is, 
a document is ultimately determined to be pertinent or not by the user (or us). It is helpful 
at this point to introduce the ubiquitous 'contingency table’ shown in Table 1. 
 
 

Table 1 – “Contingency Table” For Deriving Effectiveness Metrics 

 
 
For our purpose we will use ratios of (hits / retrived) and (hits/ pertinent). 
 

PRECISION   = RP/(RP+RI) 
RECALL  = RP/(RP+NP) 

 
 
3.2) Scaleup Test Results 

In order to test whether NLQ can scale up, we have deployed it at a market 
exchange. Specifically, the website is EqualFooting.com (www.equalfooting.com), a B2B 
online marketplace for the “maintenance, repair, and operations” (MRO) sector: e.g., see 
[10]. This means basically EqualFooting sells industrial and construction supplies – 
something like a Home Depot for small contractors only with an order of magnitude more 
products. The company’s official launch date was February 2000 and by June 2000 they 
were handling one million hits per day (by about 23,000 separate users daily). Also, at 
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this writing their catalog integrates almost 450,000 products offered by over 2,000 
sellers. 

The catalog is stored internally in an Oracle database. Users at this website now 
utilize the NLQ agent (its called EQUIsearch), that in turn interfaces with Oracle and its 
CQ search technology called Oracle interMedia. It should be noted that the conceptual 
search features of a product such as interMedia are not immediately usable at a given 
shopping site. For example, in order to make the production version of the 
Equalfooting.com database CQ-capable required creating the three dictionaries always 
needed for conceptual search – spelling, stripping, and synonyms – as these are domain-
specific items. Growing the thesaurus involved many false starts and deadends. For 
example, it is tempting to try and use an existing general purpose thesaurus such as 
WordNet from Princeton. This includes 95,000 words and all their synonyms, however, 
this thesaurus brings back too many synonyms, many of which are inappropriate (racial 
slurs, curses, body parts, religious terms, etc.). Plus most of the specialty terms of a given 
domain are omitted (e.g., chain saw, Phillips head, and safety gloves are among the 
1,000s of items found in a hardware catalog). Instead, based on search log analyses, 
EqualFooting assembled their own thesaurus for almost 8,000 synonyms critical to this 
domain.  The second dictionary task was to assure the database would have a spell 
checker (Oracle doesn’t ship with this functionality), so one was purchased and installed 
separately. Although it came with 100,000 words it was necessary to embellish the spell 
checker’s dictionary by adding: (1) the top 1,000 mis-spelled words from the user search 
logs and their corrections, (2) proper names of all manufacturers and suppliers (the spell-
checker assumes initially that all proper names are errors) and how they might be mis-
spelled, and (3) many 100s of acronyms with proper spelling (e.g., CD, DVD, HVAC, 
etc.). The third and final dictionary task was to massage the stop word list for the current 
domain as some generic stop words are relevant here and others are unique.  

For a site that already has prepared all three dictionaries required by CQ (i.e., 
strip, synset, spell), the extra effort to add EQUIsearch is rather straightforward. The 
steps are to: 

1) run a catalog crawler that extracts all the lexicon  
2) construct the lexical knowledge bases (objects and attribute-value pairs) 
3) author the relevant rule sets and encode them in the Φr 
4) complete any interface code needed in the SQL builder of the agent to adapt it 

to the requirements of the CQ technology (interMedia in this case) 
We performed these steps manually for the test site during the Fall 2000, and the agent 
was deployed as of November 17, 2000. It has been in 24x7 continuous operation since. 
 
3.3) Comparison Test Results 

For our comparison testing we ran three types of query strings as listed in Table 2. 
Nouns or objects are the item names or synonyms of those names. Noun-adjective pairs 
(object-attribute pairs) cover the case where the user seeks to narrow the choices 
returned. Lastly, although most users are unaccustomed to typing in sentence format, we 
felt it an important category of search since future users will hopefully be unaware of 
such search engine constraints.  Also, statistics on current search habits indicate that users 
type about 2.3 words per query with nouns being the most common search, noun-
adjective pairs next most common, and multi-word phrases being least common [1,2]. 
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Our test bank shown in Table 2 was designed to approximate this distribution of 2.3 
words per query on average (i.e., 146 words divided by 63 queries = 2.3 words/query).  
 
