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Introduction

1.1 System Models

This book analyzes mathematical models for systems and explores tech-
niques for optimizing systems described by these models. We use the term
system in its broad sense; by a system we mean a collection of things
which are related in such a way that it makes sense to think of them as a
whole. Examples of systems are an electric motor, an automobile, a
transportation system, and a city. Each of these systems is part of a larger
system. Small systems are usually well understood; large, complex systems
are not.
 Rational decision making concerning the design and operation of a
system is always based upon a model of that system. A model of a system
is a simpler system that behaves sufficiently like the system of interest to
be of use in predicting the behavior of the system. The choice of
appropriate model depends upon the complexity of the system, the avail-
able resources, and the questions that need to be answered by the model.
Many decisions are based upon nothing more than the conceptual model
which the decision maker develops by observing the operation of other
systems. In this book we concern ourselves with a more quantitative class
of models, mathematical models.

Most systems can be thought of (or modeled) as an operation on the
system inputs (or independent variables) which produces the system out-
puts (or dependent variables); we state this input-output relationship
symbolically by means of the following mathematical equation:

Tx=y (1.1)

In this equation x represents the set of inputs to the system and y the set of
outputs of the system.* The symbol T represents the operation which the
system performs on the inputs; thus T is a mathematical model of the
system.

*See Section 2.3 for a more complete discussion of inputs and outputs.
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In order for a model of a system to be conceptually simple, it must be
abstract. The more details we include explicitly in the model, the more
complicated it becomes. The more details we make implicit, the more
abstract it becomes. Thus if we seek conceptual simplicity, we cannot
avoid abstraction. The model T of (1.1) epitomizes this simplicity and
abstraction.

The generality of the model given in (1.1) allows it to be applied to many
different systems. In the simplest of situations T might represent a simple
economic transaction: let p be the unit price of a particular commodity;
then (1.1) means y =px, where x is the quantity purchased and y is the
total cost of the purchase. At the other extreme, T might represent a large
city. Figure 1.1 shows the system output y that might result from a given
input x; obviously, many pertinent variables are not explicit in Figure 1.1.

Figure 1.1. A conceptual model of a large city.

Equation (1.1) is the focus of this book. The first five chapters are
devoted to a detailed analysis of (1.1) for models T which are linear.* By
decomposing linear models into smaller, simpler pieces we develop an
intuitive feel for their properties and determine the practical computational
difficulties which can arise in using linear models. Chapter 6 treats the
least-square optimization of systems that can be represented by linear
models. The analysis and optimization of systems that are described by
nonlinear models are considered in Chapters 7-8.

We emphasize linear models because most known analytical results
pertain only to linear models. Furthermore, most of the successful tech-
niques for analyzing and optimizing nonlinear systems consist in the repet-
itive application of linear techniques (Chapter 7-8). We dwell extensively
on the two most frequently used linear models-linear algebraic equations
and linear differential equations. These models are the most frequently
used because they are well understood and relatively easy to deal with. In
addition, they are satisfactory models for a large number of practical
systems.

Throughout the text we explore the computational implications of the
analytical techniques which we develop, but we do not develop computer

*See Section 2.4 for the definition of a linear system.
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algorithms. We do not discuss stochastic systems; we treat systems with
stochastic inputs only by means of examples.

System Questions

Questions concerning a system usually fall into one of the following
categories:

1. System operation: in terms of (1.l), given the model T and the input
x, find the output y.

2 . System inversion: given the model T and output y, find the input x.
3. System synthesis or identification: given several different choices of

input x and the corresponding output y for each input, determine a
suitable system model T. (If the system is to be identified, the inputs and
outputs are measurements from a real system. If the system is to be
synthesized, T would be chosen to provide some desired input-output
relationship.)

4. System optimization: pick the input x, the output y, or the system T
so that some criterion is optimized.

Note that we have expressed these questions in terms of the system
model rather than in terms of the system itself. Although experimentation
with actual systems may be appropriate in certain circumstances, these
questions are usually explored by means of a model. We discuss the
modeling process briefly in Section 1.4. We also examine in Chapter 6
some techniques for making an optimum choice of model parameters once
a model structure has been established. However, we do not dwell exten-
sively on techniques for obtaining good models. Rather, we work with the
models themselves, assuming that they are good models for the systems
they represent. Questions 1 and 2 are treated in Chapters 1, 2, 4, and 5 for
linear algebraic equation models and in Chapters 2-5 for linear differential
equation models. Question 4 is treated in Chapters 6-8. We do not
consider question 3.*

The concepts explored in this book apply directly to any field which uses
equations to represent systems or portions of systems. Although we focus
on linear algebraic equations and linear differential equations, we also
demonstrate the applicability of the concepts to partial differential equa-
tions and difference equations; we include equations which are probabi-
listic, “time-varying,” and nonlinear. Our examples pertain to models and
optimization in such fields as automatic control, electric power, circuits,
statistical communications, coding, heat flow, economics, operations re-
search, etc.

*See Sage [1.10] for a discussion of identification.
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1.2 Approach

All students of science and engineering have noticed occasional similarities
between the physical laws of different fields. For instance, gravitational
attraction, electrostatic attraction, and magnetic attraction all obey an
inverse-square law. Electrical resistance to the flow of current has its
analogue in the resistance of materials to the conduction of heat. Not only
does the physical world tend to repeat itself; it also tends toward simplicity
and economy. Most natural phenomena can be explained by simple
differential relationships: the net force on a rigid object is proportional to
its acceleration; the rate of flow of heat is proportional to the gradient of
the temperature distribution.

If we put a number of simple relationships together to describe the
motion of a nonrigid object (fuel in a rocket) or the heat flow in an
irregular nonhomogeneous object (a nuclear reactor), then nature appears
complicated. The human mind is not good at thinking of several things at
once. The development of large-scale digital computers has provided the
capability for solving complex sets of equations; it has made system study
a reality. However, the engineer, the designer of a system, still must
conceive of the variables and interactions in the system to such an extent
that he can describe for a computer what it is he wants to know. He needs
simple conceptual models for systems.

We can simplify models for complex systems by stretching our imagina-
tion in a search for analogies. For instance, the multiplication of an
electrical current by a resistance to determine a voltage has an analogue in
the differentiation of a current and then multiplication by an inductance;
both actions are operations on a current to yield a voltage. This analogy
suggests that we think of differentiation as analogous to multiplication by
a number. By reducing the number of “different concepts” necessary to
understand the parts of a system, such analogies help the system designer
to achieve greater economy of thought; he can conceive of the system in
simpler terms, hopefully gaining insight in the process. William K. Linvill
[1.7] has coined the term “portable concept” to describe a concept that is
transferable from one setting to another. This book is concerned with
portable mathematical concepts. The purpose of exploring such concepts is
to enhance the ability of the reader to model systems, understand them,
synthesize them, and optimize them. Our basic premise is that this ability is
enhanced by an intuitive understanding of the models and optimization
techniques that have proved useful in many settings in the past. By an
intuitive understanding, we mean the type of “intuitive feel” that an
engineer obtains by applying and reapplying a concept to many different
situations.

It would seem, then, that we must fully absorb most of mathematics.
However, much of the mathematical literature is directed toward the
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modeling and optimization of pathological cases, those cases for which
“standard” models or techniques are insufficient. Because techniques for
handling these cases are new, it is appropriate that they be the focus of the
current literature. Yet this emphasis on exceptional cases can distort our
perspective. In maximizing a function, we should not become so concerned
about nondifferentiability of functions that we forget to try setting the
derivative equal to zero. Rather than try to explore all cases, we focus on
well-behaved systems. By making analogies, we organize the most common
models and optimization techniques into a framework which contains only
a relatively few fundamental concepts. The exceptional cases can be more
clearly understood in comparison to this basic framework.

The importance of learning the structure of a subject is stressed by
Bruner [1.1]: “Grasping the structure of a subject is understanding it in a
way that permits many other things to be related to it meaningfully… the
transfer of principles is dependent upon mastery of the structure of the
subject matter… . Perhaps the most basic thing that can be said about
human memory, after a century of intensive research, is that unless detail
is placed into a structured pattern, it is rapidly forgotten.” In order to
simplify and unify the concepts used in model analysis and optimization,
we organize fundamental mathematical principles into a mnemonic struc-
ture—a structure which draws extensively on geometrical analogies as an
aid to the memory. We also develop a mathematical language suitable for
communicating these structural concepts.

The first half of this book is concerned with models and their analysis.
Mathematically speaking, this is the subject of algebra-the use of symbols
to express quantitative concepts and their relations. In the latter half of the
book we turn to geometry-the measurement and comparison of quantita-
tive concepts—in order to further analyze models and to optimize their
parameters and inputs. Because the bulk of known analytical results are
concerned with linear models, these models necessarily dominate our
discussions. Our emphasis is on geometrical insight rather than mathemati-
cal theorems. We reach deep into the mathematical literature for concepts.
We try to be rigorously correct. Yet we develop concepts by means of
analogies and simple examples rather than proofs, in order to nurture the
intuition of the reader. We concern ourselves with the practical aspects of
computation. To engineers the material seems like mathematics; to
mathematicians it seems like engineering.

1.3 Portable Concepts

To illustrate the portability of the mathematical model (1.1) we compare
the two most common mathematical models: (a) a set of linear algebraic
equations; and (b) a linear differential equation. The following algebraic
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equations might represent the
currents in a resistive circuit:

relationship between the voltages and the

Such a set of equations is often expressed in the matrix form:

(1.2)

(1.3)

In the form (1.3), we can interpret the set of equations as an operation
(matrix multiplication) on the pair of variables [i and & to obtain the pair
of quantities vi and r/2’ The relationship (1.2) between the pairs of
variables can also be expressed in terms of the “inverse equations”:

(1.4)

Equations (1.4) can be verified by substitution into (1.2). The coefficients
in (1.4) indicate what must be done to the “right-hand side” variables in
order to determine the solution to (1.2). Equations (1.4) can be expressed
in the “inverse matrix” form:

In Section 1.5 we explore in detail the process of solving or inverting
equations such as (1.2). In Chapter 2 we begin the discussion of algebraic
equation models in a manner which is consistent with the notation of (1.1).
Chapters 4 and 5 are, to a great extent, devoted to analyzing these models.

The angular velocity o(t) of a particular loaded dc motor, initially at
rest, can be expressed in terms of its armature voltage u(t) as

(l-6)

We can think of the differential equation and boundary condition as an
abstract operation on o to obtain u. Equation (1.6) also can be expressed
in the inverse form:

(1.7)

That the integral equation (1.7) is, in fact, the solution to (1.6) is easily
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verified for a particular armature voltage, say, u(t)  = e2*, by evaluating o(t),
then substituting it into (1.6). We can think of (1.7) as an abstract
“integral” operation on u to determine o; this is the “inverse” of the
“differential” operation in (1.6). These two abstract operations and
techniques for determining the inverse operation are the subject of Chapter
3. The analysis of these abstract operations carries into Chapters 4 and 5.

The algebraic equations (1.2) and the differential equation with its
boundary condition (1.6) have much in common. We must not let details
cloud the issue; in each case, an “input” is affecting an “output” according
to certain (linear) principles. We can think of the pair of variables [i and t2
and the function o as each constituting a single “vector” variable. The
analogy between these entities is carried further in the comparison of
Figure 1.2, wherein the pair of variables <i, t2 is treated as a “discrete”
function. This analogy is discussed further in Section 2.1. It seems evident
that concepts are more clearly portable if they are abstracted-stripped of
their details.

A Portable Optimization Concept

We again employ the analogy between a “discrete vector” variable and a
“continuous vector” variable to discuss the portability of an optimization

Figure 1.2. Vector variables plotted as functions: (a) discrete variables of (1.2); (b) con-
tinuous variable of (1.6).
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Figure 1.3. A vector of minimum length.

concept. Figure 1.3 shows the locus of all vectors x in a three-dimensional
space which lie in the intersection of two planes. We seek that vector x
which is of minimum length. The solution vector x9 is perpendicular to the
line which constitutes the locus of the candidate vectors x.

Using the standard notation of analytic geometry, we think of the vector
x as x = (t,,&,&). The plane that is perpendicular to the vector x1 can be
expressed mathematically in terms of the dot product of vectors as x l x1 =
51= Cl. Similarly, the second plane consists in vectors x which satisfy
x ’ x2 = c2. Since x, must be perpendicular to the intersection of the planes,
it must be some combination of the vectors x1 and x2 that determine the
planes; that is, x, = d,x, + d2x2 for some constants d, and d,. Substituting
x, into the equations that determine the planes, we obtain a pair of
algebraic equations in d, and d,:

( 1 . 8 )

Since the vectors x1 and x2 are perpendicular and of unit length, then

and
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The geometric minimization problem described above is simple. By
using geometric notions, we have found the vector x which satisfies two
linear equations and for which the quantity [:+S,‘+s;’  (the length of x
squared) is minimum. The same geometric principles can be used to solve
other, more complicated, problems wherein linear equations must be
satisfied and a quadratic quantity minimized. For instance, the angular
position +(t) of the shaft of the dc motor of (1.6) satisfies

( 1 . 9 )

Suppose we seek that armature voltage function u(t) that will drive the
motor shaft from one position to another in a fixed time, while consuming
a minimum amount of energy; that is, let 9(O)= &O)  = 0, e(1) = 1, &( 1) = 0,
and pick u to minimize JAu2(t)dt. In our search for a technique for solving
this problem we should not cloud the issue by thinking about techniques
for solving differential equations. Equation (1.9) is linear; the quantity to
be minimized is quadratic. Chapter 6 is devoted to solving such problems
by using analogues of the planes and perpendicular vectors of Figure 1.3.

1.4 System Modeling

The rationale for modeling a system is a desire to determine how to design
and/or operate a system without experimenting with actual systems. If a
system is large, experimenting is usually very time consuming, extremely
expensive, and often socially unacceptable. A designer uses models to
predict the performance characteristics of a system or to aid in modifying
the design of the system so that it meets a desired set of specifications. He
will probably be interested in the degree of stability of the system, its
accuracy, and its speed of response to commands. The designer also uses
models to predict the nature of the interaction of the system with other
systems. For example, he may wish to predict the effect of the system or of
a particular system operating policy on the environment or on a related
energy distribution system. Or he may wish to predict the performance of
the system in the presence of extraneous inputs (noise) or sudden changes
in load. The reliability of the system and the sensitivity of the system
performance to changes in the environment are also important.

Types of Models

A single system has many models. One or more models of the system
pertain to its electrical behavior, others to its thermal behavior, still others
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to its mechanical behavior. An investigation of the social or economic
characteristics of the system requires additional models.

Physical models are appropriate in many situations. One example of such
a model is a scale model of a building or bridge. The conceptual
representation of a rocket by a solid cylinder is another example. In most
system studies, a mathematical model for the system (or part of the system)
facilitates analysis. An appropriate mathematical model usually can be
derived more easily from a simplified physical model than from the
original system. The resulting mathematical model usually consists of a set
of algebraic and/or differential equations. Often these equations can be
solved (for given system inputs) on a digital, analogue, or hybrid
computer.† In some instances, the distributed nature of the system requires
a mathematical model consisting of partial differential equations, and
computer solutions are difficult to obtain even if the equations are linear.

The behavior of some systems fluctuates randomly with time. For such
systems (or portions of systems) it is common to build a discrete-event
simulation model ,t Rather than predicting the precise behavior of the
system, such a model simulates the behavior numerically in a manner that
is statistically correct. For instance, we might be interested in the flow of
customers through a set of checkout counters. A simple physical model of
such a customer service system consists of a single checkout counter, where
customers arrive, wait for service, are served, then leave; arrival times and
service times are random with known statistics. By means of a digital
computer, we would generate a random sequence of arrivals (with correct
statistical properties). We would also determine a service time for each
customer by an appropriate random number generation process. Then we
would observe the simulated flow of customers over time. The simulation
would predict not only the average flow through the system, but also the
frequency of occurrence of various queue lengths and waiting times. Thus
the dynamic performance of certain types of systems can be predicted by
digital simulation.

