
Java programming for C/C++ developers
Skill Level: Introductory

Scott Stricker (sstricke@us.ibm.com)
Developer
IBM

28 May 2002

This tutorial uses working code examples to introduce the Java language to C and C++
programmers.

Section 1. Getting started

What is this tutorial about?
This tutorial introduces the Java programming language to C and C++ developers.
Because you already know how to program in C/C++, we'll approach many Java
programming concepts by comparison. You will learn a great deal about Java
programming by learning how the Java language is similar to, and different from, C
and C++. Overall, the purpose of this tutorial is to teach you the fundamentals of the
Java language and get you programming quickly.

The creators of the Java programming language borrowed much of its syntax from C
and C++. Because of this, many experienced C/C++ programmers are immediately
familiar with many aspects of Java code, even if they've never programmed in the
language before. This is important because developers with a C/C++ background
are able to learn how to program in Java more quickly than beginning programmers
or developers coming from other languages.

To make the most of your advantage as a C/C++ programmer, it is important to keep
in mind that the differences between the languages are usually more significant than
the similarities; failure to recognize this can result in incorrect code. First of all,
C/C++ programmers have to be cautious when using the features of the Java

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 47

mailto:sstricke@us.ibm.com
http://www.ibm.com/legal/copytrade.shtml

language that behave differently from their C/C++ counterparts, such as boolean
expressions and default parameter passing by reference instead of passing by
value. Second, C/C++ programmers have to learn how to get along without many
C/C++ language features on which they have previously relied, such as pointers,
global variables, and the preprocessor.

Should I take this tutorial?
This tutorial is geared toward C and C++ programmers. If you already know C or
C++ and want to learn how to program in the Java language, this tutorial is for you. If
you don't know C or C++, but still want to learn the Java programming language, you
may want to check the listings in Resources for a tutorial that is better suited to your
background.

As far as this tutorial goes, it doesn't particularly matter if you're a C programmer or
a C++ programmer; we'll discuss the differences between the C and C++ languages
as they come up. Despite what many people think, C and C++ really are different
languages. Many C programmers have never programmed in C++, and are
completely unfamiliar with object-oriented programming. Likewise, many C++
programmers have learned object-oriented programming using C++ and are not
proficient in a purely C, procedural programming environment.

What do I need to take this tutorial?
In this tutorial, we'll be compiling and running Java programs, so you'll need a Java
development environment of some kind. There are several integrated development
environments (IDEs) on the market. These are intended to help you develop Java
programs quickly and easily. An even better tool for beginners is the Java Software
Development Kit (SDK), which is a collection of very simple command-line tools for
programming on the Java platform.

While you will almost certainly migrate to some other, more advanced Java
programming environment, there are several good reasons to start out using the
SDK. First, the SDK provides a standard implementation of the tools we'll need to
compile and run Java programs. Second, as newer versions of the Java platform are
released, Sun's SDK is usually the first and only up-to-date implementation
available. Third, the SDK tools are simple, low-level command-line tools; using them
provides you with a better understanding of how the Java platform actually works.
Last, and perhaps most importantly, the SDK is available for free from Sun's Java
Web site.

The SDK doesn't come with a text editor, so you'll need one of those as well. Any

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 2 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

text editor will do, so long as it can save files in plain ASCII format. For example, on
Windows, you can use Notepad or DOS Edit; on UNIX you can use emacs or vi;
and on the Macintosh you can use SimpleText.

You may also want to download the entire example source now, to make it easier to
follow along with the exercises in this tutorial. See Resources for links to download a
Java SDK, a text editor, and the original source code for this tutorial.

Note: Since the purpose of this tutorial is to teach you the Java programming
language, you will not need to compile any C or C++ programs to follow along with
the exercises here. We will make use of C/C++ code from time to time, and you may
find it instructive to compare C/C++ and Java code by running programs, but doing
so is not a required exercise for this tutorial.

Historical background
The C programming language was developed in the early 1970s. C was originally
designed to facilitate the writing of operating systems (OSs) and OS utility programs.
At first, it was almost exclusively associated with UNIX. Later, C became a more
generally used application development language across multiple platforms. In the
middle of the 1980s, C became an official ANSII standard.

The C++ programming language was developed in the early 1980s. C++ was
designed to add object-oriented programming techniques to the C language.
Although C++ originally tended to be associated with systems programming, it has
evolved into a mature programming language that is well-suited for a wide variety of
application programming. In the early 1990s, C++ became an official ANSII and ISO
standard.

The Java programming language and platform was developed in the early 1990s.
The Java platform was originally designed to be used in consumer electronic
devices (television sets, handheld devices, toasters, and the like), so the language
had to be small, highly-portable, and efficient. Although the language never really
caught on in digital devices, these same features made it ideally suited for the
Internet. The Java language secured its place as an Internet technology after the
Netscape Navigator and Internet Explorer Web browsers began to support Java
applets. Since then, the Java language has continued to evolve and mature into a
platform for enterprise application development.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 47

http://www.ibm.com/legal/copytrade.shtml

Section 2. Setting up

Introducing the SDK
The Java Software Development Kit (SDK) is a group of command-line tools and
packages that you will need to write and run Java programs. The most important of
these tools are the Java compiler (javac.exe), which you use to compile Java
programs, and the Java interpreter (java.exe), which you use to run Java
programs. The SDK also includes the base classes (called the Java platform), which
will provide you with the basic functionality and APIs you'll need start writing
applications.

Sun has released an SDK for every one of its five major releases of the Java
platform. Although I recommend that you get the latest version of the SDK (Java 1.4)
for this tutorial, we'll briefly review all the versions.

• Java 1.0 was the first public release of the Java platform. Because many
Web browsers still use this version, many Java applets are still written to
be compliant with Java 1.0.

• Java 1.1 represented a vast improvement in the Java platform. Java 1.1
was the first Java platform stable enough to develop robust Java
applications.

• Java 1.2 was such a leap forward for the Java platform that it was
officially dubbed Java 2. This version of the Java platform is specifically
well-suited for enterprise application development.

• Java 1.3 includes support for the Java Naming and Directory Interface
(JNDI), Java Sound, and support for RMI over IIOP. It also includes a
new, high performance just-in-time (JIT) compiler.

• Java 1.4, also known as Merlin, is the latest release of the Java platform.
Java 1.4 includes support for XML processing, the Java Cryptography
Extension (JCE), the Java Secure Socket Extension (JSSE), and the Java
Authentication and Authorization Service (JAAS).

Note that Sun's development kit was called the Java Development Kit (JDK) prior to
the release of Java 2. Thereafter, the development kit was officially renamed the
Software Development Kit (SDK).

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 4 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

You can download the Java SDK of your choice for free from Sun's Java Web site
(see Resources).

Installing the SDK
Once you download the SDK, you'll need to install it on your machine. The
installation is pretty simple -- it should run just like most standard installation
programs. If you're given the option between a typical or custom install, you should
choose the typical install. You should only choose the custom install if you know
exactly what you do and do not want to load on your machine.

You can download the API documentation for the Java platform separately, as a
compressed file. This is a collection of HTML documents that you can navigate in a
standard Web browser. Since the API documentation is an essential reference that
you'll probably use a lot in the future, you may want to go ahead and get it now.

When you are installing, you'll usually be given the option of installing the source
code for the standard Java platform classes. If you have sufficient memory on your
machine, I recommend that you take this option. These files will give you a chance
to look at the implementation of the classes that make up the Java language and
standard APIs. These classes are particularly well designed and implemented, and
you can learn a lot from studying this code.

After the SDK is installed, you may need to configure it to work on your system. How
you configure the SDK will depend on your operating system and the SDK version
you're using. Complete installation and configuration instructions will be provided
when you download the SDK.

Section 3. Working with the SDK

Your first Java program
Before we begin talking about the structure and syntax of the Java language, let's
just work with the SDK a little bit. We'll start by using the SDK's command-line tools
to compile and run a Java program. Because the syntax of the Java programming
language is very similar to C and C++, you should be able to follow most of the code
in this non-trivial example.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 47

http://www.ibm.com/legal/copytrade.shtml

In the next section, you will find the source code for a Java class called Factorial.
The Factorial class computes the factorial of an integer. As you may recall, the
factorial of a number n is the product of all integers from 1 to n. So, for example, the
factorial of the number 5 is 5 x 4 x 3 x 2 x 1 = 120.