 
Table 2 – Sixty Three Query Strings Used for the CQ vs. NLQ Comparison Test   

 
 

Table 3 provides the comparison of effectiveness and timing statistics for the CQ 
search (via Oracle interMedia) vs. the NLQ agent. These results were collected over 
EqualFooting’s intranet and ignore Internet latency. Inspecting the last row of Table 3 
shows that, on average, the CQ search was nearly twice as fast (.5 vs. .9 seconds/query), 
however, it tended to retrieve nearly three times as many hits even though its recall was 
not as good as NLQ (.8 vs. 1.0) and its precision was only half as good (.5 vs. 1.0). 
Further, the time advantage of CQ search is relatively inconsequential since most users 
can’t detect a half second difference.  

Consider also  the first row of the table, noun search, where we see a clear 
advantage being held by NLQ across the board. Not only is NLQ more precise, but it’s 
faster as well. The only place CQ holds its own is in recall, where both methods are 
perfect in bringing back all the pertinent items.  
 
 
Table 3 – Timing and Effectiveness Results for CQ Search vs. the NLQ Agent  

 
 

This story changes for noun-adjective pair search (row 2), at least in terms of 
speed, where NLQ now takes almost 4 times longer than CQ even though it still wins on 
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precis ion. It should surprise no one that the NLQ is faster than CQ in noun search and 
slower in noun-adjective search. In noun or object search, CQ must dynamically sort and 
index the entire munge (many sub-fields de-normalized) while NLQ need only sort 
through the Item-Name field since it has narrowed the search by labeling the token. 
Likewise, in object-attribute search, CQ behaves the same as before, but NLQ causes the 
Oracle interMedia to sort an additional set of fields (all those with attributes) and then do 
a soft join and eliminate items not in all parts of the join.   The fact that sentences (row 3) 
are faster than word pairs (row 2) for NLQ only further confirms the idea that the parsing 
processes are not very significant determinants of delay. The specific terms of the query 
are what drive the process. In this case the noun-adjective pairs that the parser extracted 
from the sentences proved to be less common items in the database, and hence the Oracle 
CQ engine could process them faster.  
 
4) Results Analysis and Concluding Remarks 

This paper has presented an NLQ agent that can complement and improve search 
engines for online e-commerce shopping catalogs. The results show that the agent 
improves the precision and recall of the search with no significant overall impact on 
response time. Several lessons learned are worth discussing further: 
• Scaling Up NLQ – In order to scale up NLQ, we did away with some of the less 
practical NLQ proposals in the literature, such as conversational feedback and 
explanation of the translation of the query to be user prior to executing the query. Instead 
we converse with the user in the fashion that CQ systems use -- after the query via the 
display either of hits or of pre-canned, limited explanations of query failures. Also, we 
implemented it as a Markovian Decision Process. The agent worked and is continuing to 
work at a relatively large-scale market exchange, which previously operated with CQ 
search alone. 
• CQ Paves the Way for NLQ – Relational DBMSs ship with CQ features, however, 
the three standard dictionaries (strip, synonym, and spell) need to be enabled and domain-
filled before CQ can work for a given shopping catalog. The good news is that these are 
the same three dictionaries that NLQ needs, and if a site has already developed them and 
deployed CQ, then there is only minimal extra effort to also deploy NLQ. 
• Data Cleansing Obstacles Remain for Any Search Method – Possibly the most 
serious obstacle to scale up in any unified shopping catalog is the numerous typoes, 
missing item name and other data, and poor quality of attribute information. This obstacle 
is not unique to NLQ search, but equally plagues CQ and keyword searching methods. 
• Speed Differences are a NonIssue For Most Cases – It seems that NLQ is faster for 
noun search, but slower than CQ for noun-attribute pair searching. But in either case, the 
time differences are not statistically significant.  
• NLQ Agent Provides Precision and Recall Improvement – The results to date 
reflect about a 50% improvement in precision when NLQ is added to CQ. This means 
that users experience shortened retrieval sets, and that the items retrieved include far less 
false positives. In addition there are fewer false negatives or relevant items omitted.  
• NLQ Agent Offers Parsing Services CQ Can’t Provide – Many shopping sites are 
starting to add chatterbots like Dell’s AskDudley [7] that provide navigation help and 
answer site or content questions in natural- like language. The results to date indicate that 
users like this type of self-service help, and that when it is present, they build up a higher 
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expectation that the catalog search will behave in a similarly naturalistic way and they no 
longer limit their queries to the short keyword format (2.3 words on average) [2]. They 
pose English- like sentences and questions to the catalog search engine and it seems they 
are adversely affected by the inability of CQ search engines to parse their questions. As a 
result, NLQ agents, such as the one demonstrated, here appear to be the answer for 
shopping sites facing this dilemma. 
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