As a practical matter, a model should contain no more detail than is
necessary to accomplish the purposes of the model. One is seldom sure of
the accuracy of a model. Yet if a model is accurate enough to improve
one’s decision-making capability, it serves a useful purpose. Generally
speaking, the more complex the model is, the more expensive will be the
process of developing and using the model. In the extreme, the most
accurate model is a copy of the system itself.

*Special computer programs have been developed to facilitate the solving of certain classes of
equations.  One example is MATLAB®; it is effective in solving linear algebraic and linear differential
equations.
†Specialized computer languages have been developed to facilitate discrete-event simulation.
Examples are ARENA ® , SIMSCRIPT ® , and GPSS ®.
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Unfortunately, it is probable that some complex systems will never be
represented in sufficient detail by manageable mathematical models. Yet a
conceptual model can be applied in situations where it is difficult to obtain
meaningful quantitative models; for example, the principle of negative
feedback (with its beneficial effects on stability and sensitivity) often is
applied successfully without the use of a mathematical model. The system
concepts that are associated with mathematical models serve as a guide to
the exploration of complex systems. By the use of specific models for small
subsystems, by computer analysis of the combined subsystem models, and
by the application of model concepts (such as feedback) to the whole
system, we can better understand large systems.

The Modeling Process

The process of modeling can be divided into two closely related steps: (1)
establishing the model structure and (2) supplying the data. We focus
primarily on the first step. However, we cannot ignore the second; it is
seldom useful to establish a model structure for which we cannot obtain
data.

We begin the modeling process by examining the system of interest. In
many complex systems, even the boundaries of the system are not clear.
The motivation for modeling such a system is usually a desire to solve a
problem, to improve an unsatisfactory situation, or to satisfy a felt need.
We must describe the system and the manner in which it performs in a
simple fashion, omitting unnecessary detail. As we begin to understand
better the relationship between the system and the problem which
motivates study of the system, we will be able to establish suitable
boundaries for the system.

Suppose a housing official of a large city is concerned because the
number of vacant apartments in his city cycles badly, some times being so
high as to seriously depress rental rates, other times being so low as to
make it difficult for people to find or afford housing.* What is the reason
for the cycling? To answer this question, we need to explore the “housing
system.” Should we include in “the system” the financial institutions which
provide capital? The construction industry and labor unions which affect
new construction? The welfare system which supports a significant fraction
of low-income housing? Initially, we would be likely to concern ourselves
only with the direct mechanisms by which vacant apartments are
generated (new construction, people moving out, etc.) and eliminated (new
renters).

Should the model account for different sizes of apartments? Different
styles? Different locations? Seasonal variations in the number of vacan-

*The idea for this example was obtained from Truxal [1.1], Chapter 21.
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ties? A model that accounts for all these factors would require detailed
data (as a function of time) for each factor. These data are not likely to be
readily available. Rather, obtaining the data would require the cooperation
of many apartment managers and an extensive data-taking operation over
at least a l-year period. A more likely approach, at least initially, would be
to develop a simple model which predicts the average number of vacancies
(of any type) in the city in a l-year period. Data concerning this quantity
are probably available for at least a large fraction of the large apartment
complexes in the city.

Once the approximate extent of the system and the approximate degree
of detail of the model have been determined, the course of model devel-
opment usually progresses through the following steps:

1. Development of a simple physical model.
2. Derivation of a mathematical model of the physical model.
3. Obtaining of data from which model parameters are determined.
4. Validation of the model.

In deriving a model for a system it usually helps to visualize the
behavior of the unfamiliar system in terms of the behavior of familiar
systems which are similar. It is for this reason that we start with a simple
physical model. The physical model of the system is likely to be conceptual
rather than actual. It is a simple abstraction which retains only the
essential characteristics of the original system. In the case of the apartment
vacancy model introduced above, a simple physical model might consist of
a set of identical empty boxes (vacant apartments). At l-year intervals
some number of boxes is added by construction or renters moving out;
another number of boxes is removed by new renters. See Figure 1.4.

Yearly addition
by construction
or moving out

Yearly
removal by
new renters

Figure 1.4. Simple physical model of apartment vacancies.
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A mathematical model of a system is usually easier to derive from a
simple physical model than from the system itself. In most instances the
mathematical model consists of algebraic and/or differential equations.
The mathematical model must be kept simple in order that it be solvable
analytically or by means of practical computer techniques. Generally, the
model simplifications that reduce data requirements also reduce the
complexity of the mathematical model. For example, in the housing system
described above, the aggregation of the various types of apartments into a
single type greatly reduces the number of variables in the mathematical
model. Other simplifying approximations which may be appropriate in
some situations are (1) ignoring interaction between the system and its
environment; (2) neglecting uncertainty and noise; (3) lumping distributed
characteristics; and (4) assuming linearity and time invariance. Sage [1.10]
describes some techniques that are useful in identifying the structure and
parameter values of those systems that act in a linear fashion.

Mathematical Model of Apartment Vacancies

In order to demonstrate the logical thought process entailed in the
derivation of a mathematical model, we derive a mathematical model of
the physical model of apartment vacancies illustrated in Figure 1.4.

We expect that the number of “apartment construction starts” in a given
year is approximately equal to the apparent need for new apartments. We
formalize this statement by postulating the following relationship:

(1.10)

where S (n) = number of apartment construction starts in year n;

V (n) = average number of vacant apartments during the l-year
period centered at the beginning of year n.

Underlying (1.10) is the assumption that the people who build apartments
feel that the city should have approximately vd vacancies.  The
proportionality factor a! and the number of vacancies vd should be selected
in such a manner that (1.10) most nearly describes recent historical data
for the city.

Of course, actual apartment completions lag behind the starts by an
appreciable time. We formalize this statement by the equation

C(n)=S(n-I) (1.11)

where C(n) is the number of completions in year n, and 2 is the average
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construction time. A suitable value for the lag I should be determined from
historical data.

Let R(n) denote the number of new apartments rented during year n.
We can include in R (n) the families who move out of apartments during
the year [R (n) can be negative]. From Figure 1.4, it is apparent that

AV(n)= C(n)- R(n) (1.12)

where A V(n) = V (n + 1) - V(n), the increase in vacant apartments during
the l-year period.

The empirical relations (1.10)-(1.11) and the logical statement (1.12) can
be related pictorially by means of a block diagram. A block diagram is a
conceptual tool which is useful for clarifying the structure of a model or
for portraying sequences of events. It dramatizes cause and effect
relationships. A block diagram of the mathematical model (1.10)-(1.12) is
shown in Figure 1.5. Each block in the diagram displays one of the
relationships in the mathematical model. *

Figure 1.5 establishes the model structure. In order to determine the
values of the model parameters and to validate the model, we need
historical data for each variable in the model. The data that we need in
order to pick appropriate values for the parameters (Y, vd, and 2 are
historical values of yearly starts S (n), yearly completions C(n),  and yearly
average vacancies V(n). We would probably pick the values of LY,  vd, and I
by the least-square data-fitting process known as linear regression (see
Section 6.1).

Figure 1.5. Block diagram model of apartment vacancies.

*See Cannon [1.2] for a detailed discussion of block diagrams and their use.
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After parameter values have been determined, we need to verify that the
mathematical model is a sufficiently good representation of the actual
apartment vacancy system. In order to validate the model, we need
historical values of the model input R (n) and output V(n).  Since we
required data for V(n)  previously, the only additional data needed are a
corresponding set of yearly rentals R (n) (new rentals minus renters moving
out). We use the input data R(n)  for a sequence of years together with the
mathematical model to obtain a predicted sequence of values of V(n).  The
model is validated if the predicted values of V(n) agree sufficiently with
the corresponding historical values of V(n).  If the model were verified to
be accurate to a certain precision for historical data, we would feel
confident that it would exhibit approximately the same accuracy in pre-
dicting future apartment vacancies. A housing official would probably be
satisfied if the predicted vacancies were within 10% of the actual average
vacancies. Of course, predictions of future values of V(n)  have to be based
on assumed future values of R (n). If future values of R (n) cannot be
predicted with reasonable confidence, then another model must be de-
veloped to relate the demand for apartments R (n) to those variables which
affect demand.

If the data do not validate the model to a sufficient degree, then the
model structure must be modified; additional factors must be accounted
for. Specifically, the number of apartment construction starts S(n) is likely
to depend not only on the demand for housing R(n), but also on the
number of uncompleted housing starts (starts from the previous I- 1
years). The number of starts S(n) is also likely to depend on the availabil-
ity of capital at a favorable interest rate. Thus an improved apartment
vacancy model would probably have more than one input variable.

Once a validated model has been obtained, it can be used to aid city
officials in determining an appropriate housing policy. City officials can
affect the number of apartment vacancies by modifying the variables
which are inputs to the model. Demand for apartments R(n) can be
affected by adjusting tax rates, rent subsidies, urban renewal plans, etc. If
the final model includes interest rate as an input, this interest rate can be
affected by means of interest rate subsidies.

Suppose that low interest capital has been plentiful, and there has been
an overabundance of housing. Specifically, suppose recent historical data
indicate that the best values for the parameters of the model in Figure 1.5
are l/d= 1000 apartments, a = 0.5, and I= 2 years, and that reasonable
initial conditions are V(0) = 1500 vacancies, and S (-2) = S (-1) = 0
apartments. Suppose that as a result of a new rent subsidy program we
expect the future demand to be R (n) = 500 apartments, n = 0,1,2,. . . .
According to the mathematical model of (1.10)-( 1.12) and Figure 1.5, the
new rent subsidy program will cause the apartment vacancies in the city to
exhibit the behavior shown in Table 1.1 and Figure 1.6.
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Table 1.1 Apartment Vacancies Predicted by Figure 1.5

n v(n) S(n) coo R(n) A V(n) V(n+ 1)

According to Figure 1.6, the model predicts that severe housing short-
ages will result from the new housing policy. If the model is correct, and if
social pressures make the rent subsidy program mandatory, then the city
officials must compensate for the policy by encouraging builders to expand
the available housing. (Perhaps this expansion could be encouraged by
publicizing the predicted housing shortage, or by having the city assume
some of the risk of investment in new construction.)

If the model has not been carefully validated, however, the predictions
that result from the model should be used with caution. The fact that
builders themselves might predict future housing shortages is ignored in

Figure 1.6. Apartment vacancies predicted by Figure 1.5.
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(1.10). Thus this simple model of the relationship between vacancies and
construction starts should probably be modified to more accurately
describe the process by which builders decide to start new construction.
Then the determination of model parameter values and the validation of
the model should be repeated for the new model before it is used to predict
the effect of housing policies.

The modeling process we have described has been used extensively to
describe such situations as the flow of electric power in large transmission
line networks and the growth of competing species in ecosystems. It is
apparent that the same modeling process can be used to describe the
relationships among the variables in many other types of systems. For
example, it is suitable for describing the response of an eye pupil to
variations in light intensity, the response of a banking system to market
fluctuations, or the response of the people of a given country to variations
in the world price of oil. It is in the social, economic, and biological fields
that system modeling is likely to have its greatest impact in the future.

1.5 Solution of Linear Algebraic Equations

To this point our discussion has been of an introductory nature. The
development of vector space concepts and the vector space language
begins in Chapter 2. We now explore briefly, in a matrix format, the
process of solving sets of linear algebraic equations, in order that we be
able to use such sets of equations in the examples of Chapter 2 and later
chapters. In this discussion we emphasize practical techniques for
computing solutions to sets of linear algebraic equations and for
computing the inverses of square matrices.

Models of most systems eventually lead to the formation and solution of
sets of linear algebraic equations. For example, it is common practice to
replace the derivatives in a differential equation by finite differences,
thereby producing a set of linear algebraic equations which can be solved
by a digital computer. The solution of nonlinear equations almost always
requires linearization and, again, involves solution of linear algebraic
equations (Chapter 8). Thus simultaneous algebraic equations are funda-
mental to practical analysis.

There is a wide variety of methods for solving a set of linear algebraic
equations.* The design of practical computer algorithms which will obtain
accurate solutions in an efficient manner calls upon most of the concepts
of this book: spectral analysis, least-square optimization, orthogonaliza-
tion, iteration, etc. Frequently, the sets of equations that arise in practice

*See Forsythe [ 1.6].
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are nearly degenerate; that is, they border on being unsolvable by compu-
ters which have finite accuracy. Furthermore, the number of equations can
be large; finite-difference approximations for partial differential equations
sometimes involve more than 100,000 equations (P&C 2.17). Thus the
solution of linear algebraic equations constitutes one of the easiest, and yet
one of the most difficult problems.

Any set of linear algebraic equations can be written in the form

(1.13)

Equation (1.13) easily fits the symbolic structure of the basic system model

(1.1). Suppose we define x f {[i,&,  . . . ,&} and y A {qr,~,  . . .,nm} as the
unknown inputs and known outputs, respectively, of the model, T. Our
immediate goal is to clarify the manner in which T, by way of the
coefficients au, relates x to y. Associated with (1.13) are three basic
questions:

1. Do the equations possess a solution x for each given y; that is, are the
equations consistent?

2. Is the solution unique; that is: are there enough independent equa-
tions to determine x?

3. What is the solution (or solutions)?

It is appropriate to ask the same questions concerning (1.1). Although the
third question may appear to be the most pertinent for a specific problem,
the answers to the other two give valuable insight into the structure of the
model and its applicability to the situation it is supposed to represent. Such
insight is generally the real reason for solving the equations, and certainly
the prime purpose of our present analysis.

We rephrase the problem in matrix notation in order to separate the
information about the system {au} from the information about the “state”
or “condition” of the system (the variables {$.},  { nj}).

(1.14)
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Matrix multiplication is defined in such a way that (1.13) and (1.14) are
equivalent.* The notation of (1.14) is close to the abstract symbolism of
(1.1). In order to be more direct concerning the meaning of T, we redefine
x and y as the column matrices:

Then (1.14) states

AX=y (1.15)

where A is the m X n matrix of equation coefficients. The system T can be

defined explicitly by TX i Ax; that is, the abstract operation of the system
model T on the “vector” x is multiplication of x by the matrix A.

Typical of the classical methods of solution of (1.15) is Cramer’s formula
(Appendix 1):

where A(i) is the matrix A with its ith column replaced by y. The formula
applies only when A is square (m = n) and det(A)#O.  The method
indicates that for square A, det(A)#O  is a necessary and sufficient
condition to guarantee a unique solution x to (1.15).

The most efficient scheme for evaluating a determinant requires
approximately n3/3 multiplications (Appendix 1 and P&C 1.3). Thus
solution for x using Cramer’s formula requires (n + l)n3/3  multiplications.
Compared with other techniques, Cramer’s formula is not a practical tool
for analyzing linear equations.

Row Reduction

Ordinary elimination of variables forms the basis for an efficient method
of solution to (1.15). In point of fact, it is the basis for most computer
algorithms for solving sets of linear algebraic equations. In essence, the
method consists in successively adding some multiple of one equation to
another until only one variable remains in each equation; then we obtain

*See Appendix 1 for a brief introduction to matrices and determinants.
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the unknowns by inspection. For example:

The elimination method reduces to an automatable procedure (or
algorithm) which requires no creative decision making by the user. Since
the unknowns are unaffected by the procedure, they need not be written
down; the above elimination process is expressed in matrix notation by

The first matrix in this elimination process is (A i y); we call it the
augmented matrix (we augmented A with y). We refer to the matrix version
of this elimination process as row reduction of the matrix (A i y). Specifi-
cally, row reduction of a matrix B consists in systematically operating on
the rows of B as if they were equations until (a) the first nonzero element
in each row is 1; (b) each column which contains the leading 1 for some
row has all its other entries 0; and (c) the leading l’s are in an order which
descends from the left, with all zero rows at the bottom. We need the last
requirement only to make the row-reduced matrix unique. We call the
row-reduced matrix the echelon form (or Hermite normal form) of B.