In this exercise, you will pass in a value as a command-line argument and the
Factorial class will attempt to compute the factorial of that number. As in C,
command-line arguments are passed into Java applications as strings, so the
Factorial class will attempt to transform the string argument into a valid integer. If
you pass in non-digit characters, Factorial will generate an exception.

Factorial.java source
Java source files use the java extension, and every Java source code file must
have the exact same name as the class that is defined inside of it. Since our first
class is called Factorial, we need to save it in a file called Factorial.java.

Open your text editor and enter the source below exactly as you see it. When you
are done, save it in a file called Factorial.java. You may save it in any
appropriate directory on your machine. You'll need to go to this directory to use the
command-line tools, so make sure it is convenient for you.

public class Factorial {
public static void main(String[] args) {

if(args.length != 0) {
int num = Integer.parseInt(args[0]);
System.out.println(factorial(num));

}
}

private static int factorial(int fact) {
int result = fact;
if (fact == 0)

return result;
else {

while (fact != 1)
result *= --fact;

}
return result;

}
}

Compiling the program
Once you've saved Factorial.java on your machine, you are ready to compile
the program. The Java compiler that comes with the SDK is a command-line
application called javac.exe. To compile a Java source code file, simply pass the

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 6 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

name of the .java file to the javac.exe program. To compile your Factorial
program, open a command-line prompt and change your directory to the location
where you saved the Factorial.java file. Then type this command:

javac Factorial.java

Just like a C or C++ compiler, the Java compiler may generate any number of errors.
Naturally, you'll need to correct all the errors before the Java compiler will
successfully compile the Factorial program. Once the Java compiler is able to
successfully compile, it will generate a class file called Factorial.class. This
represents the executable that we'll run in the Java interpreter.

There are several options you can use with the javac compiler. Type javac
-help at the command line to see a usage message and a list of valid options.

Running the program
The Java interpreter that comes with the SDK is a command-line application called
java.exe. To run a Java bytecode executable, you simply pass the name of the
Java program to the Java interpreter. Be sure that you do not specify the .class
extension when using the Java interpreter. This program expects only class files, so
it will produce an error if you explicitly write the .class extension.

To run your Factorial program, open a command-line prompt and change your
directory to the location where you compiled the Factorial.java file. That's
where your bytecode executable file, Factorial.class, should be. Then type this
command:

java Factorial 5

The Java interpreter will try to execute the main() method of the Factorial
program. A Java method is basically the same thing as a C/C++ function. The
argument that we specified on the command line is 5, and the Java interpreter will
pass this argument into the main() method as a parameter -- specifically an array
of String objects.

The Java interpreter may report a run-time error, which will usually terminate
program execution. As in C and C++, Java run-time errors are more difficult to
debug than compile-time errors. Since Java programs are executed in a virtual
machine (that is, the Java interpreter) run-time errors can be handled in a graceful
way. Whereas C and C++ programs may simply crash, the Java interpreter will at
least report the run-time error that caused program execution to halt.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 47

http://www.ibm.com/legal/copytrade.shtml

There are several options that you can use with the Java interpreter. Type java
-help at the command line to see a usage message and list of valid options.

What you've learned about the SDK
We'll be compiling and running more Java applications in this tutorial, so let's go
over the process once again. You may need to refer back to this section later.

1. Write your Java source code program in a text editor and save it with a
.java extension. Make sure that your text editor saves the file in plain
ASCII format, and make sure that it supports long file names. You can't
save a Java program as a .jav file -- the extension has to be .java.

2. Compile your program from a command-line prompt, using the javac
compiler that comes with the SDK. For example, for a source code file
named Sample.java, you would type javac Sample.java. If all goes
well, a Java class file will be produced. In our example, this file would be
called Sample.class. Remember to always specify the .java
extension when compiling a Java program.

3. Run your program from a command-line prompt, using the java
interpreter that comes with the SDK. For example, to run the Sample
program from the previous step, you would type java Sample. To
specify command-line arguments to a Java program, simply type them
after the program name, separated by spaces. Remember to never
specify the .class extension when running a Java program.

4. Errors can occur when compiling or running a Java program. As you
know, run-time errors are more difficult to debug than compile-time errors.
When you are new to a language, however, compile-time error messages
can seem very cryptic. Correcting compile-time errors can be very
instructive, but if you can't get any of the examples in this tutorial to work,
try using the example code (in Resources) instead.

Section 4. Introducing the Java language

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 8 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Overview
Now that you have a basic idea of what Java code looks like and how to compile and
run it on your test machine, we can begin to talk more in depth about the structure
and syntax of the Java programming language.

In this section, we'll learn about the Java programming environment and the Java
primitive data types. Because you are familiar with programming in C/C++, and
because the Java language has much in common with these languages, we'll learn
by comparison. In the sections that follow, we'll discuss the fundamental
components of the Java platform, describing each one in terms of its relation to or
difference from a similar component underlying the C/C++ programming framework.

C and C++ execution environments
C and C++ are high-level programming languages; their purpose is to make it easier
for human beings to develop computer programs. Computers cannot understand
high-level languages -- they can only understand low-level machine languages. A
machine language consist of a sequence of binary instructions that can be directly
executed on a computer's processor. For this reason, programs written in high-level
languages must be translated into machine language programs, which are called
executables, before they can be run on a computer.

Two methods are available for translating a high-level programming language into
machine language executables: compilation and interpretation. Compilation involves
translating an entire high-level program into a whole machine language program,
which can then be executed in its entirety. Interpretation involves translating a
high-level program into machine instructions line-by-line; one line is translated and
executed before the next line is reached. Compilation and interpretation are logically
equivalent, but compiled programs tend to execute faster than interpreted programs.

C and C++ programs are compiled into machine language executables by a program
called a compiler. C compilers and C++ compilers are different. A C compiler can
compile C source code files but not C++ source code files. Since C is retained as a
subset of C++, a C++ compiler can compile both C and C++ programs.

Different computers use different machine languages. An executable that runs on
one machine will not run on another machine that uses a different machine
language. In order to run on different computers, a C or C++ source code file must
be recompiled on different compilers; one for each type of machine, or platform, on
which the executable will be run.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 47

http://www.ibm.com/legal/copytrade.shtml

The Java execution environment
Like C and C++ programs, Java programs are compiled. Unlike C and C++
programs, Java programs are not compiled down to a platform-specific machine
language. Instead, Java programs are compiled down to a platform-independent
language called bytecode. Bytecode is similar to machine language, but bytecode is
not designed to run on any real, physical computer. Instead, bytecode is designed to
be run by a program, called a Java virtual machine (JVM), which simulates a real
machine.

Simply put, the JVM is an interpreter that translates Java bytecode into real machine
language instructions that are executed on the underlying, physical machine. More
specifically, the term Java virtual machine is used generically to refer to any program
that executes Java class files. The Java interpreter program, java.exe, is a
specific JVM implementation. The Java Runtime Environment (JRE) is another
example of a JVM implementation.

The Java platform uses the virtual machine layer to ensure that programs written in
the Java language are platform independent. Once a Java program is compiled
down to bytecode, it can be run on any system that has a JVM. Whereas a C or C++
program must be recompiled for each platform on which it is to be executed, a Java
program needs to be compiled only once; it can then run on any machine that has a
JVM installed.

Comparison of execution environments
Let's say you're going to write an application and you want it to run on three
platforms: Windows, UNIX, and Macintosh. If you're writing the code in C or C++,
you're going to have to compile your code three times, using the correct compiler for
each of the three platforms. Of course, this is assuming that you can use the same
code base without modification for each compiler. Very often, you'll need to modify
your code to get it to compile, because you will probably use different APIs for each
platform. In other words, you might have to write three different versions of your
source code, one for each target platform.

Now, let's say you choose to write your application using the Java platform. In this
case, all you have to do is write the Java code and compile it once. Since each of
the three target platforms has a JVM implementation, you can run the same
compiled bytecode on all of them, without modification. It doesn't matter if you
compile the Java code on a Windows machine, a UNIX machine, or a Macintosh; it
will run on any platform with a JVM.

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 10 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The figure below illustrates how a program is compiled and executed in both the
Java programming environment and a C/C++ environment:

Primitive data types
Many of the primitive data types defined by the Java programming language have
names that are the same or similar to the fundamental data types defined in C.
Despite the similarity in their names, all of the Java primitives are different from their
C/C++ equivalents.

