
University of Pennsylvania

School of Engineering and Applied Science

Computer Information Sciences

CIS 400 Senior Design

Financial Modeling: A system to test High-Frequency

Trading Strategies

Danish Munir danishm@seas.upenn.edu, (CIS)

Divya Krishnan divyak@sesas.upenn.edu, (ESE)

April 24, 2009

Advisors: Professor Abraham Wyner, Statistics Department, Wharton

 Professor Insup Lee, Computer Information Sciences

Table of Contents

Table of Contents.. 2

Abstract ... 3

Goals ... 3

Previous Work .. 4

Low-Frequency Trading ... 4

Pairs Trading... 5

Costs.. 5

Penn Exchange Simulator ... 5

Sample Size... 6

Rebalancing Strategy .. 6

Statistical Framework ... 8

Technical Approach .. 9

Process Overview.. 10

System Components.. 11

Database System ... 11

Price Engine .. 12

Trading Engine.. 12

Reporting System.. 12

Historical Backtesting Front-end .. 13

LiveTrades Front-end.. 13

Challenges... 13

Determining the ‘actual’ price .. 13

Performance and memory boundaries .. 14

Integrating Real Time Prices .. 14

Results... 15

Conclusion .. 17

Abstract

 In the past few years, advancements in technology have enabled traders to be able to

carry out trades at ever faster rates. Starting from trades being put physically at the stock

exchange, to then being put over the wire, the telephone and finally over the internet, today

trades can be executed at a split second’s notice through specialized systems. This rapid

maturity of trading engines and the level sophistication of communications technology has

resulted in what is known as “high-frequency trading” which represents the ability to place

trades at speeds that are only feasible by automated computer-based systems.

 This new era of trading brings with it its own set of challenges, and requires a new breed

of strategies by investors in search for profits. However given the high volume of trades

occurring at each second, the resulting volume of data from such trades is overwhelming and is

extremely hard for many investors to analyze, and to test their strategies on. Thus it becomes

hard to take a strategy that is born out of intuition and to put it through robust testing before

actually taking the risk of investing money using such a strategy.

 This project has two objectives: One to provide a platform that allows simulating trades

at ultra-high frequencies and allows investors to back-test trading strategies using historical

data. The other, is to prove the hypothesis that when trading at very high frequencies and at

very small time intervals, the correlation between assets breaks down in a non-linear way, and

to demonstrate a strategy that exploits this statistical property to make money.

Goals

In order to be able to properly evaluate our work, it is necessary to understand not only

its goals, but the motivation that is driving these goals.

 Since trading at high frequency is now common place, there is a swath of financial

engineers who strive to find the best ways to squeeze out every ounce of return possible from

such trading techniques. However, many such trading strategies are based on intuition and

‘gut-feeling’ and are not backed by statistical theory.

 Our first goal was to explore a hypothesis developed by our advisor Professor Abraham

Wyner, and to examine this hypothesis in a thorough manner, both through rigorous statistical

analysis and through proving it using empirical data. This hypothesis which has been explored

by other academics as well is that the essentially, the correlation between the price movements

of two assets is driven mainly by ‘market-moving news’. Any other transactions that occur

which are not in response to news actually cause the correlation between two assets to break

down. This hypothesis results in a statistical property of the correlation between two assets

decreasing at smaller time intervals. Our first goal then was to prove or disprove through actual

data whether this breakdown in correlation happens at smaller time intervals or not.

 Leading out of this hypothesis, we developed a trading strategy based on equal-

weighted portfolios, rebalanced at regular intervals, which aimed to capture the difference in

returns resulting from the varying correlations over varying time scales. We talk more about the

details of this strategy later, but our next goal was to build a system that can test out this

strategy which required trading at high-frequency intervals.

 Once we started building this system, we realized that our work was extremely modular

and had high value outside of the specific goal that we had initially sought. We therefore

decided to expand out horizon and build a system that can be used to test any kind of high-

frequency trading strategy with very little modification in code.

Our tangible objectives then included:

1. Proving or disproving statistically, the hypothesis held by our advisor regarding

breakdown of correlation over smaller time intervals

2. Building a generic system that can be used to test high-frequency trading strategies

3. Testing our system by employing the rebalancing strategy

Previous Work

Although there has been a large amount of work done in the area of building and

optimizing trading systems, it is still hard to easily find a system that has goals similar to ours.