There are two basic techniques for row reducing a matrix. In Gauss-
Jordan elimination we complete the operations on each column, obtaining
a single 1 with all other elements 0, before concerning ourselves with
succeeding columns (Example 1). In Gaussian elimination we first eliminate
all elements below the main diagonal, one column at a time, thereby
making the matrix “upper triangular.” We then eliminate elements above
the diagonal by a process commonly called “back substitution.” In Ex-
ample 2 the first three steps demonstrate the triangularization, the last two
the back substitution. Although the two methods are similar, Gaussian
elimination is 33% more efficient than Gauss-Jordan elimination for large
sets of equations (say, n > 5); Gaussian elimination requires about n3/3
multiplications to row reduce (A i y) for an n X n matrix A. Gauss-Jordan
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elimination requires about n3/2  multiplications. Both methods are far
superior to Cramer’s formula for solving linear algebraic equations (P&C
1.3).
Example 1. Gauss Jordan Elimination

Example 2. Gaussian Elimination

In the row reduction of small matrices by hand, the number of
multiplications is of less concern than is accuracy. To guard against errors
during row reduction of a matrix B, we can add a “check” column whose
ith element is the sum of the elements in the ith row of B. Throughout the
row-reduction process the ith element in the check column should remain
equal to the sum of all other elements in the ith row; wherever it is not
equal to that sum, one of the elements in that. row is in error. Because
adding fractions by hand is complicated, we can avoid fractions by not
forcing nonzero elements to be 1 until the last step in the row-reduction
process.

Example 3. Row Reduction by Hand
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If we are interested in the solution to a set of equations Ax= y as a
function of y, we can carry an unspecified y through the row-reduction
process.

Example 4. Row Reduction with an Unspecified Column

The solution to the equations
Example 4 can be expressed

represented by the matrix (A i y) of

Clearly, the final coefficients on the variables {qi}  constitute the inverse
matrix A- ‘. The coefficients which multiply these variables during the
row reduction keep a record of the elimination operations on the rows
of A. The variables {rli}  merely serve to keep the coefficients separated.
The row reduction of Example 4 was, in effect, performed on (A i I) to
obtain (I i A- ‘), where I is the identity matrix; that is,*

Row reduction is an efficient method for computing A- ‘. Yet in most
instances, computation of A-’ is, in itself, inefficient, Computing A-’ by
using Gaussian elimination on (A i I) requires $n’ multiplications for an
n x n matrix A (P&C 1.3). Since this is four times the number of multipli-
cations needed to find the solution x for a given y, we find the inverse only
when we actually need it—when we are interested in the properties of the
system model (the set of equations) and of the matrix A which represents
it.

*In Appendix 1, A- * is defined as a matrix which satisfies A- ‘A = AA- ’ = I. In P&C 1.4 we
find that if such a matrix exists, the row reduction of (A i I) will produce it.
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Many system models lead to matrices which are not square; there can be
more equations than unknowns; there can be fewer. Even if the matrix is
square, its inverse need not exist. Yet for any m x n matrix A, row
reduction of (A i I) yields complete information about the equation
including answers to the questions of existence and uniqueness of the
solutions (P&C 1.1, 1.2).

Example 5. Solution by Row Reduction-a Nonsquare Matrix. Suppose we
obtain the following equations from three independent measurements of some
quantity

Then

which we row reduce to

We interpret the row reduced matrix to mean

Unless 9, = q2= q3, the equations allow no solution. In our example the equations
are not consistent; q1 = q3 = 1.2, but 772  = 1.3. If the equations were consistent, the
row-reduced equations indicate that the solution would not be unique; for example,
if r/2 were 1.2, the solution would be

Row and Column Interpretations

We have, to this point, viewed the matrix multiplication in (1.14) as the
operation of the system on x to produce y. This interpretation is expressed
in (1.15). We now suggest two more interpretations that will be useful
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throughout our discussions of modeling. It is apparent from (1.14) and
(1.15) that the columns of the matrix A are in some sense similar to y; they
both contain the same number (m) of elements. We call them column
vectors of A, and denote the jth column vector by A,,. Again, the rows of
A are similar to x, both containing n elements; we denote the ith row vector
of A by A(‘). If we focus on the column vectors of A, (1.14) becomes

(1.16)

That is, y is a simple combination of the column vectors of A; the elements
of x specify the combination. We will make use of this column vector
interpretation in Section 2.2 and thereafter.

Changing our focus to the row vectors of A, (1.14) becomes

(1.17)

Each element of y is determined by the corresponding row vector of A. By
this interpretation, we are merely focusing separately on each of the
equations of (1.13). We can use the geometrical pictures of analytic
geometry to help develop a physical feel for the individual algebraic
equations of (1.17). Suppose

(1.18)

where e is some constant. The 2 X 1 matrix x and the 1 X 2 matrices A(‘) are
each equivalent to a vector (or arrow) in a plane. We simply pick
coordinate axes and associate with each element of x or A(‘)  a component
along one of the axes. Thus we can represent (1.18) geometrically as in
Figure 1.7. The vectors x such that

A!‘)x  = a constant

terminate on a line perpendicular to the vector A(‘). The solution x to the
pair of equations lies at the intersection of the lines A(‘)x = 2 and Ac2)x = 3.
Since the lines in Figure 1.7 have a well-defined intersection, the equations
of (1.18) possess a well-defined (unique) solution. However, if e+O,  At2)+
A(‘) and the system becomes degenerate; the lines become parallel, the
equations become inconsistent, and there is no solution (intersection). If
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Figure 1.7. Row vector interpretation of (1.18) for e = 0.25.

the numbers on the right side of (1.18) were equal, the lines would overlap,
the equations would be consistent, but the solution would not be
unique—any x terminating on the common line would satisfy both
equations.

The geometrical example of (1.18) and Figure 1.7 introduces a signifi-
cant computational difficulty which exists in nearly degenerate systems of
equations. Slight changes in the numbers on the right side of (1.18) result
in slight shifts in the positions of the lines in Figure 1.7. Slight changes in
the equation coefficients cause slight tilts in these lines. If c is nearly zero,
the lines are nearly parallel, and slight perturbations in the line positions or
angles cause large swings in the intersection (or solution) x. A solution to a
matrix equation which is very sensitive to small changes (or errors) in the
data is called an unstable solution. A matrix (or the corresponding set of
equations) which leads to an unstable solution is said to be ill-conditioned.
Assume the matrix is normalized so that the magnitude of its largest
element is approximately one. Then the magnitudes of the elements of the
inverse matrix indicate the degree of sensitivity of the solution x of (1.14)
to errors in the data, { ati} or { rli}.  In Section 6.6 we define a condition
number which indicates the size of the largest elements of the inverse. A
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very large condition number implies that the matrix is ill-conditioned. The
size of det(A) is another indication of the ill-conditioning of the equations;
as the equations become more degenerate, det(A) must approach zero
(P&C 1.6). However, det(A) is not an absolute measure of ill-conditioning
as is the condition number.

Numerical Error

There are two fundamental sources of error in the solution to a set of
linear algebraic equations, measurement error and computer roundoff.
When the data that are used to make up a set of equations come from
physical measurements, these data usually contain empirical error. Even if
the data are exact, however, the numbers are rounded by the computer;
the data can be represented only to a finite number of significant digits.
Thus inaccuracies in the equation data are the rule, not the exception. As
computations are carried out, further rounding occurs. Although indi-
vidual inaccuracies are slight, their cumulative effect can be disastrous if
handled carelessly.

The following example demonstrates that slight errors in the data can be
vastly magnified by straightforward use of row-reduction techniques. Let

(1.19)

Suppose the element az2 is in error by 0.5%; that is, az2 = 1.01±0.005.
Elimination operations on the first column reduces (1.19) to

(1.20)

where the subtraction of two nearly equal numbers has magnified the error
at the element in question to about 50%, that is, the new element in row 2,
column 2, is 0.01±0.005. Were we to use this element to eliminate the
other elements in column 2, we would propagate this 50% error throughout
the matrix; that is, we would obtain

(1.21)

Further computations would be meaningless. Fortunately, we do not need
to divide by the inaccurate element. We merely interchange rows 2 and 3
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in (1.20) to obtain
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(1.22)

This interchange is equivalent to writing the equations in a different order.
We now use the larger and more accurate element “2” of row 2, column 2
to eliminate the other elements in column 2:

(1.23)

The element moved into position for elimination of other elements in its
column is called a pivot. The process of interchanging rows to avoid
division by relatively small (and therefore inaccurate) numbers is called
pivoting or positioning for size. We also can move the inaccurate element
from row 2, column 2 of (1.20) by interchanging columns 2 and 3 if we
change the order of the variables & and t, which multiply these columns.
This column interchange is also used in pivoting. All good computer
algorithms for solving sets of linear algebraic equations or for inverting
square matrices use some form of pivoting to minimize the magnification
and propagation of errors in the data. Scaling of the equations is also an
important part of these algorithms.

The matrix of (1.19) is not ill-conditioned. It is apparent, therefore, that
we must compute solutions carefully, regardless of the conditioning of the
equations, if we are to avoid magnification of errors. If the equations are
ill-conditioned, however, careful computing (scaling and pivoting) and the
use of double precision arithmetic (additional significant digits) are crucial.
Furthermore, division by small numbers is inevitable at some point in the
process of solving ill-conditioned equations, and errors will be magnified.
An iterative technique for improving the computed solution to a set of
ill-conditioned equations is described in P&C 1.5.

If a set of equations is very ill-conditioned, it may be that the underlying
system is degenerate. Perhaps the matrix would be singular, were it not for
empirical error in the data. (That is, perhaps e should be zero in (1.18) and
Figure 1.7.) Then in order to completely solve the set of equations, we not
only need to compute a particular solution x as described above, but we
also need to estimate the full set of “near solutions” (the locus of the
“nearly-overlapping” lines of Figure 1.7 for E = 0). We describe a technique
for computing this set of “near solutions” in Section 2.4. Further informa-
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tion on the solution of linear algebraic equations is contained in Forsythe
and Moler [1.4] and Forsythe [1.5].

1.6 Problems and Comments

*1.1 Exploring matrix equations by row reduction: let A be an m x n matrix.
Row reduction of (A i y) for an unspecified column vector y
=(77,*  * . q,)T,  or the equivalent row reduction of (A i I) for an m X m
matrix I, determines the conditions which must be satisfied by y in
order for the equation Ax= y to have a solution; the set of vectors y
for which a solution x exists is called the range of A. The same row
reduction determines the set of solutions x for y = (0. . . O)T;  this set of
solutions is referred to as the nullspace of A. If the nullspace of A
contains nonzero vectors, the solutions to Ax= y cannot be unique.
Let the matrix equation be

(a) Row reduce (A i I).
(b) Determine the range of A; that is, determine the relationships

that must exist among the elements {vi}  of y in order for the
matrix equation Ax= y to have a solution.

(c) Determine the nullspace of A.
(d) Determine the solutions x for the specified right-hand side y.
(e) Give an example of a matrix equation that is both inconsistent

and underdetermined; that is, an equation for which y is not in
the range of A and for which the nullspace of A is nonzero.

1.2 Use the row-reduction technique to determine the solutions to the
following sets of equations:
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1.3 Efficiency of computations: the number of multiplications performed
during a computation is a measure of the efficiency of a computa-
tional technique. Let A be an invertible n x n matrix. Determine the
number of multiplications required:
(a) To compute A-’ by Gaussian elimination;
(b) To compute A-’ by Gauss-Jordan elimination;
(c) To compute det(A), using Gaussian elimination to triangularize

A (Example 2, Appendix 1).
Determine the number of multiplications required to solve Ax = y for
a specific vector y by:
(d) Cramer’s rule [Hint: use the answer to (c)].
(e) The computation in (a) and the multiplication A- ‘y;
(j) Direct row reduction of (A i y).

1.4 Elementary matrices: the row reduction of an m X n matrix A consists
in performing elementary operations on the rows of A. Each such
operation is equivalent to the multiplication of A by a simple m x m
matrix which we refer to as an elementary matrix.
(a) For m = 5, find the elementary matrices corresponding to the

following:
(1) the multiplication of row 3 by a constant c;
(2) the addition of row 4 to row 1;
(3) the interchange of row 3 with row 5.

(b) Every elementary matrix is invertible. Find the inverses of the
elementary matrices determined in (a).
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(c) The row reduction of (A i I) is equivalent to multiplication of
(A i I) by an invertible matrix B (a product of elementary
matrices). Show that if A is square and (A i I) can be row
reduced to the form (I i B), then AB=BA=I,  and therefore
B=A-‘.

1.5 Iterative improvement of solutions: the solution to the matrix equation
Ax= y can be obtained by Gaussian elimination. As a result of
roundoff, the computed solution xi is usually in error. Denote the
error by x-xi, where x is the exact solution. A computable measure

of the error is the residual rl 4 y-Ax,. If we could solve exactly for
(x-xi) in the equation A(x - xi) = y - Ax, = r,, we could obtain the
exact solution. We solve Az, = rl by Gaussian elimination to obtain a

correction zi; x2. i xi + zi is an improved solution. By repeating the
improvement process iteratively, we obtain an approximate solution
which is accurate to the number of significant digits used in the
computation. However, the residuals rk =y --Ax, must be computed
to double precision; otherwise the corrections, zk, will not be im-
provements. See Forsythe and Moler [1.4, p. 49]. Let

To five figures, the solution to Ax = y is x = (-0.11864 0.76271) T .
(a) Compute an approximate solution xi by Gaussian elimination,

rounding all computations to three significant digits (slide rule
accuracy).

(b) Find the residual rl by hand computation to full accuracy.
(c) Round r1 to three significant digits, if necessary, and compute

the correction z,. Find x2=x, +z,.
1.6 Determinants and volumes: using a natural correspondence between

row vectors and arrows in a plane, we associate a parallelogram with
the rows of every real 2 x 2 matrix A. For example,
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(a) Show that the area of the above parallelogram is equal to the
determinant of the matrix A which is associated with it.

(b) For the right-hand coordinate system shown above, we define
the sign of the area to be positive if A(‘)  turns counterclockwise
inside the parallogram in order to reach Ac2);  if A(*)  turns
clockwise, the area is negative. Show graphically that the area of
the above parallelogram obeys the following properties of de-
terminants:
(1) The value of det(A) is not changed if we add to one row of A

a multiple of another row of A;
(2) The sign of det(A) is reversed if we interchange two rows of

(3) If we multiply one row of A by c, then det(A) is multiplied
by c;

(4) If the rows of A are dependent (i.e., one is a multiple of the
other), then det(A) = 0.

(c) The geometrical interpretation of det(A) can be extended to
n x n matrices by defining n-dimensional spaces, n-dimensional
parallelepipeds, and signed volumes. See Martin and Mizel [1.9].
Since det(AT)=  det(A),  the volume of the parallelopiped
described by the columns of A equals the volume described by
the rows of A. Verify graphically that the geometrical
interpretation of determinants extends to 3 x 3 matrices.

1.7 Partitioned matrices: it is sometimes useful to partition a matrix into
an array of submatrices. If P and  are conformable, we can form
the partitions

in a manner which allows us to express PQ as

(a) Assume that A is an invertible matrix. The following factoriza-
tion can be verified by the block multiplication described above:
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(b) Show that for any submatrix P of appropriate dimensions,

Use this result with (a) to show that

(c) Use (a) to show that

The number of multiplications required to compute the determinant
or the inverse of an n x n matrix can be reduced by a factor of eight
(if n is large) by use of the partitioning schemes in (b) or (c),
respectively.
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2

System Models :
Transformations

on Vector Spaces

The fundamental purpose in modeling a system is to develop a mechanism
for predicting the condition or change in condition of the system. In the
abstract model TX =y of (1.1), T represents (or is a model of) the system,
whereas x and y have to do with the condition of the system. We explore
first some familiar models for the condition or changes in condition of
systems. These examples lead us to use a generalization of the usual notion
of a vector as a model for the condition of a system. We then develop the
concept of a transformation of vectors as a model of the system itself. The
rest of the chapter is devoted to examination of the most commonly used
models-linear models-and their matrix representations.

