
CIS 194: Homework 11
Due Monday, April 8

• Files you should submit: SExpr.hs. You should take the version
that we have provided and add your solutions. Note that we have
also provided AParser.hs—you are welcome to use your own
AParser.hs from last week’s homework or ours, whichever you
prefer.

Parsing S-expressions

In AParser.hs from last week’s homework, we now have the follow-
ing:

• the definition of a basic Parser type

• a few primitive parsers such as satisfy, char, and posInt

• Functor, Applicative, and Alternative instances for Parser

So, what can we do with this? It may not seem like we have much to
go on, but it turns out we can actually do quite a lot.

Remember, for this week’s homework you should only need to
write code on top of the interface provided by the Functor, Applicative,
and Alternative instances. In particular, you should not write any
code that depends on the details of the Parser implementation. (To
help with this, the version of AParser.hs we provided this week does
not even export the Parser constructor, so it is literally impossible to
depend on the details!)

Exercise 1
First, let’s see how to take a parser for (say) widgets and turn it

into a parser for lists of widgets. In particular, there are two functions
you should implement: zeroOrMore takes a parser as input and runs
it consecutively as many times as possible (which could be none, if
it fails right away), returning a list of the results. zeroOrMore always
succeeds. oneOrMore is similar, except that it requires the input parser
to succeed at least once. If the input parser fails right away then
oneOrMore also fails.

For example, below we use zeroOrMore and oneOrMore to parse a
sequence of uppercase characters. The longest possible sequence of
uppercase characters is returned as a list. In this case, zeroOrMore
and oneOrMore behave identically:

cis 194: homework 11 2

*AParser> runParser (zeroOrMore (satisfy isUpper)) "ABCdEfgH"

Just ("ABC","dEfgH")

*AParser> runParser (oneOrMore (satisfy isUpper)) "ABCdEfgH"

Just ("ABC","dEfgH")

The difference between them can be seen when there is not an up-
percase character at the beginning of the input. zeroOrMore succeeds
and returns the empty list without consuming any input; oneOrMore
fails.

*AParser> runParser (zeroOrMore (satisfy isUpper)) "abcdeFGh"

Just ("","abcdeFGh")

*AParser> runParser (oneOrMore (satisfy isUpper)) "abcdeFGh"

Nothing

Implement zeroOrMore and oneOrMore with the following type
signatures: Hint: To parse one or more occurrences

of p, run p once and then parse zero or
more occurrences of p. To parse zero or
more occurrences of p, try parsing one
or more; if that fails, return the empty
list.

zeroOrMore :: Parser a -> Parser [a]

oneOrMore :: Parser a -> Parser [a]

Exercise 2
There are a few more utility parsers needed before we can accom-

plish the final parsing task. First, spaces should parse a consecutive
list of zero or more whitespace characters (use the isSpace function
from the standard Data.Char module).

spaces :: Parser String

Next, ident should parse an identifier, which for our purposes
will be an alphabetic character (use isAlpha) followed by zero or
more alphanumeric characters (use isAlphaNum). In other words, an
identifier can be any nonempty sequence of letters and digits, except
that it may not start with a digit.

ident :: Parser String

For example:

*AParser> runParser ident "foobar baz"

Just ("foobar"," baz")

*AParser> runParser ident "foo33fA"

Just ("foo33fA","")

*AParser> runParser ident "2bad"

Nothing

*AParser> runParser ident ""

Nothing

cis 194: homework 11 3

Exercise 3
S-expressions are a simple syntactic format for tree-structured data,

originally developed as a syntax for Lisp programs. We’ll close out
our demonstration of parser combinators by writing a simple S-
expression parser.

An identifier is represented as just a String; the format for valid
identifiers is represented by the ident parser you wrote in the previ-
ous exercise.

type Ident = String

An “atom” is either an integer value (which can be parsed with
posInt) or an identifier.

data Atom = N Integer | I Ident

deriving Show

Finally, an S-expression is either an atom, or a list of S-expressions.1 1 Actually, this is slightly different than
the usual definition of S-expressions
in Lisp, which also includes binary
“cons” cells; but it’s good enough for
our purposes.

data SExpr = A Atom

| Comb [SExpr]

deriving Show

Textually, S-expressions can optionally begin and end with any
number of spaces; after throwing away leading and trailing spaces they
consist of either an atom, or an open parenthesis followed by one or
more S-expressions followed by a close parenthesis.

atom ::= int

| ident

S ::= atom

| (S∗)

For example, the following are all valid S-expressions:

5

foo3

(bar (foo) 3 5 874)

(((lambda x (lambda y (plus x y))) 3) 5)

(lots of (spaces in) this (one))

We have provided Haskell data types representing S-expressions in
SExpr.hs. Write a parser for S-expressions, that is, something of type

parseSExpr :: Parser SExpr

cis 194: homework 11 4

Hints: To parse something but ignore its output, you can use the
(*>) and (<*) operators, which have the types

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

p1 *> p2 runs p1 and p2 in sequence, but ignores the result of
p1 and just returns the result of p2. p1 <* p2 also runs p1 and p2 in
sequence, but returns the result of p1 (ignoring p2’s result) instead.

For example:

*AParser> runParser (spaces *> posInt) " 345"

Just (345,"")

	Parsing S-expressions