In general, C and C++ do not define strict sizes for their fundamental types. In other
words, most of the aspects of the C/C++ fundamental types are defined by the
compiler, so different compilers often represent fundamental types in different ways.
You are forced to deal with this issue if you want your C/C++ code to be portable.

The Java programming language, on the other hand, guarantees the size, range,
and behavior of its primitive types. No matter what Java compiler you use, the

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 47

http://www.ibm.com/legal/copytrade.shtml

primitive data types will always be represented in the exact same way. This
effectively isolates you from the details of the compiler's implementation.

The char types

// C char examples
char letterJ = 'J';
char letterA = 'A';
char letterV = '\126';
char digit0 = '\x030k';
char digit1 = '1';
char digit2 = '2';

// Java char examples
char letterJ = 'J';
char letterA = 'A';
char letterV = '\u0056';
char digit0 = '\u0030';
char digit1 = '1';
char digit2 = '2';

Both the C and Java languages have a char type, which is used to represent
characters. Although these types have the same names and uses, they are
represented in completely different formats.

The C char type is used to hold a character. The compiler determines the character
set and the size of the values that are stored in the char type. Typically, the C char
type represents an ASCII character, and uses 8 bits (including the sign bit), yielding
a range of values from -128 through 127. Because there is no standard, however,
many problems can arise from using the C char type, which causes many portability
issues.

The Java char type is also used to store a character, but in this case the language
strictly defines the character set and size of the char type. A Java char represents
a character from the Unicode character set, and is stored in 16 bits (with no sign bit),
yielding a range of 0 through 65,536. As in C, character literals are written within
single quotes.

The Unicode character set is capable of representing most of the characters used in
the world's major written languages. You can encode a Unicode character in an
ASCII file using the \u escape sequence, followed by a hexadecimal number
representing a Unicode character. See Resources to learn more about the Unicode
specification.

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 12 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Character escape sequences
As in C, Java characters and strings can use escape sequences to represent special
characters. Most of these escape sequences are the same as those defined in C,
but not all C escape sequences are valid Java escape sequences. The following
table shows the valid Java escape sequences that are inherited from C:
Escape sequence Character value

\b Backspace
\t Horizontal tab
\v Vertical tab
\n New line
\b Backspace
\f FormFeed
\r Carriage return
\" Double quote
\' Single quote
\\ Backslash

In addition to the sequences above, C and C++ also define the alert (\a), question
mark (?), and hexadecimal and octal number escapes (\xhhh and \ooo
respectively). These are not valid Java escape sequences.

Java and C integer types

// C integers
long int val_1 = 250000;
long val_2 = 0x36B;
int val_3 = -1800;
short int val_4 = 017;
short val_5 = -25;

// Java integers
long val_1 = 250000;
long val_2 = 0176;
int val_3 = 0x3F;
short val_4 = -93;
short val_5 = 25;
byte val_6 = 120;
byte val_7 = -34;

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 47

http://www.ibm.com/legal/copytrade.shtml

Both C and Java define an integer type named int. In addition, the Java language
also defines the long and short types, which originate from the type modifiers of
the same names in C and C++. The Java integer type byte has no counterpart in C.
You can write Java integer values as octal or hexadecimal numbers using the same
format as C/C++. Octals start with a 0 and hexadecimals start with a 0x.

The int type in C is used to store a signed whole number value. The exact size of
the int type is specified by the compiler, but in general the int type is 16 bits
(including a sign bit), yielding a range of -32,768 through 32,767.

The Java int type is also used to store a signed whole number. The Java language
strictly defines the size of the int type as 32 bits (including a sign bit), yielding a
range of -2,147,483,648 through 2,147,483,647.

The C and C++ languages define a set of type modifiers, which have an effect on
the way the compiler stores an int value. The long modifier usually forces the
compiler to use 32 bits to represent an int, and the short modifier usually forces
the compiler to use 16 bits to represent an int. C also defines the signed and
unsigned modifiers, which have no counterpart in the Java language; Java integers
are always signed values.

The Java long type is used to store a signed whole number using 64 bits (including
a sign bit), yielding a range of -9,223,372,036,854,775,808 through
9,223,372,036,854,775,807. The Java short type is used to store a signed whole
number using 16 bits (including a sign bit), yielding a range of -32,768 through
32,767. The Java language also defines the byte type, which is used to store a
signed whole number using 8 bits (including a sign bit), yielding a range of -128
through 127.

The floating-point types

// C floating-points
float val_1 = 0.25f;
float val_2 = 12.4901f;
float val_3 = 25.138e-10f;
double val_4 = 0.123456789;
double val_5 = 1.9876540e5;
double val_6 = 0.000001234;

//Java floating-points
float val_1 = 0.25f;
float val_2 = 12.4901f;
float val_3 = 25.138e-10f;

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 14 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

double val_4 = 0.123456789;
double val_5 = 1.9876540e5;
double val_6 = 0.000001234;

Both C and Java define floating-point types named float and double, which
represent single- and double-precision floating-point values, respectively. Java
floating-point types are, however, represented in a completely different format from
their C/C++ counterparts. As in C, Java floating-point values can be represented
with an exponential portion.

The float type in C is used to store a signed floating-point number value. The
exact size of the float type is specified by the compiler, but in general the int type
is 32 bits (including a sign bit), yielding a range of approximately -34.4E-38 through
3.4E+38. The float type can generally be used safely to store values of six to
seven digits of precision.

The Java float is also used to store signed floating-point number values, but the
language specifies that 32 bits (including a sign bit) are always used to store IEEE
754 floating-point values. Floating-point literals are assumed to be of type double,
so if you specify a float literal you need to append the letter f or F.

The double type in C is used to store a signed floating-point number value. The
exact size of the double type is specified by the compiler, but in general the
double type is 64 bits (including a sign bit), yielding a range of approximately
-1.7E-308 through 1.7E-308. The double type can generally be used safely to store
values of 14 to 15 digits of precision.

The Java double is also used to store signed floating-point number values, but the
language specifies that 64 bits (including a sign bit) are always used to store IEEE
754 floating-point values. Floating-point literals are always assumed to be of type
double, but you can append the letter d or D if you wish.

The boolean types

// C boolean
bool on = true;
bool off = false;
bool yes = 0;
bool no = 1;

// Java boolean
boolean on = true;
boolean off = false;

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 47

http://www.ibm.com/legal/copytrade.shtml

// This is illegal
boolean yes = 1;
// This is illegal
boolean no = 0;

Both the C++ and Java languages have boolean types, which are called bool and
boolean, respectively. Although these types have similar names and uses, they are
represented in completely different formats.

Later implementations of C++ include a new bool type, whose values are
represented by the new keywords true and false. In actuality, the bool type is
represented as an int, and true and false correspond to 1 and 0 respectively.
You can use int values and bool values interchangeably; 0 is converted to false,
and all other number values are converted to true.

The Java language defines the boolean type, whose values are represented by the
true and false literals, which are the only valid values of the Java boolean type.
Unlike the C++ bool type, the boolean type cannot be converted to or from the
int type. In fact, the only valid conversion for a boolean value is to or from another
boolean value.

In Java programs, you cannot use int type values or expressions in place of
boolean type values or expressions. For example, if you use an int in an if
statement, which evaluates a boolean expression, the Java compiler will generate
an error. This is a major change from C and C++, both of which use int values in
logical expressions.

Operators
You will probably be happy to learn that the Java language defines the same
arithmetic and logical operators that C and C++ define, and their behaviors are very
nearly always comparable. The only notable exception is that the Java + operator is
overloaded so that it can concatenate String objects. If you use the + operator with
a String and another operand that is not a String, the other operand is converted
into a String. For example

"To be, " + "or not to be." // results in "To be, or not to be."
1 + "2" + 1 // results in the new String "121"

Java operators will return different results than their C/C++ equivalents in a number
of cases. For example, the Java divide operator (/) will generate an exception if you
try to divide an integer by zero. Also, the Java language defines positive and

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 16 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

negative zeros, positive and negative infinities, and not-a-number values
(java.lang.Float.NaN and java.lang.Double.NAN). No floating-point
operations produce an exception -- one of these values is returned instead.

Positive zero and negative zero compare equal, but other operations distinguish
between positive and negative zeros. So, 1.0/0.0 results in positive infinity and
1.0/-0.0 results in negative infinity. But the expression 0.0==-0.0 is true and the
expression 0.0>-0.0 is false. Because NaN is unordered, all of the comparison
operators will return false if either operand is NaN, except for !=, which will always
return true if either operand is NaN.