2.1 The Condition of a System

The physical condition (or change in condition) of many simple systems
has been found to possess a magnitude and a direction in our physical
three-dimensional space. It is natural, therefore, that a mathematical
concept of condition (or change in condition) has developed over time
which has these two properties; this concept is the vector. Probably the
most obvious example of the use of this concept is the use of arrows in a
two-dimensional plane to represent changes in the position of an object on
the two-dimensional surface of the earth (see Figure 2.1). Using the usual
techniques of analytic geometry, we can represent each such arrow by a
pair of numbers that indicates the components of that arrow along each of
a pair of coordinate axes. Thus pairs of numbers serve as an equivalent
model for changes in position.

An ordinary road map is another model for the two-dimensional surface
of the earth. It is equivalent to the arrow diagram; points on the map are

33
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Figure 2.1. An “arrow vector” diagram.

equivalent to the arrow tips of Figure 2.1. The only significant difference
between these two models is that the map emphasizes the position (or
condition) of an object on the earth, whereas the arrow diagram stresses
the changes in position and the manner in which intermediate changes in
position add to yield a total change in position. We can also interpret a
position on the map as a change from some reference position. The
manner in which we combine arrows or changes in position (the paral-
lelogram rule) is the most significant characteristic of either model. Con-
sequently we focus on the arrow model which emphasizes the combination
process.

Reference arrows (coordinate axes) are used to tie the arrow model to
the physical world. By means of a reference position and a pair of
reference “position changes” on the surface of the earth, we relate the
positions and changes in position on the earth to positions and arrows in
the arrow diagram. However, there are no inherent reference axes on either
the physical earth or the two-dimensional plane of arrows.

The same vector model that we use to represent changes in position can
be used to represent the forces acting at a point on a physical object. The
reason we can use the same model is that the magnitudes and directions of
forces also combine according to the parallelogram rule. The physical
natures of the reference vectors are different in these three situations: in
one case they are changes in position on the earth, in another they are
arrows, in the third, forces. Yet once reference vectors are chosen in each,
all three situations become in some sense equivalent; corresponding to
each vector in one situation is a vector in the other two; corresponding to
each sum of vectors in one is a corresponding sum in the other two. We
use the set of arrows as a model for the other two situations because it is
the most convenient of the three to work with.

The set of complex numbers is one more example of a set of objects
which is equivalent to the set of arrows. We usually choose as references in
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the set of complex numbers the two numbers 1 and i. Based on these
reference numbers and two reference arrows, we interpret every arrow as a
complex number. Here we have one set of mathematical (or geometrical)
objects serving as a model for another set of mathematical objects.

Consider now a physical system which is more complicated than the two
physical systems discussed above. Imagine a flat metal sheet exposed to the
sun and partly submerged in a stream. (The sheet is representative of any
object subject to heat sources and coolants.) The thermal condition of the
sheet is described by the temperature distribution over the surface of the
sheet. A change in the cloud cover in the sky will change the pattern in
which the sun falls on the sheet. As a result, the temperature distribution
will change. Assuming the temperature distribution reaches a new steady
state, the new distribution equals the old distribution plus the change in
the distribution. We model this situation as follows. Let (s,t) denote a
position in some two-dimensional coordinate system on the surface of the
sheet. Let f(s,t) be the temperature at the point (s,t),  measured in degrees
centigrade, for all points (s,t) on the sheet. We model a change in the
thermal condition of the sheet by

(2.1)

for all (s,t) on the sheet. In effect, (2.1) defines fchange.  However, we hope to
use a model of the system to predict fchange.  Then (2.1) will determine fnew.
Equation (2.1) is a “distributed” equivalent of the arrow diagram in Figure
2.1; each of these models illustrates the manner in which changes in
condition combine to yield a net condition of the system in question. Once
again, references have been chosen in both the physical system and the
model (mathematical system) in order to equate the two systems; choosing
physical units of measurement (degrees centigrade) amounts to fixing the
relationship between the physical and mathematical systems.

The most significant difference between a system’ modeled by Figure 2.1
and a system modeled by (2.1) consists in the nature of the conditions in
each system. In one case we have a quantity with magnitude and direction
(e.g., force); in the other, a quantity without magnitude and direction—a
quantity that is distributed over a two-dimensional region. Yet there are
important similarities between the two systems. The changes in condition
of the system are under scrutiny; also, several changes in condition
combine by simple rules to yield a total or net condition.

Vector Spaces

By expressing various types of problems in a common framework, we learn
to use concepts derived from one type of problem in understanding other
types of problems. In particular, we are able to draw useful analogies
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between algebraic equations and differential equations by expressing both
types of equations as “vector” equations. Therefore, we now generalize the
common notion of a vector to include all the examples discussed in the
previous section.

Definition. A linear space (or vector space) v is a set of elements x, y,
Z,***, called vectors, together with definitions of vector addition and scalar
multiplication.

a. The definition of vector addition is such that:
1. To every pair, x and y, of vectors in V there corresponds a

unique vector x+ y in “/, called the sum of x and y.
2 .  x+y=y+x.
3 .  (x+y)+z=x+(y+z).
4. There is a unique vector 8 in ?r, called the zero vector (or

origin), such that x + 8 =x for all x in ‘V.
5. Corresponding to each x in 7/ there is a unique vector “-x” in

Ir such that x+(-x)=@.
b. The definition of scalar multiplication is such that:

1. To every vector x in ?r and every scalar a there corresponds a
unique vector ax in Y, called the scalar multiple of x?

2. a(bx) = (ab)x.
3 . l(x) =x (where 1 is the unit scalar).
4 .  a(x+y)=ax+  ay.
5 .  (a+b)x=ax+  bx.

Notice that a vector space includes not only a set of elements (vectors)
but also “valid” definitions of vector addition and scalar multiplication.
Also inherent in the definition is the fact that the vector space Ir contains
all “combinations” of its own vectors: if x and y are in V, then ax+ by is
also in ?r. The rules of algebra are so much a part of us that some of the
requirements may at first appear above definition; however, they are
necessary. A few more vector space properties which may be deduced from
the above definition are as follows:

1. Ox= 8 (where “0” is the zero scalar).
2. d9= 8.
3. (- 1)x= -xx.

Example 1. The Real 3-tuple Space S3. The space 9’ consists in the set of all

*The scalars are any set of elements which obey the usual rules of algebra. A set of elements
s these rules constitutes a field (see Hoffman and Kunze [2.6]). We usually use as
which obey
scalars either the real numbers or the complex numbers. There are other useful fields, however
(P&C 2.4).
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real  3- tuples  (al l  ordered sequences of  three real  numbers) ,  x =  (&,&,Q,  y
= (~i,r)~,~),  with the following definitions of addition and scalar multiplication:

(2.2)

It is clear that the zero vector for this 3-tuple space, 8 = (0,0,0), satisfies x + 8 =x.
We show that 0 is unique by assuming another vector y also satisfies x+ y =x; that
is,

or & + 7jj = &. The properties of scalars then require vi=0 (or y = e). It is easy to
prove that 9L3, as defined above, satisfies the other requirements for a linear space.
In each instance, questions about vectors are reduced to questions about scalars.

We emphasize that the definition of a3 says nothing about coordinates.
Coordinates are multipliers for reference vectors (reference arrows, for
instance). The 3-tuples are vectors in their own right. However, there is a
commonly used correspondence between $FL3  and the set of vectors (ar-
rows) in the usual three-dimensional space which makes it difficult not to
think of the 3-tuples as coordinates. The two sets of vectors are certainly
equivalent. We will, in fact, use this natural correspondence to help
illustrate vector concepts graphically.

Example 2. The Two-Dimensional Space of Points (or Arrows). This space con-
sists in the set of all points in a plane. Addition is defined by the parallelogram rule
using a fixed reference point (see Figure 2.2). Scalar multiplication is defined as
“length” multiplication using the reference point. The zero vector is obviously the

Figure 2.2. The two-dimensional space of points.
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reference point. Each of the requirements can be verified by geometrical argu-
ments.

An equivalent (but not identical) space is one where the vectors are not the
points, but rather, arrows to the points from the reference point. We distinguish
only the magnitude and direction of each arrow; two parallel arrows of the same
length are considered identical.

Both the arrow space and the point space are easily visualized: we often
use the arrow space in two or three dimensions to demonstrate concepts
graphically. Although the arrow space contains no inherent reference
arrows, we sometimes specify reference arrows in order to equate the
arrows to vectors in CJL3. Because of the equivalence between vectors in C9L3
and vectors in the three-dimensional space of points, we occasionally refer
to vectors in $R3 and in other spaces as points.

Example 3. The Space of Column Vectors ‘X3 x ‘. The space 91L3  x ’ consists in
the set of all real 3x1 column matrices (or column vectors), denoted by

with the following definitions of addition and scalar multiplication:

(2.3)

In order to save space in writing, we occasionally write vectors from
9lL3x  ’ in the transposed form x = (5, t2 t3)‘. The equivalence between
9lL3x  ’ and 9L3 is obvious. The only difference between the two vector
spaces is in the nature of their vectors. Vectors in 9lL3x ’ can be multiplied
by m x 3 matrices (as in Section 1.5), whereas vectors in CR3 cannot.
Example 4. The Space of Real Square-Summable Sequences, I,. The space t2
consists in the set of all infinite sequences of real numbers, x= ([r,&,t3,. . .),
Y=@I~J~,Q,...)  which are square summable; that is, for which XF- rti2 < cc.
Addition and scalar multiplication in Z, are defined by

ax ii (a&&, 43,.  . . )
(2.4)

Most of the properties required by the definition of a linear space are easily
verified for Z2;  for instance, the zero vector is obviously 8 = (0,0,0, . . .). However,
there is one subtle difference between 1, and the space 9L3 of Example 1. Because
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the sequences in Z2 are infinite,
in l2. It can be shown that

it is not obvious that if x and y are in I,, x + y is also

[This fact is known as the triangle inequality (P&C 5.4)]. Therefore,

and x + y is square-summable. The requirement of square summability is a definite
restriction on the elements of Z2; the simple sequence (I, 1, 1,. . .), for instance, is not
in 12.

The definition of CR3 extends easily to w, the space of n-tuples of real
numbers (where n is a positive integer). The space anx ’ is a similar
extension of X3 x ’ Mathematically these “n-dimensional” spaces are no.
more complicated than their three-dimensional counterparts. Yet we are
not able to draw arrow-space equivalents because our physical world is
three-dimensional. Visualization of an abstract vector space is most easily
accomplished by thinking in terms of its three-dimensional counterpart.

The spaces CRn, wx ‘, and I, can also be redefined using complex
numbers, rather than real numbers, for scalars. We denote by $ the
complex n-tuple space. We use the symbol %zx ’ for the space of complex
n x 1 column vectors. Let 1; represent the space of complex square-
summable sequences. (We need a slightly different definition of square
summability for the space Zi:EF= llsi12  < cc). In most vector space defi-
nitions, either set of scalars can be used. A notable exception to inter-
changeability of scalars is the arrow space in two or three dimensions. The
primary value of the arrow space is in graphical illustration. We have
already discussed the equivalence of the set of complex scalars to the
two-dimensional space of arrows. Therefore, substituting complex scalars
in the real two-dimensional arrow space would require four-dimensional
graphical illustration.

We eventually find it useful to combine simple vector spaces to form
more complicated spaces.

Definition. Suppose ?i and w are vector spaces. We define the Cartesian
product ?r x 02ui of the spaces Ir and % to be the set of pairs of vectors

z i (X,Y), with x in Ir and y in ‘?.$.  We define addition and scalar
multiplication of vectors in Ir x ‘% in terms of the corresponding opera-
tions in ‘v and in w : if zr = (x,,y,) and z2 = (x2,y2), then

z,+z,  A 0% + x29 Y 1+ Y2)

az, =*(axPaY,)
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Example 5. A Cartesian Product. Let x = (&,t2),  a vector in 3’. Let y= (qr), a

vector in 9%‘.  Then z i ((51,52),  (qi)) is a typical vector in 9L2 x 9’. This Cartesian
product space is clearly equivalent to 913. Strictly speaking, however, z is not in R3.
It is not a 3-tuple, but rather a 2-tuple followed by a 1-tuple. Yet we have no need
to distinguish between 913 and %2X 9,‘.

Function Spaces

Each vector in the above examples has discrete elements. It is a small
conceptual step from the notion of an infinite sequence of discrete num-
bers (a vector in I,) to the usual notion of a function—a “continuum” of
numbers. Yet vectors and functions are seldom related in the thinking of
engineers. We will find that vectors and functions can be viewed as
essentially equivalent objects; functions can be treated as vectors, and
vectors can be treated as functions. A function space is a linear space
whose elements are functions. We usually think of a function as a rule or
graph which associates with each scalar in its domain a single scalar value.
We do not confuse the graph with particular values of the function. Our
notation should also keep this distinction. Let f denote a function; that is,
the symbol f recalls to mind a particular rule or graph. Let f(t) denote the
value of the function at t. By f = g, we mean that the scalars f(t) and g(t) are
equal for each t of interest.

Example 6. 9”, The Polynomials of Degree Less Than n. The space 9” consists
in all real-valued polynomial functions of degree less than n : f(t) = & + t2t + - - - +
&,t”-’  for all real t. Addition and scalar multiplication of vectors (functions) in qn
are defined by

(2.5)

for all t. The zero function is  for all t. This zero function is unique; if the
function g also satisfied f + g=f, then the values of f and g would satisfy

(f+g)(t)=f(t)+g(t)=f(t)

It would follow that for all t, or The other requirements for a vector
space are easily verified for qp”.

We emphasize that the vector f in Example 6 is the entire portrait of the
function f. The scalar variable t is a “dummy” variable. The only purpose
of this variable is to order the values of the function in precisely the same
way that the subscript i orders the elements in the following vector from Z2:

x=(&t2 ,..., ,,**-5. )
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Figure 2.3. A function f and its values f(t).

Figure 2.3 distinguishes graphically between the vector f and its value at t
for the specific function f defined by f(t) = 2 + 0.5 t. Figure 2.4 distinguishes
in a similar manner between an infinite sequence x and its ith element.

It is evident that the vector x from Z2 is just as much a function as is the
polynomial f from (Tn. In the space of polynomials, the index t is
continuous; in the space of infinite sequences the index i is discrete—it
takes on only positive integral values. In the latter case, we could as well
refer to the ith element li as the value of x at i. In point of fact, most
vector spaces can be interpreted as spaces of functions; the terms vector
space and function space are somewhat interchangeable. However, it is
common practice to use the term function space only for a space in which
the index t varies continuously over an interval.

It is unfortunate that the symbol f(t) is commonly used to represent both
a function and the value of that function at t. This blurring of the meaning
of symbols is particularly true of the sinusoidal and exponential functions.
We will try to be explicit in our distinction between the two concepts. As
discussed in the preface, boldface type is used to emphasize the interpreta-
tion of a function as a vector. However, to avoid overuse of boldface type,
it is not used where emphasis on the vector interpretation appears un-

i

Figure 2.4. The elements 6 of an infinite
sequence x.
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necessary; thus the value of a function f at t may appear either as f(t) or as
f(t). Furthermore, where confusion is unlikely, we sometimes use standard
mathematical shorthand; for example, we use Jb,fgdt  to mean Jb,f(t)g(t)dt.