This is primarily because in the past most systems have focused on day-trading and not really

tackled automated, high-frequency trading. Additionally, the bulk of the work that has been

done has been carried out by large Investment banks and Hedge Funds. This has been, for

obvious reasons, mostly proprietary work, and is hence unavailable for deep analysis. Our

system hopes to provide a new insight into high frequency trading by examining the use of a

specific family of strategies that exploit varying co-variances between assets.

Low-Frequency Trading

Previous work on this area has focused mostly on analyzing the performance of such

portfolio in low frequency trading. The given theory (Fernholz 20071) has not been

implemented in any known algorithm. In addition, there has only been in-depth study on low-

frequency trading and the fundamental concept that govern this strategy. This has been well-

documented and accepted in industry.

High-frequency trading relies on intra-day volatility and the inherent nature of the

security rather than the surface price that is seen in low-frequency trades. Relatively little study

has been done to study the optimal frequency of intra-day trading and an algorithm that can

predict profitable trades.

Pairs Trading

A further strategy that many industry experts employ is the arbitrage strategy of pairs

trading. Two assets are identified to have a relationship that is outside of historical norms. It is

typical to calculate what the stable numbers between the two assets are (i.e correlation,

covariance, returns/price ratio) and proceed to trade when the markets perceive a deviation in

the numbers. Unlike other trading strategies, we are not concerned with how each individual

stock performs, but the relative performance of the stocks. Pairs trading also has many

variations, the most common a dollar-neutral strategy, which is the method that has been

found to be the most effective. In dollar-neutral strategy, the same amount of asset that is held

in a long position is held in the asset that is shorted. We use a modified version of this strategy

where instead of a pair of assets, a pair of portfolios are maintained.

Costs

A further factor that few studies have attempted to incorporate is the idea of

transaction and trading costs. Performing an analysis of identifying pairs and placing trades

according to trading rules is the first step in evaluating a strategy. To fully realize the actual and

expected returns requires the inclusion of these realistic costs as they will take away from the

gross returns calculated. As borrowing costs and trading costs are hard to model, many studies

ignore them to make the experiment simple. This continues to remain a challenge for us as well

since trading costs vary greatly depending on the person or entity carrying out the transactions.

However we do attempt to give some intuition about the size of the transaction costs through a

metric called ‘turnover ratio’ which is a good proxy for transaction costs.

Penn Exchange Simulator

One attempt at modeling strategies in automated trading has been at the University of

Pennsylvania, through the development of the Penn Exchange Simulator (PXS). This is part of

the Penn-Lehman Automated Trading Project headed by Michael Kearns at UPenn. The aim of

this project is to provide a real-time simulation that mimics market conditions and allows

students to write agents or bots that can trade based on real time data drawn from the ISLAND

Electronic Crossing Network (ECN). While this project has some overlap with ours as far as the

goals are concerned, our area of focus is much more specific and somewhat differentiated.

While the PXS system was built to enable understanding of the dynamics of automated trading,

and to simulate best practices, our goal is to test out a specific family of hypothesis that rely on

high-frequency automated trading, and seek to exploit the varying covariance between assets

over different time intervals.

Sample Size

 One of the most important steps for any statistical strategy is to backtest the process

over a historical period to determine if it would have been profitable (Gutmann 2008). When

the number of successful historical data points is large, there is better statistical significance

that the strategy is useful. With other financial strategies, unlike high frequency trading, uses

daily data is the smallest time unit. For a good sample set, and to ensure that the strategy

works over similar time periods as the present, data from more than 10 years ago is not used.

Therefore, this limits the number of data points that can be used in historical backtesting.

 High-frequency trading, on the other hand, generates a large number of trades during

the backtest. The data used in this strategy is tick level data-the price of an asset every tenth of

a second. Thus, even within a single day, there is more than 20,000 data points, of which a large

number would be successful. When testing a strategy if the number of successful trades is

large, there is more significance to the strategy than a relatively small number of profitable

trades, which could be attributed to a lucky streak.

Rebalancing Strategy

The strategy we chose to implement as our default strategy is an equal-weighted

rebalancing strategy with two identical portfolios.

This strategy requires that the investor have two stock portfolios that are initially

identical except that one portfolio, L is a long portfolio that a user invests money in, or buys,

while the other portfolio S, is the one which the investor shorts, or borrows. A long position is

one when the investor has a net positive amount of money invested in the stock. A short

position is one where the investor has a net negative amount of money invested in the stock.