Note: In C++, you can overload operators when you define a class. For example, if
you write a class to represent a matrix, you can overload the + operator so that it
can perform matrix addition correctly on two matrix objects. The Java language does
not allow programmers to overload any operators.

C/C++ functions versus Java methods

// C/C++ functions
// A Java method
void funct(void) {
//implementation
}

void funct() {
//implementation
}

void funct()
{
//implementation
}

C and C++ allow you to define functions. In C++, you can define functions as
members of a class. In Java terminology, functions are called methods. Methods can
only be declared as members of a class; you can't define a method outside of a Java
class.

Both C and C++ allow you to use the void keyword as the return type of a function
that does not return a value. The Java language uses the void keyword for the
exact same purpose; when a Java method returns no value, its return type is
declared to be void. In C and C++, you can define a function that takes no
parameters in one of two ways: by using empty parentheses or by using the void
keyword in between parentheses. The Java language does not allow you to use the
void in this way; any Java method that accepts no parameters must be declared
with empty parentheses.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 47

http://www.ibm.com/legal/copytrade.shtml

C and C++ allow you to define functions that take a variable-length parameter list, by
using the ellipses (...) notation. The Java language does not provide this facility,
nor is there a replacement for this feature. In general, passing in an array parameter
can serve a similar purpose.

Arrays
Java arrays are similar to C arrays, but there are important differences between
them. Java arrays are objects, so they are declared using the new operator. Since
Java arrays are objects, they have attributes, the most important of which is the
length attribute, which you can use to determine the size of the array. Also, the
bracket characters ([]) that are used to indicate arrays are bound to the array
type, not the array name. Array literals look the same in both languages, as you can
see below.

// C/C++ arrays // Java arrays
int scores[100]; int[] scores = new int[100];
char grades[] = {'A', 'B', 'C'}; char[] grades = {'A', 'B', 'C'};
int table[2][2] = {{1, 2},{3, 4}}; int[][] table = {{1, 2},{3, 4}};

The Java interpreter guarantees that an array will not be accessed outside of its
bounds. If you try to read an array index outside of the array's actual size, the Java
interpreter will throw a java.lang.ArrayIndexOutOfBounds exception.

Strings
C uses a null-terminated sequence of char values to represent strings. Java strings
are represented by objects of the String class. Both C and Java string literals are
represented as a sequence of characters enclosed in double quotes.

There are two ways to make a String object: you can use a string literal, or you
can use a constructor. String objects are immutable, which means that once a
String is given an initial value it cannot be changed. In other words, if you want to
change the value of a String reference, you need to assign the reference a new
String object.

Since Java strings are objects, you interact with them through the interface defined
by the String class. The String class has a rich interface, with quite a few useful
methods. Some of the most commonly used methods are demonstrated in the code
below. Consult the API documentation for a detailed description of the String class

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 18 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

and all the methods it defines (see Resources).

/*
* The StringTest class simply demonstrates
* how Java Strings are created and how
* String methods can be used to create
* new String objects. Notice that when you
* call a String method like toUpperCase()
* the original String is not modified. To
* actually change the value of the original
* String, you have to assign the new
* String back to * the original reference.
*/
class StringTest {

public static void main(String[] args) {
String str1 = "Hi there";
String str2 = new String("Hi there");

System.out.println(str1 == str2);
System.out.println(str1.equals(str2));

System.out.println(str1.toUpperCase());
System.out.println(str1.toLowerCase());
System.out.println(str1.substring(1,4));
System.out.println(str1.trim());

System.out.println(str1.startsWith("Hi"));
System.out.println(str1.endsWith("there"));
System.out.println(str1.replace('i', 'o'));

}
}

The main() method
Like C and C++, Java applications must define a main() method in order to be run.
In Java code, the main() method must follow a strict naming convention. All
main() methods must be declared as follows:

public static void main(String[] args)

Note: Actually, you can reverse the public and static modifiers, and the String
array can be named anything you like. Note, however, that the above format is
conventional.

Passing arguments to the main() method
Command-line arguments are passed into a Java application as parameters to the
main() method, just as they are in C. Instead of coming in as a char array like

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 47

http://www.ibm.com/legal/copytrade.shtml

argv, however, arguments come into Java programs as an array of String
objects. Because you can determine the length of a Java array, there is no need for
an int parameter such as C's argc. Also unlike C, the first element in the array (at
index 0) is the first argument, not the name of the program.

The C and Java main() methods below are similar. They both take the
command-line arguments and print them back to the screen. Note the differences
between them.

// A C main() function // A Java main() method
void main(int argc, char* argv[]) public static void main(String[] args) {
{ {

int i;
for(i=0; i<argc; i++) for(int i=0; i<args.length; i++)

printf("%d: %s\n", i, argv[i]); System.out.println(i +": " + args[i]);
} }

Other differences
We've gone over the major syntactic differences between Java and C/C++. What
remains is a handful of lesser differences, which are briefly outlined below.

• Pointers: The Java language does not include pointers. The reason for
this is simple: pointers tend to cause confusion in the code, and they are
a common source of bugs. Java references are pointers to Java objects,
but you can't use Java references in the same way that you can use C
pointers. Java references cannot be incremented or decremented, you
can't convert references to or from primitive types, and there are no
address of operators, such as &, or dereferencing operators, such as ->
or *.

• Global variables: Unlike C and C++, the Java language offers no way to
declare global variables (or methods).

• The preprocessor: The Java platform does not have a preprocessor, nor
does it have any preprocessor directives or macros.

• goto: Although the Java language reserves goto as a keyword, there is
no goto statement like the one used in C.

• struct, union, typedef, enum: The Java language does not have the
struct or union types, nor does it have the typedef or enum
keywords.

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 20 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Freely placed variables: Java variables can be declared anywhere, as
they are needed. Variables do not need to be grouped together at the top
of a block, as they do in C.

• Freely placed methods: C requires that function declarations appear
before they are invoked, but Java methods can be invoked before they
have been declared.

• Garbage collection: The Java platform uses a garbage collector to
automatically reclaim memory by recycling objects when they are no
longer referenced. The malloc() and free() functions used by C
aren't necessary in Java programming, and no similar methods exist for
the Java language.

Section 5. Classes and objects

Introduction to object-oriented programming
The Java programming language is object oriented. Because it uses syntax that is
generally very similar to C++, Java classes and objects are generally easy to learn if
you come from a C++ background. If you come from a C programming background,
however, you may know very little about object-oriented programming. In this section
we'll start off with a brief, C-based introduction to object-oriented programming. Next,
we'll build a simple bank account application, starting with a C implementation,
migrating to a C++ implementation, and finishing the section with a Java
implementation. Each implementation will build on the one before it, which should
leave you with a good grasp of both the advantages and shortcomings of each
language used.

Working with classes
You can think of a class as a data type that is defined by a programmer. Variable
instances of a class are called objects. Like other variables, objects have a type, a
set of attributes, and a set of operations. The type of an object is represented by the
class from which the object was instantiated. The attributes of the object represent
its value or state. The operations of an object are the set of possible functions that
can be invoked on an object in order to change its state.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 47

http://www.ibm.com/legal/copytrade.shtml

Consider C's int fundamental data type, which represents an integer. This type's
name, of course, is int, and you use this type name to create variables that are
instances of an integer. Every int variable has one attribute, which represents the
integer number that the variable holds. Every int variable also has the same set of
operations, which you can use to change the state (or value) of the variable. Some
examples of the operations that can be performed on an int variable include:
addition (+), subtraction (-), multiplication (*), division(/), and modulo (%).

An account struct
Now, let's examine a situation where you might want to develop your own type,
which will represent a complex object that the C language doesn't support as a
fundamental type. Suppose you are part of a team developing software for a
financial institution, and your job is to develop code to represent a typical bank
account. A bank has several accounts, but each account has the same basic set of
attributes and operations. In particular, an account has a balance and an ID number.
(Different types of accounts have different attributes and operations, but we'll keep
this example both general and simple.)

Now, if you're programming in C, how do you go about creating a new Account
module to represent a bank account in your program? You can represent an
account's attributes by using a float variable for the balance, and an int variable
for the ID number. But we need to group these variables together to create a single
coding module or structure. The obvious way to do this is to use a struct, as
shown below.

struct Account
{

float balance;
int id;

};

Account functions
The valid operations for an account are depositing an amount and withdrawing an
amount. C provides a built-in way to define operations, namely functions. We can
create two functions that implement these operations, called deposit() and
withdraw(), as shown below. (Naturally, you can't withdraw an amount of money
that is greater than the balance of the Account, so the withdrawal operation should
not change the account balance at all if an attempt is made to overdraw the
account.)