It is difficult to describe or discuss functions in any detail except in
terms of their scalar values. In Example 6, for instance, the definitions of
addition and scalar multiplication were given in terms of function values.
Furthermore, we resorted again to function values to verify that the vector
space requirements were met. We will find ourselves continually reducing
questions about functions to questions about the scalar values of those
functions. Why then do we emphasize the function f rather than the value
f(t)? Because system models act on the whole vector f rather than on its
individual values. As an example, we turn to the one system model we
have explored thus far-the matrix equation Ax= y which was introduced
in Section 1.5. If A is an m X n matrix, the vector x is a column matrix in
9lLnX1; y i s  in  9Lmx1. Even though the matrix multiplication requires
manipulation of the individual elements (or values) of x, it is impossible to
determine any element of y without operating on all elements of x. Thus it
is natural to think in terms of A operating on the whole vector x. Similarly,
equations involving functions require operations on the whole function
(e.g., integration), as we shall see in Section 2.3.

Example 7. The Space e(iz,  b) of Continuous Functions. T h e  v e c t o r s  i n  e(a,b)
are those real functions which are defined and continuous on the interval
Addition and scalar multiplication of functions in (?(a,  b) are defined by the
standard function space definitions (2.5) for all t in [a,b].  It is clear that the sums
and scalar multiples of continuous functions are also continuous functions.

Example 8. The Real Square-integrable Functions. The space
consists in all real functions which are defined and square integrable on the
interval [a,b]; that is, functions f for which*

/
b2f (t)dt<oo

a

Addition and scalar multiplication of functions in are defined by (2.5) for
all t in [a,b]. The space lZ,(a,b)  is analogous to Z,. It is not clear that the sum of
two square-integrable functions is itself square integrable. As in Example 4, we
must rely on P&C 5.4 and the concepts of Chapter 5 to find that

*The integral used in the definition of C,(a,b) is the Lebesgue integral. For all practical
purposes, Lebesgue integration can be considered the same as the usual Riemann integration.
Whenever the Riemann integral exists, it yields the same result as the Lebesgue integral. (See
Royden [2.l].)
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It follows that if f and g are square integrable, then f + g is square integrable.

Example 9. A Set of Functions. The set of positive real functions [together with
the definitions of addition and scalar multiplication in (2.91 does not form a vector
space. This set contains a positive valued function f, but not the negative valued
function -f; therefore, this set does not include all sums and multiples of its
members.

Example 10. Functions of a Complex Variable. Let Y be the space of all
complex functions w of the complex variable z which are defined and analytic on
some region G! of the complex z plane.* For instance, s1 might be the circle ]z 1 Q 1.
We define addition and scalar multiplication of functions in Ir by

(2.6)

for all z in Sk In this example, the zero vector 8 is defined by 8 (z) = 0 for all z in St.
(We do not care about the values of the functions 0 and w outside of a.)

Exercise 1. Show that if w1 and w2 are in the space V of Example 10,
then w1 + w2 is also in ‘v.

Example 11. A Vector Space of Random Variables t A random variable x is a
numerical-valued function whose domain consists in the possible outcomes of an
experiment or phenomenon. Associated with the experiment is a probability
distribution. Therefore, there is a probability distribution associated with the values
of the random variable. For example, the throwing of a single die is an experiment.
We define the random variable x in terms of the possible outcomes u by

= 2,4,6 (the die is even)

= 1,3,5 (the die is odd)

The probability mass function w associated with the outcome (I of the experiment is
given by

*Express the complex variable t in the form s+ it, where s and t are real. Let the complex
function w be written as u+ iv, where u(z) and v(z) are real. Then w is analytic in !G? if and
only if the partial derivatives of II and v are continuous and satisfy the Cauchy-Riemann
conditions in Sz:

For instance, w(z) A z2 is analytic in the whole z plane. See Wylie [2.11].
† See Papoulis [2.7], or Cramér and Leadbetter [2.2].
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Then the probability mass function w, associated with the values of the random
variable x is

o,(x) = 4 forx=O,l

We can define many other random variables
experiment. One other random variable is

(functions) for the same die-throwing

1 (the die is 1)

2,3,4,5,6 (the die is not 1)

where

Oy(Y) =$ fory=O

=i fory=l

Two random variables x1 and x2 are equal if and only if their values x,(u)  and
x2(u)  are identical for all possible outcomes u of the experiment.

A vector space of random variables defined on a given experiment consists in a
set of functions defined on the possible outcomes of the experiment, together with
the following definitions of addition and scalar multiplication*:

for all possible outcomes u of the experiment. Let Y be the space of all possible
random variables defined on the above die-throwing experiment. If x and y are the
particular vectors described above, then is given by

and

What is the zero random variable for the vector space Y? It is       = 0 for   = 1,…,6.

*We note that the set of functions must be such that it includes all sums and scalar multiples
of its members.
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2.2 Relations Among Vectors

Combining Vectors

Assuming a vector represents the condition or change in condition of a
system, we can use the definitions of addition and scalar multiplication of
vectors to find the net result of several successive changes in condition of
the system.

Definition. A vector x is said to be a linear combination of the vectors x,,
x29 - * ’ , x, if it can be expressed as

(2.7)

for some set of scalars ci, . . . , cn. This concept is illustrated in Figure 2.5
where x= fxi +x2-xX,.

A vector space ‘Y is simply a set of elements and a definition of linear
combination (addition and scalar multiplication); the space V includes all
linear combinations of its own elements. If S is a subset of ?r, the set of
all linear combinations of vectors from S , using the same definition of
linear combination, is also a vector space. We call it a subspace  of V. A
line or plane through the origin of the three-dimensional arrow space is an
example of a subspace.

Definition. A subset % of a linear space y is a linear subspace (or linear
manifold) of V if along with every pair, x, and x2, of vectors in %, every
linear combination cix, + czx2  is also in % .* We call ‘% a proper subspace
if it is smaller than Ir; that is if % is not V itself.

Figure 2.5. A linear combination of arrows.

*In the discussion of infinite-dimensional Hilbert spaces (Section 5.3), we distinguish between
a linear subspace and a linear manifold. Linear manifold is the correct term to use in this
definition. Yet because a finite-dimensional linear manifold is a linear subspace as well, we
emphasize the physically motivated term subspace.
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Example 1. A Linear Subspace. The set of vectors from a3 which are of the
form (Cl, $9 cr + ~2) forms a subspace of ?k3.  It is, in fact, the set of all linear
combinations of the two vectors (1, 0, 1) and (0, 1, 1).

Example 2. A Solution Space. The set QJ  of all solutions to the matrix equation

is a subspace of 32,3x I. By elimination (Section 1.5), we find that %J contains all
vectors of the form (0 t2 -t2)=.  Clearly, % consists in all linear combinations of
the single vector (0 1 -l)T. This example extends to general matrices. Let A be an
m x n matrix. Let x be in %“x  ‘. Using the rules of matrix multiplication (Appen-
dix 1) it can be shown that if x1 and x2 are solutions to Ax- 8, then an arbitrary
linear combination crxt + c2x2  is also a solution. Thus the space of solutions is a
subspace of 31t” x ‘.

Example 3. Subspaces (Linear Manifolds) of Functions. Let (.?2(s2) be the space of
all real-valued functions which are defined and have continuous second partial
derivatives in the two-dimensional region Sk (This region could be the square
0 Q s < 1,O < t < 1, for instance.) Let r denote the boundary of the region Qt. Linear
combination in e’(s2)  is defined by

(f+g)W i f(s,t)+gb,t)

(afh 0 9 df(s, 0)
(2.8)

for all (s, t) in !Z The functions f in (Z’(G)  which satisfy the homogeneous boundary
condition f(s, t) = 0 for (s, t) on I? constitute a linear manifold of e2(Q).  For if f, and
f, satisfy the boundary condition, then (ctf, + c2fz)(s,  t) = crf,(s,  t) + czf2(s, t) = 0,
and the arbitrary linear combination ctfr + c2f2  also satisfies the boundary condi-
tion.

The set of solutions to Laplace’s equation,

(2.9)

for all (s, t) in !J,  also forms a linear manifold of c’(s2).  For if f, and f2 both satisfy
(2.9),  then

a 2klfl(s, t) + czus,  01 + a 2[Clf,(s,t)  + c2f2(s,  01 = o

as2 at2

and the arbitrary linear combination crf, + c2f2  also satisfies (2.9). Equation (2.9) is
phrased in terms of the values of f. Laplace’s equation can also be expressed in the



Sec. 2.2 Relations Among Vectors 47

vector notation

V2f=0 (2.10)

The domain of definition &? is implicit in (2.10). The vector 8 is defined by
8 (s, t) = 0 for all (s, t) in a.

In using vector diagrams to analyze physical problems, we often resolve
a vector into a linear combination of component vectors. We usually do
this in a unique manner. In Figure 2.5, x is not a unique linear combina-
tion of xi, x2, and x3; x = Ox,  +3x,+ 2x, is a second resolution of x; the
number of possible resolutions is infinite. In point of fact, x can be
represented as a linear combination of any two of the other vectors; the
three vectors xi, x2, and x3 are redundant as far as representation of x is
concerned.

Definition. The vectors xi, x2,. . . , x,, are linearly dependent (or coplanar) if
at least one of them can be written as a linear combination of the others.
Otherwise they are linearly independent. (We often refer to sets of vectors
as simply “dependent” or “independent.“)

In Figure 2.5 the set {xi, x2, x3}  is dependent. Any two of the vectors
form an independent set. In any vector space, a set which contains the 8
vector is dependent, for 8 can be written as zero times any other vector in
the set. We define the 8 vector by itself as a dependent set.

The following statement is equivalent to the above definition of inde-
pendence: the vectors xi, x2,. . . , x, are linearly independent if and only if

c,x,+c2x2+- +c,x,=e  * c1=***  =cn=o (2.11)

Equation (2.11) says the “zero combination” is the only combination that
equals 8. For if ci were not 0, we could simply divide by Ci to find Xi as a
linear combination of the other vectors, and the set (xi> would be
dependent. If ci = 0, Xi cannot be a linear combination of the other vectors.
Equation (2.11) is a practical tool for determining independence of vectors.

Exercise 1. Explore graphically and by means of (2.11) the following set
of vectors from

Example 4. Determining Independence In the space (X3 let xl = (1, 2, l), x2 = (2,
3, l), and x3 = (4, 7, 3). Equation (2.11) becomes
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Each component of this vector equation is a scalar-valued linear algebraic equa-
tion. We write the three equations in the matrix form:

We solve this equation by elimination (Section 1.5) to find cl = - 2c, and c2 = - c3.
Any choice for c3 will yield a particular nonzero linear combination of the vectors
x1,  x2, x3 which equals 8. The set is linearly dependent.

Definition. Let s e {xi, x2,. . . ,x,,} be a set of vectors from a linear space
V. The set of all linear combinations of vectors from S is called the
subspace of Y spanned (or generated) by 5 .* We often refer to this
subspace as span( S ) or span

Bases and Coordinates

We have introduced the vector space concept in order to provide a
common mathematical framework for different types of systems. We can
make the similarities between systems more apparent by converting their
vector space representations to a standard form. We perform this stan-
dardization by introducing coordinate systems. In the example of Figure
2.5, the vectors {x, xi, x2, x3} span a plane; yet any two of them will span
the same plane. Two of them are redundant as far as generation of the
plane is concerned.

Definition. A basis (or coordinate system) for a linear space ?r is a
linearly independent set of vectors from ?r which spans Ir.

Example 5. The Standard Bases for $Iln, OJR”  x ‘, and 9”. It is evident that any
three linearly independent vectors in S3 form a basis for CR3. The n-tuples

(2.12)

form a basis for 9’. The set E i {et,...,e,} is called the standard basis for 9Ln.

We use the same notation to represent the standard basis for

where e, is a column vector of zeros except for a 1 in the ith place. The set % i {f,,

f,, * * * , f,} defined by fk(t)= tkT1  forms a basis for 9” ; it is analogous to the
standard bases for 3,” and

*The definition of the space spanned by an infinite set of vectors depends on limiting
concepts. We delay the definition until Section 5.3.



Sec. 2.2 Relations Among Vectors 49

Example 6. The Zero Vector Space. The set { 6} together with the obvious
definitions of addition and scalar multiplication forms a vector space which we
denote 0 . However, the vector 8, by itself, is a dependent set. Therefore 0 has no
basis.

If !X : {Xi,  x2,. . .,x,} is a basis for the space V, any vector x in V can
be written uniquely as some linear combination

x=clxl+czx2+“’  +c,x, (2.13)

of vectors in % . The multipliers ci are called the coordinates of x relative to
the ordered basis %. It is easy to show that the coordinates relative to a
particular ordered basis are unique: just expand x as in (2.13) for a second
set {di} of coordinates; then independence of the basis vectors implies
4= ci.

It is common to write the coordinates of a vector relative to a particular
basis as a column matrix. We will denote by [xl% the coordinate matrix of
the vector x relative to the (ordered) basis % ; thus corresponding to (2.13)
we have

(2.14)

Some bases are more natural or convenient than others. We use the term
natural basis to mean a basis relative to which we can find coordinates by
inspection. The bases of Example 5 are natural bases for %‘, Xnx i, and
CP’.  Thus if f(t)=&+t2‘zt+--  +&t”-‘, then [f],=(& 52-$,)T.

Example 7. Coordinates for Vectors in S3. Let OX  i {x1, x2, x,} be an ordered
basis for 9t3, where x1 = (1, 2, 3), x2= (2, 3, 2), and x3=(2, 5, 5). Let x = (1, 1, 1). To
find [xl,, we must solve (2.13):

++2C2+2C3, 2Cl+3C2+5C3, 3C,+2C2+5C3)

We rewrite the vector (3-tuple) equation in the matrix notation:

(2.15)
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We solved this equation in Example 1 of Section 1.5. The result is

The coordinate matrix of Example 7 is merely a simple way of stating
that x= 3x1 +$x2- $,x3.  We choose to write the coordinates of a vector x
as a column matrix because it allows us to carry out in a standard matrix
format all manipulations involving the coordinates of x.

In Example 4 of Section 1.5 we solved (2.15) with a general right-hand
side; that is, for x=(~~,r/~,~).  That solution allows us to determine quickly
the coordinate matrix, relative to the basis !X of Example 7, for any vector
x in $F13,  including the case x= (0, 0, 0). In general, (2.13) includes (2.11);
inherent in the process of finding coordinates for an arbitrary vector x is
the process of determining whether 3(, is a basis. If % is not independent,
there will exist nonzero coordinates for x= 8. If % does not span the
space, there will be some vector x for which no coordinates exist (P&C
2.7).

Example 8. Coordinates for Vectors in 9’. Let S i {f,, f2, f,} be an ordered
basis for q3, where f,(t)= 1 +2t+3t2,  f2(t)=2+3t+2t2,  and f3(t)=2+5t+5t2.  Let
f be defined by f(t) = 1 + t + t2. To find [f],, we solve (2.13), f = c,f l + c2f2  + c3f3.  To
solve this equation, we evaluate both sides at t:

f(t) = (c,f1+ c2f2 + c$3)(0

= Clf,(d + &W + @3(t) (2.16)

1+t+t2=c1(1+2t+3t2)+c2(2+3t+2t2)+c3(2+5t+5t2)

Equating coefficients on like powers of t we again obtain (2.15). The coordinate
matrix of f is

In order to solve the vector (function) equation (2.16) we converted it to
a set of scalar equations expressed in matrix form. A second method for
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converting (2.16) to a matrix equation in the unknowns {c,.}  is to evaluate
the equation at three different values of t. Each such evaluation yields an
algebraic equation in { ci}.  The resulting matrix equation is different from
(2.15),  but the solution is the same. We now describe a general method,
built around a natural basis, for converting (2.13) to a matrix equation. The
coordinate matrix of a vector x relative to the basis !?C = {x1,. . . , xn} is
Cxln = (c, - * * CJ’, where the coordinates ci are obtained by solving the
vector equation

x=c,x,+-*-  +c,x,

A general method for obtaining an equivalent matrix equation consists in
taking coordinates of the vector equation relative to a natural basis —a
basis relative to which coordinates can be obtained by inspection. The
vector equation becomes

(2.17)

We determine [xl%, [x&, …  , [x,]~ by inspection. Then we solve (2.17)
routinely for [xl%.