This is achieved by borrowing the stock, and selling it, while paying interest on the stock until it

can later be repurchased and returned.

The two portfolios are identical replicas of each other at the start, with each portfolio

having its total worth being split equally among all the assets it contains. Both portfolios are

rebalanced at a fixed time interval, with the portfolio L being rebalanced at a high-frequency

interval (eg. 30 seconds) and the portfolio S being rebalanced at a much longer interval (eg. 1

months). Rebalancing essentially means recalculating the portfolios worth using the current

stock prices in the market, and then using this new net worth to determine what value each of

the assets should be readjusted to through either buying or selling. This algorithm is captured in

the following illustration.

Figure 1: Rebalancing Algorithm represented using a flow diagram

In order to better understand how rebalancing works it might be worthwhile going

through a simulated example of rebalancing happening at the seconds level. In the table below,

a single portfolio is examined at different time intervals.

At the start of the day, at 9:30:00, the portfolio is created with a $1000 in cash. At this

time Stock A is trading at $10 and Stock B is trading at $5. The very next second the portfolio is

rebalanced, and equal amounts (in dollars) of A and B are bought so that now the portfolio

holds 50 shares of A and 100 shares of B, each worth $500.

Portfolio
Start
Value

Initial
Asset
Prices

Purchase
Assets

Are all
assets
equal in
weight ?

Get Updated
Asset Prices

Buy/Sell to
rebalance

Yes

No

A minute later, lets say that the price of B rises from $5 to $5.5. As a result the holding

in B is worth $550 now, while the holding in A is still worth $500, with the total portfolio being

worth $1050. At this point, the portfolio is rebalanced and the new target value for each asset

is determined to be 1050/2 = 525. 4 shares of B are sold to raise $22 in cash, which are then

used to purchase 2 shares of A.

Time Portfolio
Value ($)

Asset A
(Price x
Qty =
Total)

Asset B
(Price x
Qty =
Total)

Cash ($) Comment

9:30:00 1000 10 x 0 = 0 5 x 0 = 0 1000 Start with $1000 in
cash

9:30:01 1000 10 x 50 =
500

5 x 100 =
500

0 Buy equal amounts
of both assets

9:31:00 1050 10 x 50 =
500

5.5 x 100 =
550

0 Asset B price has
risen

9:31:01 1050 10 x 50 =
500

5.5 x 96 =
528

22 Sell B to bring it
close to 50%

9:31:02 1050 10 x 52 =
520

5.5 x 96 =
528

2 Buy A to bring it
close to 50%

A few minutes later

9:39:00 1024 9.5 x 52 =
494

5.5 x 96 =
528

2 Asset A price has
fallen

9:39:01 1024 9.5 x 52 =
494

5.5 x 93 =
511.5

18.5 Sell B to bring it
close to 50%

9:39:02 1024 9.5 x 53
=503.5

5.5 x 93 =
511.5

9 Buy A to bring it
close to 50%

Table 1: Simulating a rebalancing strategy

After this sequence of transactions there is $520 worth of A, $528 worth of B and $2

worth of cash in the portfolio. Thus A and B are as close to being equal as is possible given that

assets can not be bought or sold in fractions.

The next round of transactions starting at 9:39:00 shows a similar pattern where the

drop in the price of A causes there to be less of A in the portfolio than there is B, as a result of

which some of B is sold off, and some of A is bought.

Statistical Framework

 The fundamental lesson learned in modern portfolio theory is that diversification of

assets can lead to greater returns at lower risk. Thus, a portfolio, P, is simply a linear model

where the weights, pi, represent the amount invested in each asset Xi, such that the return for

the overall portfolio is

 ∑
=

==
n

i i

i

i
X

dX
p

P

dP
r

1

 (1)

 High-frequency data incorporate observations of these returns on a finer time scale,

from daily down to every tenth of a second. If T is the given time period, and i is the basic unit

of time within T, such that Ni=T, then it can be shown with basic statistical theory that the

product of the individual returns ri is equivalent to the return over the entire time period T. This

is known as the first moment.

∏
=

=
T

i

iT RR
1

 (2)

 A similar approach is used to find equivalence in the second moment, r2
i. Unlike the first

moment, it can be shown that the second moments are not equivalent as the effects of

covariance are present, the term that explains the relationship between two assets. Many

studies have been conducted that showing evidence that correlation and covariance increase as

the scale of the time interval increases. This provides an arbitrage opportunity in the stock

markets, where an investor can take advantage of price differentials that occur within an asset.