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 22 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

void deposit(struct Account *account, float amount)
{

(*account).balance += amount;
}

void withdraw(struct Account *account, float amount)
{

if((*account).balance >= amount)
(*account).balance -= amount;

}

Grouping operations with data
Although you can use the C struct to group data, a struct can only have data
members. Functions cannot be members of a struct. This leaves us with a
problem, because we'd like to group our Account operations with our Account
struct.

One solution is to use function pointers. We can include function pointers as
members of the Account struct, and use these pointers to invoke the correct
Account operations.

To use function pointers, we need to initialize them so that they point to the correct
functions. One way to do this is to write a special initialization function, which will
construct a new Account struct. Such a function is called a constructor. Besides
initializing the function pointers, we can also use this constructor function to give the
Account an initial state. In particular, we can pass in the account ID and an initial
balance.

After initialization, the account ID will never change, and the balance will only be
changed by the deposit() and withdraw() functions. Of course, the id and
balance members can be accessed directly, so their values can be changed
directly. Unfortunately, there is no way to limit the access to the members of a C
struct.

In the next section, Account.c shows a C implementation of an Account struct.

Account.c

#include <stdio.h>

void depositAmount(struct Account*, float);
void withdrawAmount(struct Account*, float);

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 47

http://www.ibm.com/legal/copytrade.shtml

struct Account {
float balance;

int id;
void (*deposit)(struct Account*, float);
void (*withdraw)(struct Account*, float);

};

struct Account initAccount(int id, float new_balance) {
struct Account account;
account.balance = new_balance;
account.id = id;
account.deposit = &depositAmount;
account.withdraw = &withdrawAmount;
return account;

}

void depositAmount(struct Account *account, float amount) {
(*account).balance += amount;

}

void withdrawAmount(struct Account *account, float amount) {
if((*account).balance >= amount)

(*account).balance -= amount;
}

Using the Account
Next, let's take a look at how we can use the Account struct. Here's an example
of a main() function, which shows how an Account is created and used.

void main(int argc, char* argv[])
{

struct Account my_account = initAccount(1002552, 5000.00);
my_account.deposit(&my_account, 2000);
printf("Balance: %f\n", my_account.balance);
my_account.withdraw(&my_account, 3000);
printf("Balance: %f\n", my_account.balance);
my_account.withdraw(&my_account, 6000);
printf("Balance: %f\n", my_account.balance);

}

First, we create an Account instance using the initAccount() function. Because
we pass in 1002552 and 5000.00, the Account will have an ID of 1002552 and an
initial balance of $5000.00.

Next, we use the deposit function pointer to call the depositAmount() function.
We pass in $2000.00, so when we print out the balance in the next line, it will be
$7000.00. Next, we use the withdraw function pointer to call the
withdrawAmount() function. We pass in $3000.00, so when we print out the
balance in the next line, it will be $4000.00. Finally, we try to withdraw another
$6000.00, but because this amount is larger than the account's total balance, the

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 24 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

withdrawAmount() function does nothing.

Benefits of objects
A class is more than just a C struct with functions. There are a great many other
features of classes that we can't easily simulate in C. Here are three of the primary
benefits of using classes and objects:

• Encapsulation or information hiding refers to a way of treating an
object like a "black box," which means that you can use an object without
knowing (or caring) how it is implemented. Using objects through the
interface defined by the methods (operators) defined in the class ensures
you can change the class implementation without breaking any code that
uses objects of that class.

• Polymorphism refers to the ability to associate different features to the
same name, together with the ability to choose the right feature based on
context. The most common example of polymorphism is method
overloading, whereby you can define several methods that have the same
name, as long as they take different parameters.

• Inheritance refers to reusing code by writing new classes that extend an
existing class. For example, let's say you wanted to write a new class to
represent a checking account. Since a checking account is a special kind
of bank account, you could write the CheckingAccount class so that it
extended (or subclassed) the Account class. Then, the
CheckingAccount class would automatically get the state and all the
operators (functions) of the Account class. You would only need to add
the new state and operators specific to the CheckingAccount class. For
example, you might add a cashCheck() function to perform the
operation of cashing a check that was written for the checking account. If
required, you could also change the inherited state or behavior of the
subclass. For example, a user might be allowed to overdraw on his
checking account, so you would need to override the withdrawal
function.

Defining a C++ class
Now, let's code a real C++ class that represents an Account. Even if you're not an
experienced C++ programmer, you can see that the Account class is very similar to
our Account struct. The source code for Account.cpp will be shown in the
next section.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 47

http://www.ibm.com/legal/copytrade.shtml

Notice that a class has data and function members, and each member has either
public or private access. As you might guess, public members can be
accessed outside of the class, while private members can be accessed only
inside of the class definition. Since the balance field is private, we need a
special getter function, called getBalance(), which we can use to query the state
of the balance. Notice, however, that you can't directly access or change the
balance variable outside of the class. We can only change the balance using the
deposit() and withdrawal() functions. If you try to access the balance member
outside of this class using account.balance, the compiler will generate an error.

Also notice the special function called Account. This is a special constructor
function, similar to our initAccount(), which we use to initialize new Account
objects. Note that a constructor always has the same name as the class does, and
that it does not declare a return type. We use the constructor to set the initial
balance of the Account.

Finally, let's look at the main() function and see how we can use our Account
class. First, we declare an Account object, called account. We implicitly call the
constructor by following the account name with parentheses containing the initial
balance. Now we can call the deposit() and withdrawal() functions to change
the balance of our account. When we want to print the balance of the account, we
use the getBalance() function. We can't get the balance directly, using
account.balance, because it is a private member.

Account.cpp

class Account {
private:

double balance;

public:
Account(double start_balance) {

balance = start_balance;
};

void deposit(double amnt) {
balance += amnt;

};

void withdrawal (double amnt) {
if (balance >= amnt)
balance -= amnt;

};

double getBalance() {
return balance;

};
};

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 26 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

void main(void)
{

Account account(5000.00);
account.deposit(2000.00);
printf("Balance: %f\n", account.getBalance());
account.withdrawal(4000);
printf("Balance: %f\n", account.getBalance());

}

Defining a Java class
We'll close this section by implementing the Account class in the Java language.
The source for Account.java will be shown in the next section. As you will see,
defining a Java class is very similar to defining a C++ class. The major differences
are as follows:

• The public and private keywords are modifiers, not labels. Each
member must have its own public or private modifier.

• You don't use semicolons (;) after the closing brackets in class and
method definitions.

• The main() method is a member of the class -- all Java methods must
be members of a class. Unlike the C++ example, you can access the
private members of the Java Account class in the main() method,
because it is a member of the class.

• You call the Account constructor using the new keyword, followed by the
name of the class and the parameterized list of arguments for the
constructor.

Account.java

class Account {
private double balance;

public Account(double balance) {
this.balance = balance;

}

public void deposit(double amnt) {
balance += amnt;

}

public void withdrawal (double amnt) {
if (balance >= amnt)

balance -= amnt;

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 47

http://www.ibm.com/legal/copytrade.shtml

}

public double getBalance() {
return balance;

}

public static void main(String[] args)
{

Account account = new Account(5000.00);
account.deposit(2000.00);
System.out.println("Balance: " + account.getBalance());
account.withdrawal(4000);
System.out.println("Balance: " + account.getBalance());

}
}

Section 6. Java classes in depth

Overview
Having discussed the general role of classes and objects in an object-oriented
programming framework, we're ready to delve more deeply into the specifics of the
Java platform's class structure and implementation.

In this section, we'll talk about the following:

• Class members: A class member is always either a field or a method. A
field represents data, and a method represents operations. Classes can
define any number of members.

• Access modifiers: Class members are declared with access modifiers,
which specify the accessibility of the member outside of the class in which
it is defined. For example, members that are declared private cannot
be accessed at all, but public members are freely accessible.

• Objects: Classes are really just definitions. What we really use in code
are class instances, and these are called objects. We'll learn how to
create objects from classes.

• Constructors: A constructor is a special operator that is used to create
objects. In general, a class is not of much use if you can't create objects
of that class. Constructors are very important because they provide the
ability to create new class instances.