Example 9. Finding Coordinates via a Natural Basis. Let the set 9 2 {f,, f,, f3}

be a basis for 9’, where f,(t)=l+2t+3t2, f2(t)=2+3t+2t2,  and f,(t)=2+5t+
5 t2. We seek [f], for the vector f(t) = 1 + t + t2. To convert the defining equation for
coordinates into a matrix equation, we use the natural basis CJC i {gl, g2, g3},
where gk(t)= t k-1. For this problem, (2.17) becomes

VI, = (PII, :. P21, i [r,l,)mT

or

The solution to this equation is [f], = (5 $ - 3)‘. (Compare with Example 8.)
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Typically, the solution of (2.17) requires the elimination procedure

(2.18)

If we wish to solve for the coordinates of more than one vector, we still
perform the elimination indicated in (2.18),  but augment the matrix with
all the vectors whose coordinates we desire. Thus if we wish the
coordinates for zi, z2, and z3, we perform elimination on

This elimination requires less computation than does the process which
goes through inversion of the matrix ([xi]%  i l - l i [x,,]~),  regardless of
the number of vectors whose coordinates we desire (P&C 1.3).

Example 10. A Basis and Coordinates for a Subspace. Let %! be the subspace of
Tp3 consisting in all functions f defined by the rule f(t)=& + t2t + (& +&)t2 for
some [i and t2. Note that the standard basis functions for Y3 are not contained in
‘?lf.  The functions defined by gi( t) = 1 + t2 and g2(t)  = t + t2 are clearly independent
vectors in %. Because there are two “degrees of freedom” in % (i.e., two
parameters [i and 42 must be given to specify a particular function in 7JJ) we

expect the set 9 4 {gi, g2} to span %f and thus be a basis. We seek the coordinate
matrix [f], of an arbitrary vector f in ‘%f  . That is, we seek cl and c2 such that

f(t) = c&(t) + c2g2w

The matrix equation (2.17) can be written by inspection using the natural basis FYZ
of Example 9:

[II, = ([&I, i k¶2la)Me ~

Then Ci =& and

lfl
(1

9 =
(6 12

Because we were able to solve uniquely for the coordinates, we know that
4 is indeed a basis for %. The subspace % is equivalent to the subspace
of Example 1. Note that the elimination procedure does not agree precisely
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with (2.18) because there are only two degrees of freedom among the three
coefficients of the arbitrary vector f in W .

Dimension

The equivalence between the three vector spaces CR3,  T3, and 9lL3x  ’ is
apparent from Examples 7 and 8; The subspace % of Example 10,
however, is equivalent to 9R,2x ’ rather than 9L3 x I, even though the
elements of % are polynomials in (Y3. The key to the equivalence lies not
in the nature of the elements, but rather in the number of “degrees of
freedom” in each space (the number of scalars which must be specified in
order to specify a vector); more to the point, the key lies in the number of
vectors in a basis for each space.

Definition. A vector space is finite dimensional if it is spanned by a finite
number of vectors. It is intuitively clear that all bases for a finite-
dimensional space contain the same number of vectors. The number of
vectors in a basis for a finite-dimensional space Y is called the dimension
of ?r and is denoted by dim( ‘Y).

Thus CR3 and 53”  are both three-dimensional spaces. The subspace % of
Example 10 has dimension 2. Knowledge of the dimension of a space (or a
subspace) is obtained in the course of determining a basis for the space

(subspace). Since the space 0 2 { 8} has no basis, we assign it dimension
zero.

Example 11. A Basis for a Space of Random Variables. A vector space Y of
random variables, defined on the possible outcomes of a single die-throwing
experiment, is described in Example 11 of Section 2.1. A natural basis for ‘v is the

set of random variables 5% 9 {Xi, i= 1,...,6},  where

Xi(U) ’ 1 for u = i (the die equals i)

i 0 for (I # i (the die does not equal i)

That 5% is a basis for Y can be seen from an attempt to determine the coordinates
with respect to 5X of an arbitrary random variable z defined on the experiment. If

then [z]% = (ci . . . C6)T;  a unique representation exists.
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The random variables {xi,. . . , xg}  are linearly independent. However, they are
not statistically independent. Statistical independence of two random variables x
and y means that knowledge of the value of one variable, say, x, does not tell us
anything about the outcome of the experiment which determines the value of the
other variable y, and therefore it tells us nothing about the value of y. The random
variables {Xi}  are related by the underlying die-throwing experiment. If we know
xi = 0, for instance, then we know u # 1 (the die is not equal to 1); the probability
mass functions for x2,..., x, and for all other vectors in V are modified by the
information concerning the value of xi. The new probability mass functions for x
and y of Example 11, Section 2.1, given that xi = 0, are

ox(x;x,=O)  = 5 for x=0 w,(y;x,=O)=l  fory=O

=32 forx=l =0 fory=l

The space I2 of square-summable sequences described in Example 4 of
Section 2.1 is obviously infinite dimensional. A direct extension of the
standard basis for % seems likely to be a basis for Z2. It is common
knowledge that functions f in e(O, 27~),  the space of functions continuous
on [0,  27~1, can be expanded uniquely in a Fourier series of the form
f(O=b,+X~., ( ak sinkt + b,cos kt). This fact leads us to suspect that the
set of functions

9: (l,sint,cost,sin2t,cos2t,...} (2.19)

forms a basis for L?(O,  2w),  and that the coordinates of f relative to this
basis are

This suspicion is correct. The coordinates (or Fourier coefficients) actually
constitute a vector in Z2. We show in Example 11 of Section 5.3 that Z2
serves as a convenient standard space of coordinate vectors for infinite-
dimensional spaces; in that sense, it plays the same role that %’ x ’ does
for  n-dimensional spaces. Unfortunately, the concepts of independence,
spanning sets, and bases do not extend easily to infinite-dimensional vector
spaces. The concept of linear combination applies only to the combination
of a finite number of vectors. We cannot add an infinite number of vectors
without the concept of a limit; this concept is introduced in Chapter 5.
Hence detailed examination of infinite-dimensional function spaces is left
for that chapter.
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There is no inherent basis in any space-one basis is as good as another.
Yet a space may have one basis which appears more convenient than
others. The standard basis for 9” is an example. By picking units of
measurement in a physical system (e.g., volts, feet, degrees centigrade) we
tie together the system and the model; our choice of units may automati-
cally determine convenient or standard basis vectors for the vector space
of the model (based on, say, 1 V, 1 ft, or 1 O C).

By choosing a basis for a space, we remove the most distinguishing
feature of that space, the nature of its elements, and thus tie each vector in
the space to a unique coordinate matrix. Because of this unique connection
which a basis establishes between the elements of a particular vector space
and the elements of the corresponding space of coordinate matrices, we are
able to carry out most vector manipulations in terms of coordinate
matrices which represent the vectors. We have selected %,‘x ‘, rather than
%“, as our standard n-dimensional space because matrix operations are
closely tied to computer algorithms for solving linear algebraic equations
(Section 1.5). Most vector space manipulations lead eventually to such
equations.

Because coordinate matrices are themselves vectors in a vector space
(w x ‘), we must be careful to distinguish vectors from their coordinates.
The confusion is typified by the problem of finding the coordinate matrix
of a vector x from wx ’ relative to the standard basis for ntnx ‘. In this
instance [xl, =x; the difference between the vector and its coordinate
matrix is only conceptual. A vector is simply one of a set of elements,
although we may use it to represent the physical condition of some system.
The coordinate matrix of the vector, on the other hand, is the unique set of
multipliers which specifies the vector as a linear combination of arbitrarily
chosen basis vectors.

2.3 System Models

The concept of a vector as a model for the condition or change in
condition of a system is explored in Sections 2.1 and 2.2. We usually
separate the variables which pertain to the condition of the system into two
broad sets: the independent (or input) variables, the values of which are
determined outside of the system, and the dependent (or output) variables,
whose values are determined by the system together with the independent
variables. A model for the system itself consists in expressions of relations
among the variables. In this section we identify properties of system
models.
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Example I. An Economic System Let x represent a set of inputs to the U. S.
national economy (tax rates, interest rates, reinvestment policies, etc.); let y
represent a set of economic indicators (cost of living, unemployment rate, growth
rate, etc.). The system model T must describe the economic laws which relate y to
X.

Example 2. A Baking Process. Suppose x is the weight of a sample of clay
before a baking process and y is the weight after baking. Then the system model T
must describe the chemical and thermodynamic laws insofar as they relate x and y.

Example 3. A Positioning System. Suppose the system of interest is an armature-
controlled motor which is used to position a piece of equipment. Let x represent
the armature voltage, a function of time; let y be the shaft position, another
function of time. The system model T should describe the manner in which the
dynamic system relates the function y to the function x.

The variables in the economic system of Example 1 clearly separate into
input (or independent) variables and output (or system condition)
variables. In Example 2, both the independent and dependent variables
describe the condition of the system. Yet we can view the condition before
baking as the input to the system and view the condition after baking as
the output. The dynamic system of Example 3 is reciprocal; x and y are
mutually related by T. Since the system is used as a motor, we view the
armature voltage x as the input to the system and the shaft position y as
the output. We could, as well, use the machine as a dc generator; then we
would view the shaft position as the input and the armature voltage as the
output.

The notation TX = y that we introduced in (1.1) implies that the model T
does something to the vector x to yield the vector y. As a result, we may
feel inclined to call x the input and y the output. Yet in Section 1.3 we note
that equations are sometimes expressed in an inverse form. The positions
of the variables in an equation do not determine whether they are inde-
pendent or dependent variables. Furthermore, we can see from Example 3
that the input and output of a system in some instances may be determined
arbitrarily. In general, we treat one of the vectors in the equation TX = y as
the input and the other as the output. However, unless we are exploring a
problem for which the input is clearly defined, we use the terms input and
output loosely in reference to the known and unknown variables, respec-
tively.

Transformations on Vector Spaces

Our present purpose is to make more precise the vaguely defined model T
introduced in (1.1) and illustrated above.

Definition. A transformation or function T: 5 ,-) s, is a rule that
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associates with each element of the set S, a unique element from the set
S,*. The set S, is called the domain of T; 5, is the range of definition of T.

Our attention is directed primarily toward transformations where s, and
S, are linear spaces. We speak of T: V+ (?l! as a transformation from the
vector space ‘v into the vector space W. An operator is another term for a
transformation between vector spaces. We use this term primarily when
the domain and range of definition are identical; we speak of T: V+ ?r as
an operator on V. If S y is a subset of ?r, we denote by T( s y) the set of
all vectors TX in % for which x is in s y; we refer to T( S y) as the image
of S y under T. The range of T is T(V), the image of V under T. The
nullspace of T is the set of all vectors x in V such that TX = 8, (8, is the
zero vector in the space %). If SW is a subset of ‘?&,  we call the set of
vectors x in Ir for which TX is in S U the inverse image of S GuT. Thus the
nullspace of T is the inverse image of the set { 8, }. See Figure 2.6.

Figure 2.6. Abstract illustration of a transformation T.

Example 4. A Transformation Define T: ?iL2+%’  by

T(L52) :)/G-l for(f+<i>l (2.20)

AO= for [f+[i< 1

Physically, the vector TX can be interpreted as the distance between x and the unit
circle in the two-dimensional arrow space. The variables t, and I2 are “dummy”
variables; they merely assist us in cataloguing the “values” of T in the defining

*In the modeling process we use the function concept twice: once as a vector—a model for
the condition of a system—and once as a relation between input and output vectors—a model
for the system itself. In order to avoid confusion, we use the term function in referring to
vectors in a vector space, but the term transformation in referring to the relation between
vectors.
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equation; we can use any other symbols in their place without changing the
definition of T. The range of T is the set of positive numbers in al. The nullspace
of T is the set consisting of all vectors in the domain R2 which satisfy [f + 6,’ < 1.

Suppose we wish to solve the equation TX= 1 for the transformation of
Example 4. In effect, we ask which points in the arrow space are a unit
distance from the unit circle—all points on the circle of radius 2. The
solution is not unique because T assigns to the single number 1 in 3’ more
than one vector in S2. The equation TX = -1, on the other hand, has no
solution because T does not assign the number -1 in %’ to any vector in
CF12. We now proceed to specify the properties of a transformation which
are necessary in order that the transformation be uniquely reversible.

Definition. Let T: ?r+ “?ti. Then T is one-to-one if

Xl 7-2 + TX, #TX, (2.21)

for all x, and x2 in 1/; that is, if T does not assign more than one x in ?r
to a single y in %J.

If T is one-to-one, any solution to TX= y is unique. It might appear that
the effect of T is reversible if T is one-to-one. The nonreversibility of T in
Example 4, however, arises only in part because T is not one-to-one. In
general, there may be vectors in the range of definition % which are not
associated in any way with vectors in Ir. In point of fact, range(T)  consists
precisely of those vectors y in w for which the equation TX= y is solvable.
Unless we know which vectors are in range(T),  we cannot reverse the
transformation.

Definition. Let T: V+ %. Then T is onto if

range(T)  = % (2.22)

That is, T is onto if every vector y in ‘% is associated with at least one
vector x in V.

Definition. If a transformation is one-to-one and onto, then it is invertible
—it can be reversed uniquely. If T: ‘v+(% is invertible, we define the
inverse of T to be the transformation T- ’ : w + Y which associates with
each y in % the unique vector x in V for which TX = y. See (2.29) for
another characterization of T- ‘.

Example 5. The Identity Operator, I. Let V be a vector space. Define the
operator I on Y by

IX:, (2.23)
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for all x in Y. The nullspace of I is &. Range (I)= ?r; thus I is onto. Furthermore,
I is one-to-one. Therefore, the identity operator is invertible.

Example 6. The Zero Transformation, 8. Let Y and % be vector spaces. Define
9: T’-+%J  b y

e&ew (2.24)

for all x in Y. The nullspace of 8 is Y. The range of 8 is eW. The zero
transformation is neither one-to-one nor onto. It is clearly not invertible.

Example 7.  A Transformation on a Function Space. Define T: b? (a,b)+%,’ by

Tf k lbff2(t)dt
a

(2.25)

for all f in (2 (a, b). This transformation specifies an integral-square measure of the
size of the function f; this measure is used often in judging the performance of a
control system. The function f is a dummy variable used to define T; the scalar t is
a dummy variable used to define f. In order to avoid confusion, we must carefully
distinguish between the concept of the function f in the vector space e(a, b) and
the concept of the transformation T which relates each function f in (?(a,  6) to a
vector in 9%‘.  The transformation acts on the whole function f-we  must use all
values of f to find Tf. The range of T is the set of positive numbers in a’; thus T is
not onto the range of definition CFL’.  The nullspace of T is the single vector fIy. If
we define f, and f2 by f,(t) = 1 and f2(t) = -1, then Tf, = Tf2; therefore T is not
one-to-one.

The transformations of Examples 4 and 7 are scalar valued; that is, the
range of definition in each case is the space of scalars. We call a
scalar-valued transformation a functional. Most functionals are not one-to-
one.