 The strategy employed here exploits the observation that returns diminish with longer

time intervals between trades as the correlation increases. Two portfolios are held by an

investor, each with identical assets. One portfolio is frequently traded, or rebalanced, within a

given day. The second portfolio is rebalanced on a longer time interval such as every week, or

month. The less-frequently rebalanced portfolio is held in a short position, while the high-

frequency rebalanced portfolio is held in a long position.

Technical Approach

We have developed our system using the latest technologies in the Microsoft Developer

stack. We use C# and the .Net Framework 3.5 for all of our components. There are two user

front ends, one for the historical back-testing system and one for the live trading system. The

historical testing front end is built using traditional Windows Forms, while the Live trading one

is built using the more recent Windows Presentation Foundation (WPF) due to its superior

graphical capabilities which allowed us to easily graph stock prices in real time.

Raw
Securities
Data
(CSV

Wharton
Research
Database
Services
(WRDS)

Import and
Convert Data

Trade Data
in Relational
Format

(MS Access)

Create in-Memory

representation of
Assets and Portfolios

In-Memory
Portfolios

User Defined
Trading Interval

Begin
Trade Simulation

Generate
Transactions

Process
Transactions

Calculate
Portfolio Returns

Calculate
Portfolio Correlations

Process Overview

The first, and major function performed by our system is that of allowing historical back

testing of high-frequency trading strategies. In its current form the system tests out a high

frequency, equal weighted rebalancing strategy. However by changing a few lines of code, any

other high-frequency strategy can be easily tested. The figure below shows a flow diagram of

the current system’s performance.

Figure 2: Flow Diagram showing how the system operates

As can be seen in the above figure, our system requires that raw securities data be

provided as input. This data is then imported and converted by our Database system which

creates multiple files, one for each asset or stock in the Microsoft Database Format (.mdb).

These database files are then used by our Price Engine to create in-memory representations of

Assets and Portfolios. Next, based on a user specified time-interval, the Trading Engine creates

Trading requests for each portfolio that the user wishes to test. Finally, the transactions

generated by the trading engine are analyzed by our reporting engine which then calculates the

covariances and correlations of the returns of individual assets within each portfolio.

System Components

Database System

The Database System comprises of two binaries once it is compiled. The

DatabaseConnections.dll binary is responsible for handling all connections between each of the

asset and portfolio databases and the rest of the components in our system. We incorporated

functionality in our code to allow connection pooling so that at any given time the number of

open connections to a given database is minimized and connections are shared whenever

possible.

The DataEngine.dll binary is responsible for a number of tasks. In the first stage, it is

responsible for taking as input the raw securities data and converting this data to the mdb

format.

In our work we obtained this raw data from the Wharton Research Database Services

(WRDS). WRDS hosts a number of databases out of which we used the New York Stock

Exchange (NYSE), Trade and Quote (TAQ) Database. The TAQ database provided us with the

each and every trade conducted for a given stock taking place each day since 1993. This data is

obtained by accessing the Wharton CRSP website, defining the parameters for which the data

needs to be obtained, including the Stock ticker, the trading dates and the minimum interval.

The data is obtained in the form of comma-separated values (csv), which are stored by date in

the format:

GM_2008_01_01.csv (TICKER_YEAR_MONTH_DAY)

Below is an excerpt from the data obtained from the TAQ database. As shown in the

table, the TAQ database provides a listing of each and every unique trade that took place in the

market on the particular day. The information provided for each trade includes the Symbol or

Ticket, the Date and Time of the transaction, the Price and the Volume (Size) of the trade, and

modality through which the trade was conducted in the final column. This last piece of

information is not directly relevant for our system at the moment, although it could later be

used to develop hypothesis about the different transaction costs resulting due to each modality

of trading that could affect the decision to trade or not.

SYMBOL DATE TIME PRICE SIZE EX

GM 20050103 9:26:57 40.07 1700 P

GM 20050103 9:30:38 40.65 234500 N

GM 20050103 9:30:39 40.65 100 T

GM 20050103 9:30:39 40.65 200 T

Table 2: Raw data obtained from the Trade and Quote (TAQ) Database hosted by WRDS

The DataEngine.dll binary is also responsible for loading and setting up the initial data

for each asset and portfolio through the AssetManager and PortfolioManager classes.