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 28 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• The 'this' keyword: Java objects implicitly reference themselves. It is
important that you understand how to use the this keyword for this
purpose.

Class members
A Java class is an independent module of code that defines attributes and
operations in terms of members. Java classes have four kinds of members: fields,
methods, inner classes, and inner interfaces. We'll talk here about the first two
member types, leaving the discussion of inner classes and interfaces to the section
on inheritance.

A field is a variable declared inside of a class. Java fields come in two varieties:
instance variables and class variables. Instance variables are associated with each
instance of a class, and each instance has its own copies of instance variables.
Class variables, which are declared using the static keyword, are associated with
the class as a whole, and the class shares a single class variable with all class
instances. For example, the balance field in a BankAccount would be an instance
field because each BankAccount instance has its own balance, which is
independent of every other Account object's balance. On the other hand, the
interest field would be declared as a class field because every BankAccount
object uses the same interest rate, which is the same for every BankAccount
object.

A method is a function declared inside of a class. Java methods also come in two
varieties: instance methods and class methods. Every class instance gets its own
copy of instance methods, but there is only one copy of a class method, which is
shared among all class instances. Class methods are declared using the static
keyword. Instance methods are used to operate on instance variables and class
methods are used to operate on class variables. For example, a deposit()
method in our BankAccount class would be an instance method because each
BankAccount has its own balance field, which the deposit() method would
change. The setInterest() method would be declared as a class method
because every BankAccount shares a single interest field, which the
setInterest() method would change.

s
One final word about class members. Instance members (that is, instance variables
and instance methods) are accessed, using the dot (.) notation like that of a C
struct, using an object name. Class members (that is, class variables and class
methods) are accessed using a class name.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 29 of 47

http://www.ibm.com/legal/copytrade.shtml

BankAccount.java
The program below, called BankAccount, has five members. Two members are
fields: balance, which is an instance field, and interest, which is a class field.
Three members are methods: deposit() and withdraw() are instance methods
and setInterest() is a class method. Notice that you use an object name to
access instance members, and the class name to access class members.

class BankAccount {
float balance; // an instance field
static float interest; // a class, or static, field

// an instance method
void deposit(float amount) {

balance += amount;
}

// an instance method
void withdraw(float amount) {

balance -= amount;
}

// a class, or static, method
static void setInterest(float interestRate) {

interest = interestRate;
}

public static void main(String[] args) {

// create a new account object
BankAccount account = new BankAccount();
// deposit $250.00 into the account
account.deposit(250.00F);
// set interest rate for all BankAccount objects
BankAccount.setInterest(5.0F);

}
}

Access modifiers
Like C++, the Java language allows you to set the visibility of a class member. Java
members use the public modifier to indicate that a member is freely accessible,
both inside of the class and outside. Java members use the private modifier to
indicate that the member is only accessible inside of the class. Outside of the class,
private members are inaccessible.

Let's consider our BankAccount class again. We want programmers using
BankAccount objects to change the balance by using the deposit() and
withdraw() methods. We'll declare these methods to be public, so they can be
invoked in code outside of the BankAccount class. We do not, however, want

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 30 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

programmers to change the balance field directly, so we'll make the balance field
private.

You might be wondering what the default access level is. That is, what is the access
level for a class member that is not declared using the public or private
modifiers? You may suspect that the default access level is public, since public
is the default access level in C++. In fact, the default access level is called package
access, because only classes in the same package have access to these class
members. The only way to declare a member with package access is to use no
access-modifier keyword at all.

The Java language defines one further access level; this access level is borrowed
from C++ and is called protected. The protected modifier is used when you
want a member to be accessible in subclasses. We'll discuss protected class
members when we talk about inheritance.

BankAccount.java with access modifiers
In the code listing below, you'll note that the balance field is declared using the
private access modifier. We don't want any programmers accessing an account's
balance field directly. Instead, we want them to change this field using the
deposit() or withdraw() methods, which are declared public. The same is
true of the interest field, which is private, and the setInterest() method,
which is public.

class BankAccount {

private float balance;
private static float interest;

public void deposit(float amount) {
balance += amount;

}

public void withdraw(float amount) {
balance -= amount;

}

public static void setInterest(float interestRate) {
interest = interestRate;

}

public static void main(String[] args) {

// create a new account object
BankAccount account = new BankAccount();

// deposit $250.00 into the account
account.deposit(250.00F);

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 31 of 47

http://www.ibm.com/legal/copytrade.shtml

// set interest rate for all BankAccount objects
BankAccount.setInterest(5.0F);

}
}

Creating objects
Looking at the main() method of the BankAccount class, you can see that we
created a new BankAccount object, like this:

BankAccount account = new BankAccount()

First, we declare an object (that is, a variable) of type BankAccount. As you can
probably guess, the new keyword is used to set aside enough memory to create a
new object. The new object is actually created by this statement: BankAccount().
This statement looks like a method call, but we didn't declare a method with this
name, so you may wonder what the statement is actually doing.

This is, in fact, a constructor call. A constructor is a special operator that is used to
create objects. You can't create Java objects without a constructor, so if you write a
class without a constructor, the compiler will create a default one. That's why we can
call BankAccount(), even though we didn't explicitly write a constructor in the
BankAccount class.

Strictly speaking, a constructor is not a kind of method because methods are class
members and constructors aren't. Class members, like fields and methods, are
inherited in subclasses -- constructors are never inherited.

Java versus C++ constructors
Java constructors are declared in much the same way as C++ constructors. Java
constructors do not have return types; all constructors implicitly return a new object
of the class in which it is defined. Every Java constructor must have the exact same
name as the class in which it is declared. Otherwise, constructor declarations are
pretty much the same as method declarations. In particular, constructors can take
parameters, just like Java methods.

Let's write our own constructor for our BankAccount class. When we first create a
BankAccount object, we'll want to initialize that BankAccount object by giving it
an initial balance, so our constructor will take a float parameter. The body of the
constructor will simply set the balance field of the newly created BankAccount

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 32 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

object to the specified value.

You can create as many constructors as you want in a class. If you write a
constructor, however, the Java compiler will not create a default constructor for you.
So, once we write our BankAccount(float initBalance) constructor we can't
create BankAccount objects using the new BankAccount() statement. We'll
have to use a statement like new BankAccount(1000.00F), which will create a
BankAccount object with an initial balance of $1000.00.

BankAccount.java with a constructor
Below is the BankAccount class with a constructor added:

class BankAccount {

private float balance;
private static float interest;

public BankAccount(float initBalance) {
balance = initBalance;

}

public void deposit(float amount) {
balance += amount;

}

public void withdraw(float amount) {
balance -= amount;

}

public static void setInterest(float interestRate) {
interest = interestRate;

}

public static void main(String[] args) {

// create a new account object
BankAccount account = new BankAccount(500.00F);

// deposit $250.00 into the account
account.deposit(250.00F);

// set interest rate for all BankAccount objects
BankAccount.setInterest(5.0F);

}
}

The this keyword
The Java language uses the this keyword to reference the current object. You can
use the this keyword to explicitly refer to fields, methods, and constructors in the

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 33 of 47

http://www.ibm.com/legal/copytrade.shtml

current class.

A common use for the this keyword is to resolve variable scope issues. For
example, our BankAccount class has a field called balance. Let's say we want to
write a method called setBalance(float balance), which will set the balance
field of our object. The problem is that inside of the setBalance(float
balance) field, when we refer to balance, we are actually referring to the
balance parameter, not the balance field. We can explicitly refer to the field by
using the this keyword.

public void setBalance(float balance) {
this.balance = balance;

}

Another use for this
Another use of the this keyword is to call a constructor from within the body of
another constructor. For example, say that we want to write a constructor for our
BankAccount class that takes no parameters and sets the balance to $0.00. We
could do this by calling the constructor that we already wrote. To call a constructor
inside the body of another constructor, use the this keyword, followed by the
parameters for the constructor you want to call. You can only use this to call
constructors inside of another constructor body, and it must be the first statement in
the constructor body.

public BankAccount() {
this(0.0F);

}

What you've learned about Java classes
We'll close this section with a quick review of the important points we've covered, as
follows:

• Class members: Java class members are fields and methods. Fields
represent data, and methods represent operations. A class is a
declaration of a class of objects, which are defined in terms of the
class's members.

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 34 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Access modifiers: You use access modifiers to limit the visibility of class
members and constructors outside of the class in which they are defined.
Most often, you'll encapsulate all the data in a class by declaring class
fields private, and you'll define the interface of a class by writing
public methods.