Example 8. A Transformation for a Dynamic System. Let e2(a, b) be the space of
functions which have continuous second derivatives on .[a,  b]. Define L: e2(a, b)
+WO) by

(Lf)(t)  e f~(t)+,(f(t)+0.01f3(t>) (2.26)

for all f in lZ2(a,  b) and all t in [a, b]. This transformation is a model for a particular
mass-spring system in which the spring is nonlinear. The comments under Example
7 concerning the dummy variables f and t apply here as well. As usual, the
definition is given in terms of scalars, functions evaluated at t. Again, L acts on the
whole function f. Even in this example we cannot determine any value of the
function Lf without using an “interval” of values of f, because the derivative
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function f’ is defined in terms of a limit of values of f in the neighborhood of t:

The nullspace of L consists in all solutions of the nonlinear differential equation,
Lf-eW ; restated in terms of the values of Lf, this equation is

f”(t)+a(f(t)+0.01f3(t))=0 a<t<b

To determine these solutions is not a simple task. By selecting C? (a, b) as the range
of definition, we ask that the function Lf be continuous; since Lf represents a force
in the mass-spring system described by (2.26) continuity seems a practical assump-
tion. By choosing e’(a,b) as the domain, we guarantee that Lf is continuous. Yet
the range of L is not clear. It is in the range of definition, but is it equal to the
range of definition? In other words, can we solve the nonlinear differential
equation Lf =u for any continuous u? The function f represents the displacement
versus time in the physical mass-spring system. The function u represents the force
applied to the system as a function of time. Physical intuition leads us to believe
that for given initial conditions there is a unique displacement pattern f associated
with each continuous forcing pattern u. Therefore, L should be onto. On the other
hand, since no initial conditions are specified, we expect two degrees of freedom in
the solution to Lf =u for each continuous u. Thus the dimension of nullspace (L) is
two, and L is not one-to-one.

Combining Transformations

The transformation introduced in Example 8 is actually a composite of
several simpler transformations. In developing a model for a system, we
usually start with simple models for portions of the system, and then
combine the parts into the total system model. Suppose T and U are both
transformations from II into % . We define the transformation aT+ bU:
‘-lb%  b y

(aT+ bU)x 4 aTx + bUx (2.27)

for all x in V. If G: % +G%, we define the transformation GT: V+%
bY

(GT)x i G(Tx) (2.28)

for all x in Ir. Equations (2.27) and (2.28) define linear combination and
composition of transformations, respectively.
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Example 9. Composition of Matrix Multiplications. Define G: a3+a2 by

and T: CR2+CX3  by

$3 i (5 $)

Then GT: (Zk2+CR2  is described by

Exercise 1. Let T: Y+%. Show that T is invertible if and only if
V = % and there is a transformation T- ’ : % -+ Y such that

T-‘T=m-l=I (2.29)

Exercise 2. Suppose G and T of (2.26) are invertible. Show that

(GT)-‘=T-‘G-l (2.30)

The composition (or product) of two transformations has two nasty
characteristics. First, unlike scalars, transformations usually do not com-
mute; that is, GT#TG.  As illustrated in Example 9, G and T generally do
not even act on the same vector space, and TG has no meaning. Even if G
and T both act on the same space, we must not expect commutability, as
demonstrated by the following matrix multiplications:
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Commutable operators do exist. In fact, since any operator commutes with
itself, we can write G2, as we do in Example 10 below, without being
ambiguous. Operators which commute act much like scalars in their
behavior toward each other (see P&C 4.29).

If two scalars satisfy ab = 0, then either a = 0, b = 0, or both. The second
matrix multiplication above demonstrates that this property does not
extend even to simple transformations. This second difficulty with the
composition of transformations is sometimes called the existence of divi-
sors of zero. If GT =8 and G #9, we cannot conclude that T = 9 ; the
cancellation laws of algebra do not apply to transformations. The difficulty
lies in the fact that for transformations there is a “gray” region between
being invertible and being zero. The range of T can lie in the nullspace of
G.

Example 10. Linear Combination and Composition of Transformations. The
space en (a, b) consists in all functions with continuous nth derivatives on [a, b].

Define G: 67” (a, b)+P-‘(a,b)  by Gf 9 f’ for all f in en (a, b). Then G2: e2(a, b)

+ e (a, b) is well defined. Let U: CZ2(a,  b)+ e(a, 6) be defined by (Uf)(t) i f(t)
+ 0.01f3(t)  for all f in e2(a, b) and all t in [a, b]. The transformation L of Example 8

can be described by L 9 G2 + au.

As demonstrated by the above examples, the domain and range of
definition are essential parts of the definition of a transformation. This
importance is emphasized by the notation T: ‘v+w. The spaces li‘ and
G2Lci  are selected to fit the structure of the situation we wish to model. If we
pick a domain that is too large, the operator will not be one-to-one. If we
pick a range of definition that is too large, the operator will not be onto.
Thus both ‘Y and ‘?lJ affect the invertibility of T. We apply loosely the
term finite (infinite) dimensional transformation to those transformations
that act on a finite (infinite) dimensional domain.

2.4 Linear Transformations

One of the most common and useful transformations is the matrix
multiplication introduced in Chapter 1. It is well suited for automatic
computation using a digital computer. Let A be an m X n matrix. We
define T: Wx1+9?Yx1  by

TX 5 Ax (2.3 1)

for all x in QYxl. We distinguish carefully between T and A. T is not A,
but rather multiplication by A. The nullspace of T is the set of solutions to
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the matrix equation Ax= 8. Even though T and A are conceptually
different, we sometimes refer to the nullspace of T as the nullspace of A.

Similarly, we define range(A)  b range(T).
Suppose A is square (m = n) and invertible; then the equation TX = Ax

= y has a unique solution x = A- ‘y for each y in W x ‘. But T- ’ is defined
as precisely that transformation which associates with each y in W x ’ the
unique solution to the equation TX= y. Therefore, T is invertible, and T- ’ :

is given by T- ‘y 2 A- ‘y.
The properties of matrix multiplication (Appendix 1) are such that

A(ax, + bx,) = aAx,  + bAx,. That is, matrix multiplication preserves linear
combinations. This property of matrix multiplication allows superposition
of solutions to a matrix equation: if x1 solves Ax= y, and x2 solves Ax =y2,
then the solution to Ax= y, +y2 is x, +x2.  From one or two input-output
relationships we can infer others. Many other familiar transformations
preserve linear combinations and allow superposition of solutions.

Definition. The transformation T: V+G2l(j  is linear if

T(ax, + bx2) = aTx, + bTx, (2.32)

for all vectors x1 and x2 in II‘ and all scalars a and b.

Example 1. Integration. Define T: C?(O, l)+(?(O, 1) by

(Tf)(t)  A i*f(s)ds (2.33)

for all f in e(O, 1) and all t in [0, I]. The linearity of this indefinite integration
operation is a fundamental fact of integral calculus; that is,

The operator (2.33) is a special case of the linear integral operator T: C? (a, b)-+
(? (c, d) defined by

(2.34)

for all f in e(a,b) and all t in [c,d]. We can substitute for the domain e(a,b) any
other space of functions for which the integral exists. We can use any range of
definition which includes the integrals (2.34) of all functions in the domain. The
function k is called the kernel of the integral transformation. Another special case
of (2.34) is T: h( - 00, oo)+ h( - co, cc) defined by
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for some g in I.Q - co, oo), all f in C,( - cc,  co),  and all t in (- co, 00).  This T is
known as the convolution of f with the function g. It arises in connection with the
solution of linear constant-coefficient differential equations (Appendix 2).

The integral transformation (2.34) is the analogue for function spaces
of the matrix multiplication (2.31). That matrix transformation can be ex-
pressed

(Tx)~~  i Ati6 i = l,...,m
j- 1

(2.35)

for all vectors x in wx i. The symbol .$ represents the jth element of x;
the symbol (TX)i  means the ith element of TX. In (2.35) the matrix is
treated as a function of two discrete variables, the row variable i and the
column variable j. In analogy with the integral transformation, we call the
matrix multiplication [as viewed in the form of (2.35)] a summation
transformation; we refer to the function A (with values A& as the kernel of
the summation transformation.

Example 2. Differentiation Define D: @(a, b)+e (a, b) by

(Df)(t) i f’(t) i lim
f(t+At)-f(t)

At+0
dt (2.36)

for all f in @(a,b)  and all t in [a,b]; f’(t) is the slope of the graph of f at t; f’ (or
Df) is the whole “slope” function. We also use the symbols i and r<‘) in place of Df.
We can substitute for the above domain and range of definition any pair of
function spaces for which the derivatives of all functions in the domain lie in the
range of definition. Thus we could define D on E!(a, b) if we picked a range of
definition which contains the appropriate discontinuous functions. The nullspace
of D is span{ l}, where 1 is the function defined by l(t)= 1 for all t in [a,b].  It is
well known that differentiation is linear; D(clf,  + czfi) = clDf, + c2Df2.

We can define more general differential operators in terms of (2.36). The general
linear constant-coefficient differential operator L: c3” (a, b)-+ C? (a, b) is defined, for
real scalars { ai}, by

LiDn+aJY-‘+ -.a +a,1 (2.37)

where we have used (2.27) and (2.28) to combine transformations. A variable-
coefficient (or “time-varying”) extension of (2.37) is the operator L: E? (a, b)
+e(a,b)  defined by*

(Lf)(t)  : g&)fyt)+g~(t)f(“-‘)(t)+  ” l +g,(t)f(t) (2.37)

*Note that we use boldface print for some of the functions in (2.38) but not for others. As
indicated in the Preface, we use boldface print only to emphasize the vector or transformation
interpretation of an object. We sometimes describe the same function both ways, f and J
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for all f in C?” (a, b) and all t in [a,b]. (We have denoted the kth derivative Dkf by
fck).) If the interval [a, b] is finite, if the functions gi are continuous, and if go(t)# 0
on [a,b], we refer to (2.38) as a regular n th-order differential operator. [With
go(t)  +O, we would lose no generality by letting go(t)  = 1 in (2.38).] We can apply
the differential operators (2.37) and (2.38) to other function spaces than (?” (a, 6).

Example 3. Evaluation of a Function. Define T: e(a, b)+ 3’ by

Tf 9 f(t,) (2.39)

for all f in the function space C? (a, b). In this example, f is a dummy variable, but
is not. The transformation is a linear functional called “evaluation at t,.” The range
of T is %,‘;  T is onto. The nullspace of T is the set of continuous functions which
pass through zero at t,. Because many functions have the same value at tl, T is not
one-to-one. This functional can also be defined using some other function space for
its domain.

Example 4. A One-Sided Laplace Transform, t?. Suppose % is the space of
complex-valued functions defined on the positive-real half of the complex plane.
(See Example 10, Section 2.1.) Let Ir be the space of functions which are defined
and continuous on [0, co] and for which e -“‘If(t)1 is bounded for some constant c
and all values of t greater than some finite number. We define the one-sided
Laplace transform I?: Y+% by

(ef)(s)  i ime-sf f(t)dt (2.40)

for all complex s with real(s) > 0. The functions in Y are such that (2.40) converges
for real(s)>O.  We sometimes denote the transformed function Bf by F. This
integral transform, like that of (2.34), is linear. The Laplace transform is used to
convert linear constant-coefficient differential equations into linear algebraic equa-
tions. l

Exercise 1. Suppose the transformations T, U, and G of (2.27) and (2.28)
are linear and T is invertible. Show that the transformations aT+ bU, GT,
and T-l are also linear.

Exercise 2.  Let Ir be an n-dimensional linear space with basis 5%.
Define T: ‘v-, 9Lnx * by

TX i [xl% (2.41)

Show that T, the process of taking coordinates, is a linear, invertible
transformation.

*It can be shown that [ Ii!(D#Y)(s)-f(O’),  where f(O+) is the limit of f(t) as t+O
from the positive side of 0.
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The vector space V of Exercise 2 is equivalent to %Yx ’ in every sense
we might wish. The linear, invertible transformation is the key. We say two
vector spaces Ir and % are isomorphic (or equivalent) if there exists an
invertible linear transformation from Y into G2K. Each real n-dimensional
vector space is isomorphic to each other real n-dimensional space and,
in particular, to the real space w” ‘. A similar statement can be made
using complex scalars for each space. Infinite-dimensional spaces also
exhibit isomorphism. In Section 5.3 we show that all well behaved infinite-
dimensional spaces are isomorphic to Zz.

Nullpace and Range—Keys to Invertibility

Even linear transformations may have troublesome properties. In point of
fact, the example in which we demonstrate noncommutability and
noncancellation of products of transformations uses linear transformations
(matrix multiplications). Most difficulties with a linear transformation can
be understood through investigation of the range and nullspace of the
transformation.*

Let T: ?f+% be linear. Suppose x,, is a vector in the nullspace of T
(any solution to TX= 0); we call xh a homogeneous solution for the
transformation T. Denote by x. a particular solution to the equation
TX = y. (An xP exists if and only if y is in range(T).)  Then xP + axh is also a
solution to TX= y for any scalar (II. One of the most familiar uses of the
principle of superposition is in obtaining the general solution to a linear
differential equation by combining particular and homogeneous solutions.
The general solution to any linear operator equation can be obtained in
this manner.

Example 5. The General Solution to a Matrix Equation. Define the linear opera-
tor T. 9R,2xx+31t2x1 b. Y

Then the equation

Tx=(;  :,(;;)=(;)& (2.42)

has as its general solution x = ( ). A particular solution is xP = (1 0)T. The2 -2
nullspace of T consists in the vector x,, = (-1 2)T and all its multiples. The general
solution can be expressed as x=xP  + ax,, where a is arbitrary. Figure 2.7 shows an

of*See Sections 4.4 and 4.6 for further insight into noncancellation and noncommutability
linear operators.
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Figure 2.7. Solutions to the linear equation of Example 5.

arrow-space equivalent of these vectors. The nullspace of T is a subspace of 9R,2x *.
The general solution (the set of all solutions to TX = y) consists of a line in ‘5X2”  ‘;
specifically, it is the nullspace of T shifted by the addition of any particular
solution.

The nullspace of a linear transformation is always a subspace of the
domain V. The freedom in the general solution to TX= y lies only in
nullspace(  the subspace of homogeneous solutions. For if 4 is another
particular solution to TX= y, then

T@p -$)=Tx,-T$,=y-y=8

The d i f fe rence  be tween  xP and  $ i s  a  vec to r  in  nullspace(  If
nullspace = 8, there is no freedom in the solution to TX = y; it is unique.

Definition. A transformation G: v+ % is nonsingular if .nullspace(G)  =
8.

Exercise 3. Show that a linear transformation is one-to-one if and only if
it is nonsingular.

Because  a  l inear  t r ans format ion  T: V+ % prese rves  l i nea r
combinations, it necessarily transforms 8, into 8,. Furthermore, T acts
on the vectors in Y by subspaces—whatever T does to x it does also to cx,
where c is any scalar. The set of vectors in ‘Y which are taken to zero, for
example, is the subspace which we call nullspace( Other subspaces of Ir
are “rotated” or “stretched” by T. This fact becomes more clear during our
discussion of spectral decomposition in Chapter 4.
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Example 6. The Action of a Linear Transformation on Subspaces. Define T:

CR3+9L2  by T([,,c2,[3)  i (t3,0). The set {xi = (l,O,O), x2=(0,  1,O)) forms a basis for
nullspace( By adding a third independent vector, say, x3 = (1, 1, 1), we obtain a
basis for the domain 913. The subspace spanned by {xi,x2} is annihilated by T.
The subspace spanned by {x3}  is transformed by T into a subspace of —the
range of T. The vector x3 itself is transformed into a basis for range(T).  Because T
acts on the vectors in a3 by subspaces, the dimension of nullspace is a measure
of the degree to which T acts like zero; the dimension of range(T) indicates the
degree to which T acts invertible. Specifically, of the three dimensions in a3, T
takes two to zero. The third dimension of $R3 is taken into the one-dimensional
range(T).