Price Engine

The Price Engine which comprises of a single binary file, PriceEngine.dll, contains classes

that are used to represent individual Assets and Portfolios in memory. The Asset class is where

a large part of the logic to implement caching of trades in-memory is implemented. In our initial

versions of the program, when we were directly using the raw csv files from TAQ without

creating our own mdb representations, we would have to load entire csv files into memory in

order to run quickly through them and perform calculations. However with the use of Microsoft

Access Databases for each asset, we can implement caching of trades in-memory so that at any

given time only a fixed amount of trades are loaded, while as the trading engine uses up trades

to calculate returns during historical back testing, the Asset class pre-loads future trades for fast

access.

The PriceEngine binary also contains a class called Transaction that represents each

individual transaction including the time, price and quantity transacted, generated by the

Trading Engine.

Trading Engine

The Trading Engine, which is the heart of high-frequency testing system, is contained

within a single binary called TradingEngine.dll. This binary contains a number of classes that are

used to setup a back-testing request, process multiple such requests, and to carry out live

trading. The TradingRequest class creates trading requests with multiple combinations of

portfolios and trading intervals in order to allow processing different kinds of tests

simultaneously. The results generated from each test are stored in the TradingResult class.

Finally the TradingEngine class is the one where the entire logic for second-level trades and

rebalancing is contained.

Reporting System

The reporting system is contained within the TradingEngine.dll binary as well due to the

intricate relationship between the two. The CovarianceCalculator class is where most of the

heavy loading takes place in terms of calculating the individual assets returns, portfolio returns,

asset standard deviations take place. It is within this class that individual covariance and

correlation matrices are constructed and then simplified into average covariance and

correlation for a given portfolio.

Historical Backtesting Front-end

This is the front-end provided to the user which allows the user to create custom

portfolios, import historical data and to add or remove assets from various portfolios. This

Graphical User Interface application brings together multiple components of the system by

allowing the user to seamlessly convert TAQ data in a single step to our mdb representation,

and then use this converted data to test a strategy using a specified time interval. Finally, the

summarized results of individual portfolios are provided within the GUI and the detailed results

are stored in a text file which can be easily imported into MS Excel for easier viewing.

LiveTrades Front-end

The LiveTrades Front-end allows running a rebalancing strategy on a single portfolio of

two assets using real-time stock quotes. These stock quotes are obtained by using an API for

the Interactive Brokers Brokerage service which one of us had an account with. This Front end

allows choosing two securities and then specifying the trading interval at which to rebalance

them. The live prices for these securities and the resulting returns from the transactions

proposed are plotted graphically on the front end.

Interactive Brokers provides a number of APIs for obtaining real-time trade data and for

performing transactions online. These APIs however are targeted for use in either C++, Excel or

Visual Basic 6. Since no API was provided for .Net, we initially had a very hard time trying to

integrate this live data stream into our system. However we were fortunate enough to find a

.Net wrapper for the C++ API which allowed us to interface with Interactive Broker’s price feeds

in a much easier way and allowed us to build this part of the system.

Challenges

Determining the ‘actual’ price

One of the challenges we face while building this system is that calculating returns on

short, high frequency intervals is extremely challenging as the notion of a ‘price’ at a minute

interval of time is tricky. Since market trades happen at an unpredictable frequency, it is hard to

pin down what exact price should be taken at any given time since it is possible that at the

same split second, multiple transactions take place, or that none take place for quite a few

minutes. We have developed algorithms to deal with this challenge that aim to strive for the

most accurate real world transaction price possible. However our work is not complete and

there is further room for improvement in the technique used for this purpose, since the

method which is used to determine price at any given time has a critical impact on the trades

made and the returns generated. The most optimal way to determine the legitimacy of the

decisions made by our technique is to compare them to the decisions made by software

systems developed by existing Hedge Funds or Investment Banks. However this requires access

to proprietary data which is beyond our reach at the moment.

Performance and memory boundaries

Historical back-testing requires running a trading strategy on past data. The nature of

the algorithms requires that for every single trade generated, the interim returns be used in the

calculation of the ultimate returns, standard deviation and correlation of a portfolio. This brings

about two opposing needs. The processing of a very large amount of data means that the data

takes a very long time to process, and one way to speed this up is to load as much of it in

memory as possible. However given the many gigabytes of data, loading it all at one time is just

not feasible without access to some large kind of server, and even in that case, there are

physical limits to how much data can be loaded at one time in memory.

