
CIS 194: Homework 2
Due Monday January 28

Something has gone terribly wrong!

• Files you will need: Log.hs, error.log, sample.log

• Files you should submit: LogAnalysis.hs

Log file parsing

We’re really not sure what happened, but we did manage to recover
the log file error.log. It seems to consist of a different log message
on each line. Each line begins with a character indicating the type of
log message it represents:

• ’I’ for informational messages,

• ’W’ for warnings, and

• ’E’ for errors.

The error message lines then have an integer indicating the severity
of the error, with 1 being the sort of error you might get around to
caring about sometime next summer, and 100 being epic, catastrophic
failure. All the types of log messages then have an integer time stamp
followed by textual content that runs to the end of the line. Here is a
snippet of the log file including an informational message followed
by a level 2 error message:

cis 194: homework 2 2

I 147 mice in the air, I’m afraid, but you might catch a bat, and

E 2 148 #56k istereadeat lo d200ff] BOOTMEM

It’s all quite confusing; clearly we need a program to sort through
this mess. We’ve come up with some data types to capture the struc-
ture of this log file format:

data MessageType = Info

| Warning

| Error Int

deriving (Show, Eq)

type TimeStamp = Int

data LogMessage = LogMessage MessageType TimeStamp String

| Unknown String

deriving (Show, Eq)

Note that LogMessage has two constructors: one to represent normally-
formatted log messages, and one to represent anything else that does
not fit the proper format.

We’ve provided you with a module Log.hs containing these data
type declarations, along with some other useful functions. Download
Log.hs and put it in the same folder where you intend to put your
homework assignment. Please name your homework assignment
LogAnalysis.hs (or .lhs if you want to make it a literate Haskell
document). The first few lines of LogAnalysis.hs should look like
this:

{-# OPTIONS_GHC -Wall #-}

module LogAnalysis where

import Log

which sets up your file as a module named LogAnalysis, and im-
ports the module from Log.hs so you can use the types and functions
it provides.

Exercise 1 The first step is figuring out how to parse an individual
message. Define a function

parseMessage :: String -> LogMessage

which parses an individual line from the log file. For example,

parseMessage "E 2 562 help help"

== LogMessage (Error 2) 562 "help help"

cis 194: homework 2 3

parseMessage "I 29 la la la"

== LogMessage Info 29 "la la la"

parseMessage "This is not in the right format"

== Unknown "This is not in the right format"

Once we can parse one log message, we can parse a whole log file.
Define a function

parse :: String -> [LogMessage]

which parses an entire log file at once and returns its contents as a
list of LogMessages.

To test your function, use the testParse function provided in the
Log module, giving it as arguments your parse function, the number
of lines to parse, and the log file to parse from (which should also be
in the same folder as your assignment). For example, after loading
your assignment into GHCi, type something like this at the prompt:

testParse parse 10 "error.log"

Don’t reinvent the wheel! (That’s so last week.) Use Prelude func-
tions to make your solution as concise, high-level, and functional as
possible. For example, to convert a String like "562" into an Int, you
can use the read function. Other functions which may (or may not)
be useful to you include lines, words, unwords, take, drop, and (.).

Putting the logs in order

Unfortunately, due to the error messages being generated by multiple
servers in multiple locations around the globe, a lightning storm, a
failed disk, and a bored yet incompetent programmer, the log mes-
sages are horribly out of order. Until we do some organizing, there
will be no way to make sense of what went wrong! We’ve designed a
data structure that should help—a binary search tree of LogMessages:

data MessageTree = Leaf

| Node MessageTree LogMessage MessageTree

Note that MessageTree is a recursive data type: the Node construc-
tor itself takes two children as arguments, representing the left and
right subtrees, as well as a LogMessage. Here, Leaf represents the
empty tree.

A MessageTree should be sorted by timestamp: that is, the times-
tamp of a LogMessage in any Node should be greater than all times-
tamps of any LogMessage in the left subtree, and less than all times-
tamps of any LogMessage in the right child.

cis 194: homework 2 4

Unknown messages should not be stored in a MessageTree since
they lack a timestamp.

Exercise 2 Define a function

insert :: LogMessage -> MessageTree -> MessageTree

which inserts a new LogMessage into an existing MessageTree, pro-
ducing a new MessageTree. insert may assume that it is given a
sorted MessageTree, and must produce a new sorted MessageTree

containing the new LogMessage in addition to the contents of the
original MessageTree.

However, note that if insert is given a LogMessage which is
Unknown, it should return the MessageTree unchanged.

Exercise 3 Once we can insert a single LogMessage into a MessageTree,
we can build a complete MessageTree from a list of messages. Specifi-
cally, define a function

build :: [LogMessage] -> MessageTree

which builds up a MessageTree containing the messages in the list,
by successively inserting the messages into a MessageTree (beginning
with a Leaf).

Exercise 4 Finally, define the function

inOrder :: MessageTree -> [LogMessage]

which takes a sorted MessageTree and produces a list of all the
LogMessages it contains, sorted by timestamp from smallest to biggest.
(This is known as an in-order traversal of the MessageTree.)

With these functions, we can now remove Unknown messages and
sort the well-formed messages using an expression such as:

inOrder (build tree)

[Note: there are much better ways to sort a list; this is just an exer-
cise to get you working with recursive data structures!]

Log file postmortem

Exercise 5 Now that we can sort the log messages, the only thing
left to do is extract the relevant information. We have decided that
“relevant” means “errors with a severity of at least 50”.

Write a function

cis 194: homework 2 5

whatWentWrong :: [LogMessage] -> [String]

which takes an unsorted list of LogMessages, and returns a list of the
messages corresponding to any errors with a severity of 50 or greater,
sorted by timestamp. (Of course, you can use your functions from the
previous exercises to do the sorting.)

For example, suppose our log file looked like this:

I 6 Completed armadillo processing

I 1 Nothing to report

E 99 10 Flange failed!

I 4 Everything normal

I 11 Initiating self-destruct sequence

E 70 3 Way too many pickles

E 65 8 Bad pickle-flange interaction detected

W 5 Flange is due for a check-up

I 7 Out for lunch, back in two time steps

E 20 2 Too many pickles

I 9 Back from lunch

This file is provided as sample.log. There are four errors, three of
which have a severity of greater than 50. The output of whatWentWrong
on sample.log ought to be

["Way too many pickles"

, "Bad pickle-flange interaction detected"

, "Flange failed!"

]

You can test your whatWentWrong function with testWhatWentWrong,
which is also provided by the Log module. You should provide
testWhatWentWrong with your parse function, your whatWentWrong
function, and the name of the log file to parse.

Miscellaneous

• We will test your solution on log files other than the ones we have
given you, so no hardcoding!

• You are free (in fact, encouraged) to discuss the assignment with
any of your classmates as long as you type up your own solution.

Epilogue

Exercise 6 (Optional) For various reasons we are beginning
to suspect that the recent mess was caused by a single, egotistical

cis 194: homework 2 6

hacker. Can you figure out who did it?

	Log file parsing
	Putting the logs in order
	Log file postmortem
	Miscellaneous
	Epilogue