• Constructors: You define constructors as a way to let programmers
create instances of your class. Generally, you'll define constructors that
make it easy for a programmer to create an object that is initialized
properly. Very often, you'll define several constructors that call other
constructors using the this keyword.

Section 7. Inheritance

Overview
We'll close this tutorial with a discussion of inheritance. Inheritance is one of the
most important benefits of object-oriented programming, and it is important that you
understand it correctly in order to use it to the greatest effect.

Here's what we'll cover in this section:

• The extends keyword: Inheritance is defined when a class is declared.
You use the extends keyword to specify the superclass of the class
you're writing.

• Constructors: Constructors are not inherited in subclasses, but you will
very often invoke the constructors of superclasses in your subclass's
constructors.

• Overloading/overriding: Overloading refers to writing several methods
with the same name but different parameters. Overriding refers to
changing the implementation of a method that is inherited in a subclass.

• The Object class: All Java objects ultimately inherit from the Object
class, which defines the basic functionality that every Java object is
guaranteed to have.

• Interfaces: An interface is a description of behavior that provides no

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 35 of 47

http://www.ibm.com/legal/copytrade.shtml

implementation.
• Inner classes and interfaces: Sometimes you may need to write a class
or interface that will only be used within another class or interface. The
Java language allows you to declare and use inner classes and inner
interfaces for this purpose.

Extending classes
In C++, a class can inherit from any number of classes, but Java classes can only
extend one class. In other words, C++ allows multiple inheritance, but the Java
language only allows single inheritance.

Basically, inheritance is a way to reuse code. When class A inherits from, or
extends, another class B, class A automatically inherits all of the public and
protected members of class B. If class A is in the same package as class B, class
A will also inherit all of the members with default, or package, access. It is important
to note, however, that subclasses never inherit the private members of the classes
they extend.

Once you extend a class, you can add new fields and methods, which define the
attributes and operations that make your new class distinct from the superclass.
Also, you can override the operations of the superclass that must behave differently
in the subclass.

You can explicitly extend a class when you define it. To extend a class, you simply
follow the name of the class with the extends keyword and the name of the class
you want to extend. If you do not explicitly extend a class, the Java compiler will
automatically extend the class Object. In this way, all Java objects are ultimately
subclasses of class Object.

Extension example
Let's suppose we want to create a new CheckingAccount class. A
CheckingAccount is a special kind of BankAccount. In other words, a
CheckingAccount has the same attributes and operations as a BankAccount.
However, a CheckingAccount also has an added operation; namely cashing a
check. So we'll define our CheckingAccount class so that it extends
BankAccount and add a cashCheck() method, as shown below.

class CheckingAccount extends BankAccount {

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 36 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

public void cashCheck(float amount) {
withdraw(amount);

}
}

Subclass constructors
Constructors are not really members of a class, and constructors are not inherited.
This makes sense if you think about it. A BankAccount constructor creates
CheckingAccount objects, so it can't be used in the CheckingAccount class to
create CheckingAccount objects.

You can, however, use constructors from a superclass to initialize the parts of a
subclass that are inherited. In other words, you'll often need to call superclass
constructors in subclass constructors to partially initialize your subclass objects. You
can do this by using the super keyword, followed by a parameterized list
representing the arguments of the super class constructor you want to call. If you're
using the super keyword in a constructor, to call a superclass constructor, it must
appear as the first statement in the constructor body.

For example, we'll need to write a CheckingAccount constructor to initialize
CheckingAccount objects. We want to create CheckingAccount objects with an
initial balance, so we'll pass in a dollar amount. This is just like a constructor in the
BankAccount class, so we'll use that constructor to do all the work for us, as shown
below.

class CheckingAccount extends BankAccount {

public CheckingAccount(float balance) {
super(balance);

}

public void cashCheck(float amount) {
withdraw(amount);

}
}

You can also use the super keyword to explicitly refer to superclass members from
a subclass. We'll explore this use of the super keyword in the next section.

Overloading and overriding
Like C++, the Java language allows you to define several methods with the same
name, as long as they take different parameters. For example, we can define a

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 37 of 47

http://www.ibm.com/legal/copytrade.shtml

second cashCheck() method that takes the amount of the check to be cashed and
a fee to be applied for the service. This is called method overloading.

public void cashCheck(float amount) {
withdraw(amount);

}

public void cashCheck(float amount, float fee) {
withdraw(amount+fee);

}

Often, when you create a subclass, you'll want to override the behavior of a method
that is inherited from a superclass. For example, let's say that one difference
between a CheckingAccount and a BankAccount is that there is a fee applied
when you withdraw money from a CheckingAccount. We'll need to override the
withdraw() method in the CheckingAccount class so that a $0.25 fee is
applied. In fact, we'll define our CheckingAccount withdraw() method in terms
of the BankingAccount withdraw() method, by using the super keyword, as
shown below.

public void withdraw(float amount) {
super.withdraw(amount+0.25F);

}

The Object class
The Object class is a special class in the Java class hierarchy. All Java classes are
ultimately subclasses of class Object. In other words, the Java language supports
a centrally rooted class hierarchy, and the Object class is the root class of that
hierarchy. (C++ does not have a class hierarchy; this concept was borrowed from
SmallTalk.)

Why is this important? Well, because all Java objects inherit from the Object class,
you can call the methods defined in Object for any Java object, and expect similar
behavior for each. For example, the Object class defines a toString() method,
which returns a String object that represents the object. You can call the
toString() method for any Java object and expect to get back a string
representation of that object. Most class definitions will override the toString()
method so that it returns a specialized string representation for that particular class.

The other implication of having Object at the root of the Java class hierarchy is that
all objects can be cast down to Object objects. In C++, you can use templates to
define data structures that take objects of different types. In the Java language, you

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 38 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

can define data structures that take objects of class Object, and these data
structures can hold any Java object.

Abstract classes
An abstract class is a class that cannot be instantiated. You may be wondering why
anyone would ever want to create a class that you can't use to create objects. The
answer is that you want other programmers to extend your class, but never create
an instance of it. You can explicitly stop other programmers from instantiating your
class by using the abstract modifier.

You can make any ordinary class an abstract class, just by adding the abstract
modifier. However, usually an abstract class will have one or more abstract
methods. As you might be able to guess, an abstract method is a method that is
declared, but not implemented, much like a C function prototype. When a class
extends an abstract class, it must provide an implementation for each abstract
method, or else it must also be declared as an abstract class. You can define an
abstract method by using the abstract modifier.

For example, let's define an AbstractAccount class, which represents a very
basic bank account. The designer of this class does not want other programmers to
use this class to create AbstractAccount objects. Instead, other programmers
should use this class as a base class for creating concrete implementations of bank
accounts. For example, you could create a SavingsAccount class and a
CheckingAccount class, both of which subclass BankAccount. It doesn't make
sense to create an instance of an AbstractAccount because an
AbstractAccount doesn't really exist. An AbstractAccount is an abstract idea,
but a SavingsAccount and a CheckingAccount are real kinds of bank accounts,
and they do exist. After all, if you went into a bank and said, "I'd like to open a bank
account," the first thing they'd ask is, "Do you want a savings account or a checking
account?"

AbstractAccount.java

abstract class AbstractAccount {

private float balance;
private static float interest;

public void setBalance(float balance) {
this.balance = balance;

}

public void deposit(float amount) {

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 39 of 47

http://www.ibm.com/legal/copytrade.shtml

balance += amount;
}

public abstract void withdraw(float amount);

public static void setInterest(float interestRate) {
interest = interestRate;

}
}

Interfaces
We've already noted that a Java class can only extend one class. If you're coming
from a background in C++, where classes can inherit from any number of classes,
you may see this as extremely limiting, and you're right. The designers of the Java
language felt that multiple inheritance was too complicated, so instead they
introduced a new concept: interfaces.

An interface is like an abstract class, with the following exceptions:

• All interfaces are implicitly abstract, so you don't need to use the
abstract keyword. Methods defined in an interface are also implicitly
abstract, so you don't need to use the abstract keyword for methods. If
you try to declare a method with a body in an interface, you'll get a
compile-time error.

• All members of an interface are implicitly public.
• All fields defined in an interface are implicitly static and final.
• An interface cannot be instantiated, so an interface does not define a
constructor.

An interface is declared just like a class, except the interface keyword is used
instead of the class keyword. An interface can extend any number of
superinterfaces. Methods inside an interface cannot include an implementation.
Interface methods are simply method definitions; they do not have bodies.