We dealt with this problem first through rigorous optimization of our various

algorithms. In order to do this, we employed code-profiling tools that helped us to measure

accurately how many times each line of code was being run, and which methods were the

biggest drain on running time. By doing this we were not only able to focus on the areas that

would deliver the biggest performance boost, but were also able to identify many performance

bottlenecks and iron out inefficiencies.

Integrating Real Time Prices

 We had a very hard time trying to integrate real time prices into our LiveTrading system.

The most frequently used sources of such price data are either trade brokerages or Bloomberg.

Both usually require paid access and are quite expensive. We finally narrowed down to using

Interactive Brokers because one of our team members already had an existing account with

them which could be upgraded to avail the real time price data.

 Once this account was obtained, there was still a challenge of integrating the price

streams into our system. The existing APIs provided by Interactive brokers target C++, Visual

Basic 6 and Excel. There was no API targeting .Net. This made our work difficult as it would

require COM interoperability to call native C++ code using .Net. Thankfully, we were later on

able to discover an API developed by a third party which provided a wrapper around the C++

Interactive Brokers API and allowed us to use it from within .Net with minimal hassle.

Results

Before we examine the results its worth revisiting our tangible goals outlined earlier.

1. Proving or disproving statistically, the hypothesis held by our advisor regarding

breakdown of correlation over smaller time intervals

2. Building a generic system that can be used to test high-frequency trading strategies

3. Testing our system by employing the rebalancing strategy

We were able to achieve objective one by using the statistical framework outlined earlier in

the paper.

Our second goal was to assess the hypothesis that the correlation between two assets

decreases as the time interval at which they are rebalanced decreases. Our third and final goal

was to test the hypotheses that the results generated by a trading strategy that rebalances

equal weighted portfolios will increase as the time interval for rebalancing decreases.

To test these hypotheses, two portfolios were initially created. A sample strategy of 2-asset

portfolios was tested, each containing shares of different stocks over two different years. The

first portfolio consisted of Alcoa Incorporated (NYSE: AA) and The Walt Disney Company (NYSE:

DIS) for the year 1993 (Figure 5.1a). The second portfolio contained American Express Company

(NYSE: AXP) and The Boeing Company (NYSE: BA) (Figure 5.1b).

Figure 3: Correlation and Returns of 2-asset Portfolios

The trend for the correlation and the returns is as predicted in the theory. Furthermore,

the increased level of sophistication in the technology is also seen in the above results. In 1993,

the highest level of return occurred at the 30 second trading time interval, suggesting that

Returns & Correlation (1993)

Alcoa (NYSE: AA), Disney (NYSE:DIS)

0.01

0.02

0.03

0.04

0.05

0.06

R
e
tu
rn
s
 A
A
,
D
IS

0

0.05

0.1

0.15

C
o
rr
e
la
tio
n
 A
A
,
D
IS

1005030 1000500300 100004000

Interval Interval

Left Scale: Returns AA, DIS

Right Scale: Correlation AA, DIS

Returns & Correlation (2005)

AmEx (NYSE: AXP), Boeing (NYSE:BA)

0.015

0.02

0.025

0.03

0.035

R
e
tu
rn
s
 A
X
P
,
B
A

0

0.05

0.1

0.15

0.2

0.25

0.3

C
o
rr
e
la
tio
n
,
A
X
P
,
B
A

1 100 10000

Interval Interval

Left Scale: Returns AXP, BA

Right Scale: Correlation, AXP, BA

traders were unable to exploit price differences for smaller time units. In 2005, on the other

hand, the highest returns occurred at 1 second.

Another one of the goals of this project was to create a platform that would allow end

users to test different high-frequency trading strategies. The strategy that is employed in this

simulation is to have two portfolios, each of equal value, consisting of the same assets, but in

opposite positions. One portfolio is held in the long position (or where one owns the stocks that

he is trading) and is traded at a high-frequency. The short portfolio (this occurs when a trader

borrows assets, sells them, and then trades the proceeds) is held in a short position and is

traded at a lower frequency. In addition, the borrowing cost of trading with a short position is

also taken into account. Thus, whenever one borrows money, or assets, collateral is always

given as insurance. Thus, Strategy 1 assumes that the investor put up 1/4 the value of the

starting short portfolio as collateral, while Strategy considers 1/10. In other words, Strategy 1

has levered the portfolio by 4; Strategy 2 has levered the portfolio 10 times.