Account.java
The code sample below shows how we might write a basic account interface, which
defines a base set of functionality for bank accounts. Notice that there are no bodies
for the methods declared in an interface.

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 40 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

interface Account {

public static final float INTEREST = 0.35F;

public void withdraw(float amount);

public void deposit(float amount);
}

Implementing interfaces
A Java class can extend only one class, but it can implement any number of
interfaces. When a class implements an interface, it must implement every method
defined in that interface.

Let's define a SavingsAccount class that implements the Account interface.
Because the Account interface defines two methods, withdraw(float amount)
and public void deposit(float amount), the SavingsAccount class must
provide an implementation for them. The SavingsAccount class can still extend
another class, and it can implement any other interfaces, as long as they don't define
the same members as the Account interface.

class SavingsAccount implements Account {

private float balance;

public SavingsAccount(float balance) {
this.balance = balance;

}

public void cashCheck(float amount, float fee) {
withdraw(amount+fee);

}

public void withdraw(float amount) {
balance += balance;

}

public void deposit(float amount) {
balance -= balance;

}
}

Inner classes and inner interfaces
As we mentioned earlier, a class can have fields, methods, classes, and interfaces

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 41 of 47

http://www.ibm.com/legal/copytrade.shtml

as members. A class or interface that is defined inside another class or interface is
called an inner class or inner interface. Inner classes and interfaces were added to
the Java language in version 1.1.

Classes and interfaces that are not inner classes or inner interfaces are called
top-level classes and top-level interfaces. We've only been dealing with top-level
classes and interfaces up to this point. You can always use a top-level class and
interfaces in place of nested classes and interfaces; they are simply added as a
convenience feature.

You generally use an inner class or inner interface to represent a class or interface
that you will only need to use inside the class or interface in which it is declared.
Let's say you are defining a LinkedList class. You will probably use a Node class
to represent the individual nodes that are chained together to create the linked list.
Since this Node class will only be used internally in the LinkedList class, we can
declare it as an inner class.

LinkedList.java
As you can see in the code listing for the LinkedList class, there is a special
Node class that is defined as a private member of the LinkedList class. The
Node class could have been written as a normal, top-level class, but because it is
only used inside the LinkedList class, it is most appropriate to define it as a
private member of that class, as shown below.

class LinkedList {

private Node head;

public LinkedList() { head=null; }

public boolean isEmpty() { return (head==null); }

public void add(int data) {
Node node = new Node(data);
node.next = head;
head = node;

}

public void remove() {
head = head.next;

}

/**
* Returns a String representation of the list.
*/
public void display() {

Node currentNode = head;
while(currentNode != null) {

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 42 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

System.out.println(currentNode.toString());
currentNode = currentNode.next;

}
}

/**
* Represents a node in a linked list.
*/
private class Node {

public int data;
public Node next;

public Node(int data) {
this.data = data;

}

public String toString() {
return "(" + data + ")";

}
}

public static void main(String[] args)
{

LinkedList list = new LinkedList();
list.add(8);
list.add(6);
list.add(5);
list.add(3);
list.remove();
list.display();

}
}

Section 8. Wrapup

Tutorial summary
In this tutorial we've gone over the most essential components of the Java language,
using working examples and comparison to C/C++ to aid you in your learning. At this
point, you should feel comfortable writing simple Java programs. Briefly, you should
be able to do the following:

• Write a Java class with a main() method, compile it, and run it.
• Write a Java interface and compile it.
• Write one or more constructors for your class.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 43 of 47

http://www.ibm.com/legal/copytrade.shtml

• Write a class that extends another class and implements one or more
interfaces.

• Create and use objects using the new keyword and constructor calls.
You should also have enough of a grasp of the Java language to begin examining
and playing around with more advanced Java code. A good place to begin would be
with the Java platform classes themselves. The best way to gain experience using
the language is to browse the API documentation and start writing programs that use
these classes. You may also want to undertake one or more of the advanced
exercises in the next section. See Resources for further references to any of the
topics covered in this tutorial.

Advanced exercises
To increase your proficiency in Java programming, you may want to further practice
implementing and extending the Java classes we've worked with here. Start with one
of the exercises below:

• Write a Java interface called Account, which will define the basic
behavior of a typical bank account. This interface should declare a
withdraw() method and a deposit() method. What, if any,
parameters should these methods take, and what should their types be?
Look at the Account interface from the section on inheritance if you need
help getting started.

• Write a Java class called SavingsAccount that implements the
Account interface. Add a method called getBalance() that returns the
current balance for the account. What type should this method return? Do
you need to declare a field to hold the balance for this class?

• Write a Java class called Check that represents a typical check. You
should write a method called getAmount() that returns the amount for
the check that was written. What type should this method return? What, if
any, fields should this class declare, and what should its type be?

• Write a Java class called CheckingAccount that extends the
SavingsAccount class. Add a method called cashCheck() that
deducts the amount of a specified Check object from the account. What,
if any, parameters should this method take, and what should their types
be?

• Write a Java class called Fibonacci, which takes a number argument
and computes the Fibonacci number for that index in the sequence 0, 1,

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 44 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

1, 2, 3, 5, 8, 13. In other words, you start with 0 and 1, and every
successive number is the sum of the previous two. If you call the program
with the number 0, it should return 0, the number 6 should return 5, and
the number 7 should return 13. Look at the Factorial program if you
need help getting started.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 45 of 47

http://www.ibm.com/legal/copytrade.shtml

Resources
Learn
• If you want to learn more about Unicode, visit the Unicode homepage.
• To learn more about the Java programming language, see Ken Arnold and
James Gosling's The Java Programming Language: Third Edition
(Addison-Wesley, 2000,).

• David Flanagan's Java in a Nutshell, Third Edition is also essential reading for the
beginning Java programmer (O'Reilly, 1999).

• As you advance, you will find your bookshelf is incomplete without a
well-thumbed copy of Design Patterns: Elements of Reusable Object-Oriented
Software , by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley Professional Computing Series, 1994).

• To learn more about design patterns, you may also want to check out Paul
Monday's tutorial, "Java design patterns 101" (developerWorks, January 2002).

• Once you're comfortable with the basics of Java programming, you may want to
check out my tutorial, "Java programming with JNI (developerWorks, March
2002)," which covers the two most common uses of the Java Native Interface:
calling C/C++ code from Java programs, and calling Java code from C/C++
programs.

• Get another perspective on the Java Native Interface (and native compilation on
the Java platform), in the article, "Weighing in on Java native compilation"
(developerWorks, January 2002).

• Find out why WebSphere Studio Application Developer, IBM's integrated
development environment for building Java enterprise applications, won the Java
Pro 2002 Most Valuable Product and Best Java Deployment Tool awards.

• You'll find hundreds of articles about every aspect of Java programming in the
developerWorks Java technology zone.

• See the developerWorks tutorials page for a complete listing of free Java
technology tutorials from developerWorks.

Get products and technologies
• Download javac-cpp-source.zip, the source for this tutorial.
• You can download and install any Java SDK (and all related documentation) for
free from the Java Developer Connection.

• You'll have no trouble finding a workable text editor on Tucows.com.

developerWorks® ibm.com/developerWorks

Java programming for C/C++ developers
Page 46 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.unicode.org
http://www.oreilly.com/catalog/javanut3/
http://www.ibm.com/developerworks/java/edu/j-dw-javapatt-i.html
http://www.ibm.com/developerworks/java/edu/j-dw-javajni-i.html
http://www.ibm.com/developerworks/java/library/j-native.html
http://www.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/studioappdev/&origin=j
http://www.ibm.com/developerworks/java/
http://www.ibm.com/developerworks/views/java/libraryview.jsp?type_by=Tutorials
http://javac-cpp-source.zip
http://developer.java.sun.com/developer/
http://www.tucows.com/
http://www.ibm.com/legal/copytrade.shtml

About the author
Scott Stricker
Scott Stricker is an enterprise application developer working in the Business Innovation
Services group, part of IBM Global Services. He specializes in object-oriented
technologies, particularly in Java and C++ programming. Scott has a Bachelor of
Science degree in Computer Science from the University of Cincinnati. He is a Sun
Certified Java 2 Programmer and Developer.

ibm.com/developerWorks developerWorks®

Java programming for C/C++ developers
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 47 of 47

http://www.ibm.com/legal/copytrade.shtml