In 1993, a long portfolio of AA and DIS stocks was created, and rebalanced every 30

seconds. In tandem, anther portfolio, also holding the same stocks, was shorted as it was

rebalanced every 1 month—a common strategy many portfolio managers utilize. The results of

this simulation can be seen in Figure 5.2. It is shown that the returns of both Strategy 1 and

Strategy 2 are much higher than the returns of the S&P 500 as well as the Dow Jones Industrial

Average. One thing to highlight in these returns is the increased variability of the returns when

the portfolio is levered at a higher rate. Thus, while Strategy 2 has a much higher return rate, it

comes at the cost of higher risk, or variability.

Figure 4: Portfolio returns for 1993

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1/1/93 2/20/93 4/11/93 5/31/93 7/20/93 9/8/93 10/28/93 12/17/93

In
ve
st
m
en
t
V
al
u
e

Date

Growth of 1993 Portfolios (AA, DIS)
30s Long/ 1m Short

Strategy, 1

Strategy, 2

Growth, SP

Growth, DJIA

57.8%

21.6%

14.1%

7.64%

In 2005, a similar strategy was taken, except the frequently rebalanced portfolio’s

trading frequency has decreased to 1 second, with the lower frequency trades occurring at 1

month. Once again, as seen in the returns in Figure 5.3, the strategy does perform better than

the market indices, with the highly levered portfolio having the greatest variability.

Figure 5: 2005 Portfolio Returns

To asses the risk of all the strategies, the Sharpe ratio was calculated for each. The

Sharpe ratio is simply the return of the portfolio less the risk-free rate (90-day Treasury bill)

divided by the standard deviation. A higher Sharpe ratio indicates a higher return for a lower

risk level. The Sharpe ratio for the 2005 portfolios were 0.58 and 0.36 respectively for Strategy

1 and 2. In comparison, the Dow Jones Industrial Average, of whom all four stocks are a

component, had a Sharpe ratio of 0.41 across the same time period, while the S&P had a ratio

of 0.67. Similarly, calculating the Sharpe ratios for the 1993 portfolios showed that Strategy 1

and Strategy 2 each had ratios of 4.26 and 5.02 respectively which was much less than the

Sharpe ratio for the S&P 500, whose ratio was 3.22. Other calculations were also made

including the information ratio, to show that Strategy 2 would always be able to achieve higher

returns due to higher effect of leveraging.

Conclusion

Working on this project was extremely challenging and rewarding at the same time,

largely because it involved solving an open-ended problem. We started at the beginning of the

year with a very small lead into a hypothesis that our advisor wanted to test, and during this

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

6/29/2005 7/19/2005 8/8/2005 8/28/2005 9/17/2005 10/7/2005 10/27/2005 11/16/2005 12/6/2005 12/26/2005

In
v
e
st
m
e
n
t
V
a
lu
e

Date

Growth of 2005 Portfolios (AXP, BAC)
1s Long/1 month Short

Strategy, 1

Strategy, 2

S&P 500

DJIA

12.8%

9.33%

4.78%

4.31%

process were able to examine the strategy of rebalancing portfolios at different time intervals.

In order to test this strategy we started out building a system that could merely simulate

trades, but realized along the path that our system could be easily made flexible enough so that

anyone could with a little bit of coding modify it to test other strategies.

Given more time, the first thing that we would like to implement would be a way of

modifying trading strategies through some kind of user input rather than having to modify

code. This is a little challenging at the moment since it would involve implementing some kind

of trading language, or some markup system that is robust yet expansive enough to incorporate

different kinds of trading scenarios and strategies. The most immediate benefit of this would be

that it would eliminate the need of modifying the code, and would allow us to sell our product

as a service instead of having to license it as a piece of code.

The most difficult aspect of this project was satisfying the needs of the various

stakeholders in the project. Since this was an inter-disciplinary project across Computer

Information Sciences, Electrical and Systems Engineering and Statistics, each of the three

departments sought and prioritized different aspects of the project in different ways. As

students who were ultimately working for a grade we at times had to make decisions, and

undertake work that was done merely to satisfy the needs of the rubrics of the different

departments, and to communicate the importance of the rest of the work to the parties who

were not directly interested in it. This took away time and focus from the core goals of the

project which are definitely worthy of further exploration. We intend to pursue this project

after graduation and hopefully turn it into a viable commercial project in some form or the

other.