The characteristics exhibited by Example 6 extend to any linear trans-
formation on a finite-dimensional space, Let T: V+% be linear with
dim(V)  = n. We call the dimension of nullspace  the nullity of T. The
rank of T is the dimension of rangem.  Let {xi,. . . ,xk} be a basis for
nullspace(  Pick vectors {xk+ r, . . . ,xn} which extend the basis for
nullspace  to a basis for ‘?f (P&C 2.9).  We show that  T takes
{JQ+p..., x,,}  into a basis for range(T).  Suppose x= ctx, + l . . + cnxn is an
arbitrary vector in ‘v. The linear transformation T annihilates the first k
components of x. Only the remaining n-k components are taken into
range(T).  Thus the vectors {TX,, ,, . . . ,Tx,} must span range(T).  To show
that these vectors are independent, we use the test (2.11):

Since T is linear,

T(&+~JQ+~+.-  +5,x,)=@,

Then &+1xk+1+  l . . + 5;1x,,  is in nullspace(  and

sk+l%+l +**a +&Xn=dlXl+- +dkXk

for some { di}.  The independence of {x1,.  . . , xn} implies d, = . . . = dk = &+ 1
= . . . =&=O;  thus {Txk+t,..., TX,}  is an independent set and is a basis

for range(T).
We have shown that a linear transformation T acting on a finite-

dimensional space V obeys a “conservation of dimension” law:

dim{ v) = rank(T)  + nullity(T) (2.43)

Nullity(T)  is the “dimension” annihilated by T. Rank(T)  is the “dim-
ension” T retains. If nullspace  = { 8 }, then nullity(T) = 0 and rank(T)
= dim(V).  If, in addition, dim( %) = dim(V),  then rank(T)  = dim( ‘?$) (T is
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onto), and T is invertible. A linear T: V+ % cannot be invertible unless
dim(w) = dim( Ir).

We sometimes refer to the vectors xk+ ,, . . . ,x, as progenitors of the range
of T. Although the nullspace and range of T are unique, the space spanned
by the progenitors is not; we can add any vector in nullspace to any
progenitor without changing the basis for the range (see Example 6).

The Near Nullpace

In contrast to mathematical analysis, mathematical computation is not
clear-cut. For example, a set of equations which is mathematically
invertible can be so “nearly singular” that the inverse cannot be computed
to an acceptable degree of precision. On the other hand, because of the
finite number of significant digits used in the computer, a mathematically
singular system will be indistinguishable from a “nearly singular” system.
The phenomenon merits serious consideration.

The matrix operator of Example 5 is singular. Suppose we modify the
matrix slightly to obtain the nonsingular, but “nearly singular” matrix
equation

(2.44)

where c is small. Then the arrow space diagram of Figure 2.7 must also be
modified to show a pair of almost parallel lines. (Figure 1.7 of Section 1.5
is the arrow space diagram of essentially this pair of equations.) Although
the solution (the intersection of the nearly parallel lines) is unique, it is
difficult to compute accurately; the nearly singular equations are very ill
conditioned. Slight errors in the data and roundoff during computing lead
to significant uncertainty in the computed solution, even if the computa-
tion is handled carefully (Section 1.5). The uncertain component of the
solution lies essentially in the nullspace of the operator; that is, it is almost
parallel to the nearly parallel lines in the arrow-space diagram. The above
pair of nearly singular algebraic equations might represent a nearly singu-
lar system. On the other hand, the underlying system might be precisely
singular; the equations in the model of a singular system may be only
nearly singular because of inaccuracies in the data. Regardless of which of
these interpretations is correct, determining the “near nullspace” of the
matrix is an important part of the analysis of the system. If the underlying
system is singular, a description of the near nullspace is a description of
the freedom in the solutions for the system. If the underlying system is just
nearly singular, a description of the near nullspace is a description of the
uncertainty in the solution.



70 System Models: Transformations on Vector Spaces

Definition. Suppose T is a nearly singular linear operator on a vector
space v. We use the term near nullspace of T to mean those vectors that
are taken nearly to zero by T; that is, those vectors which T drastically
reduces in “size.“*

In the two-dimensional example described above, the near nullspace
consists in vectors which are nearly parallel to the vector x = (-1 2)T. The
near nullspace of T is not a subspace of ‘v. Rather, it consists in a set of
vectors which are nearly in a subspace of ‘v. We can think of the near
nullspace as a “fuzzy” subspace of ?r.

We now present a method, referred to as inverse iteration, for describing
the near nullspace of a nearly singular operator T acting on a vector space
V. Let ~0 be an arbitrary vector in Ir. Assume xa contains a component
which is in the near nullspace of T. (If it does not, such a component will
be introduced by roundoff during the ensuing computation.) Since T
reduces such components drastically, compared to its effect on the other
components of ~0, T-’ must drastically emphasize such components.
Therefore, if we solve TX, = xa (in effect determining x1 =T- ‘xJ, the
computed solution xi contains a significant component in the near
nullspace of T. (This component is the error vector which appears during
the solution of the nearly singular equation.) The inverse iteration method
consists in iteratively solving Txk+ i =xk.  After a few iterations, xk is
dominated by its near-nullspace component; we use xk as a partial basis
for the near nullspace of T. (The number of iterations required is at the
discretion of the analyst. We are not looking for a precisely defined
subspace, but rather, a subspace that is fuzzy.) By repeating the above
process for several different starting vectors ~0, we usually obtain a set of
vectors which spans the near nullspace of T.

Example 7. Describing a Near Nullspace. Define a linear operator T on X2” ’
by means of the nearly singular matrix multiplication described above:

TX&(: I:r)~

For this simple example we can invert T explicitly

We apply the inverse iteration method
no roundoff in our computations:

to the vector x()=(1 l)=; o f course, we have

x,=( ;), x2= A( yy), x3= -&( “‘;;;;y2),...

*In Section 4.2 we describe the near nullspace more precisely as the eigenspace for the
smallest eigenvalue of T.
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If E is small, say e = 0.01, then

x,=50(  f?‘) and ~,=(50)~(  -::ii)

After only three iterations, the sequence xk has settled; the vector x3 provides a
good description of the near nullspace of T. If E = 0, T is singular; x3 lies almost in
the nullspace of this singular operator (Figure 2.7). Were we to try other starting
vectors xe, we would obtain other vectors xk nearly parallel to (-1 2)T. This near
nullspace of T should be considered one-dimensional.

We note from Example 7 that the vector xk in the inverse iteration grows
drastically in size. Practical computer implementations of inverse iteration
include normalization of xk at each step in order to avoid numbers too
large for the computer. A description for a two-dimensional near nullspace
is sought in P&C 2.26. In Section 4.2 we analyze the inverse iteration more
precisely in terms of eigenvalues and eigenvectors. Forsythe [2.3] gives
some interesting examples of the treatment of nearly singular operators.

The Role of Linear Transformations

The purpose of modeling a system is to develop insight concerning the
system, to develop an intuitive feel for the input-output relationship. In
order to decide whether or not a particular model, linear or nonlinear, is a
good model, we must compare the input-output relationship of the model
with the corresponding, but measurable, input-output relationship of the
system being modeled. If the model and the system are sufficiently in
agreement for our purposes, we need not distinguish between the system
and the model.

Almost all physical systems are to some degree nonlinear. Yet most
systems act in a nearly linear manner if the range of variation of the
variables is restricted. For example, the current through a resistor is
essentially proportional to the applied voltage if the current is not large
enough to heat the resistor significantly. We are able to develop adequate
models for a wide variety of static and dynamic physical systems using
only linear transformations. For linear models there is available a vast
array of mathematical results; most mathematical analysis is linear analy-
sis. Furthermore, the analysis or optimization of a nonlinear system is
usually based on linearization (Chapters 7 and 8). Even in solving a
nonlinear equation for a given input, we typically must resort to repetitive
linearization.

The examples and exercises of this section have demonstrated the
variety of familiar transformations which are linear: matrix multiplication,
differentiation, integration, etc. We introduce other linear transformations
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as we need them. The next few chapters pertain only to linear transforma-
tions. In Chapter 3 we focus on the peculiarities of linear differential
systems. In Chapter 4 we develop the concepts of spectral decomposition
of linear systems. The discussion of infinite-dimensional systems in
Chapter 5 is also directed toward linear systems. Because we use the
symbols T and U so much in reference to linear transformations,
hereinafter we employ the symbols F and G to emphasize concepts which
apply as well to nonlinear transformations. We begin to examine nonlinear
concepts in Chapter 6. We do not return fully to the subject of nonlinear
systems, however, until we introduce the concepts of linearization and
repetitive linearization in Chapters 7 and 8.

2.5 Matrices of Linear Transformations

By the process of picking an ordered basis for an n-dimensional vector
space v, we associate with each vector in v a unique n X 1 column
matrix. In effect, we convert the vectors in V into an equivalent set of
vectors which are suitable for matrix manipulation and, therefore, auto-
matic computation by computer. By taking coordinates, we can also
convert a linear equation, TX= y, into a matrix equation. Suppose T:
Ir+ % is a linear transformation, dim( ‘V) = n, and dim( %)= m. Pick as

bases for V and (?l! the sets % b {x,, . . . , xn} and 3 i {yl, . . . , y,},
respectively. The vectors x in V and TX in % can be represented by their
coordinate matrices [xl, and [TX]%.  The vectors x and TX are linearly
related (by the linear transformation T). By (2.41), we know that a vector
and its coordinates are also linearly related. Therefore, we expect [xl, and
[TX],  to be linearly related as well. Furthermore, we intuitively expect the
linear relation between the n x 1 matrix [xl%  and the m X 1 matrix [TX]%  to
be multiplication by an m x n matrix. We denote this matrix by [T],, and
refer to it as the matrix of T relative to the ordered bases % and 3 ; it must
satisfy

m&l, i PI, (2.45)

for all x in V. Assume we can find such a matrix. Then by taking
coordinates (with respect to 9 ) of each side of the linear equation TX = y,
we convert the equation to the equivalent matrix equation.

[Tl,,[xl, = [Ylcg (2.46)

We will show that we can represent any linear transformation of V into
% by a matrix multiplication by selecting bases for ‘V-  and —we can
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convert any linear equation involving finite-dimensional vector spaces into
a matrix equation. We first show how to determine the matrix of T, then
we show that it satisfies the defining equation (2.45) for all vectors x in y.

Example 1. Determining the Matrix of a Linear Transformation Let x= (tl, t2,
&), an arbitrary vector in 9L3. Define T: 9L3+%2  by

We now find [T],!,G2, where G, and G2 are the standard bases for CR3 and (X2,
respectively. By (2.45), we have

for all vectors (&, t2, t3), or

(2.47)

where we have used {au}  to represent the elements of [Tj6,6,. By making three
independent choices of the scalars tr, t2, and t3, we could convert this matrix
equation into six equations in the six unknowns {au}.  However, by using a little
ingenuity, we reduce this effort. Think of the matrix multiplication in terms of the
columns of [T]63Q2. The ith element of [x]s,  multiplies the ith column of [TjQ3Q1.  If

we choose x=(1,  0, 0), then [(l, 0, O)],,= i , and (2.47) becomes
0

We have found the first column of [TlQ36, directly. We obtain the other two
columns of [TIQJQz from (2.47) by successive substitution of x= (0, 1, 0) and x=(0,
0, 1). The result is

In Example 1 we avoided the need for simultaneous equations by
substituting the basis vectors ei, e2, and e3 into (2.47) to pick out the
columns of [T]6,6z. This same technique can be used to find the matrix of
any linear transformation acting on a finite-dimensional space. We refer
again to T: V+ ?.$, with dim(V)  = n, dim( %) = m, % a basis for v, and
9 a basis for %, If we substitute into (2.45) the vector xi, the ith vector of
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the basis % , we pick out the ith column of [T],, :

We can find each column of [T],, independently. The only computa-
tional effort is that in determining the coordinate matrices [Txi]%. There-
fore,

[Tlaou  = ([TX,],  : [TX,], i -- * : [TX,],) (2.48)

Example 2. The Matrix of a Linear Operator. Define the differential operator

D: Y3+ (Y3  as in (2.36). The set % i {f,, f,, f3},  where f,(t)  = 1, f2(t) = t, f3(t) = t2,
is a natural basis for T3. We use (2.48) to find

From the method used to determine [T],%  in (2.48), we know that this
matrix correctly represents the action of T on the basis vectors {Xi}. We
now show that the matrix (2.48) also represents correctly the action of T on
all other vectors in ‘Y. An arbitrary vector x in V may be written in terms
of the basis vectors for 1/:

n
X= cs.x.a 1

i==l

Since the transformation T is linear,

TX= ~ ~iTXi
i=l
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Because the process of taking coordinates is linear [see (2.41)],

75

Thus, continuing Example 2 above, if f is the arbitrary vector defined by

f(t) i [r +t2t +t3t2, then

(Df)(t)  =52+25&  [f], -(ii, [Df], =(‘;) 7 and  [D]n.x[f]s =[Dfl,,

When the domain and range space of T are identical, and the same basis is
used for both spaces (as it is in Example 2), we sometimes refer to the
matrix [T],,  as the matrix of the operator T relative to the basis ‘76.

We expect the matrix of a linear transformation to possess the basic
characteristics of that transformation. The only basic characteristics of a
linear transformation that we have discussed thus far are its rank and
nullity. The picking of coordinate systems ‘5% and ‘% converts the trans-
formation equation TX = y to a precisely equivalent matrix equation, [TX],
=[Tl,, [xl, =[Ylq ; for every x and y in the one equation, there is a
unique [xl% and [y]% in the other. The dimensions of the nullspace and
range of the transformation “multiplication by [T],, ” must be the same,
therefore, as the dimensions of the nullspace and range of T. We speak
loosely of the rank and nullity of [T],, when we actually mean the rank
and nullity of the transformation “multiplication by [T],% .” We refer to
the nullity and rank of a matrix as if it were the matrix of a linear
transformation. The nullspace and range of matrix multiplications are
explored in P&C 2.19; the problem demonstrates that for an m x n matrix
A,

rank(A)  = the number of independent columns of A

= the number of independent rows of A

nullity(A)  = n -rank(A)

nullity(AT) = m -rank(A)
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Once again referring to Example 2, we see that the nullity of D is 1 [the
vector f, is a basis for nullspace(D  The nullity of CD]%%  is also 1 ([DIXn.
contains one dependent column). The matrix [Dlan.  does possess the same
nullity and rank as the operator D.

It is apparent that determination of the matrix of a transformation
reduces to the determination of coordinate matrices for the set of vectors
{TXi} of (2.48). We found in Section 2.2 that determination of the
coordinate matrix of a vector x with respect to a basis % = {xi}  can be
reduced to performing elimination on the matrix equation (2.17):

where % is a natural basis for the space V of which x is a member (i.e., a
basis with respect to which coordinates can be determined by inspection).

Exercise 1. Show that [T],, of (2.48) can be obtained by the row
reduction

0 I
.

y1 s : -** i I’y& i [TX&  i . - - i [Tx,la)‘(I  i PI,,)

(2.49)

where % is a natural basis for the range of definition %. (Hint: if the
elements of [TX,],  are denoted by [TXi]q  = (C,i  l l l C,i)‘, then TX, =Zj+yi,
and [TXiJn.  = ~jC~i[yi],,  .) Use this approach to find [TIC+, of Example 1.

Example 3. The Matrix of a Matrix Transformation. Let T: 91Lnx  *+ ‘3Lmx * be

defined by TX t Ax, where A is an m X n matrix. Denoting the standard bases for
9RnX 1 and ntmx 1 by &, and G,,, , respectively, we find [Tjs, s = A. Although [xl%
and x are identical in this example, we should distinguish between them, for it is
certainly incorrect to equate the matrix [Tjsms, to the transformation T.

S u p p o s e  T: V-,G2lci i s  i n v e r t i b l e  a n d  l i n e a r ;  v a n d  (?lJ a r e  f i n -
ite-dimensional with bases ?X and 9 , respectively. It follows from (2.45)
that

P-‘I, dYl%  =P-‘Yl, (2.50)

for all y in %. Then, for each x in ‘sr,

[xl”x =rwGx. =P-‘I, %PlS =F’l, E]CPlpJXl%

A similar relationship can be established with T and TV1 reversed. Then as
a consequence of (2.29),

P-11G3~=ITl& (2.51)
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Exercise 2. Suppose 71‘, % , and ‘% are finite-dimensional vector spaces
with bases 5%) % + and Z, respectively. Show that

a. If T: 1/+w and U: v+%% are linear, then

b. If T: Y+ % and U: %‘+ 9L are linear, then

[W,, =FJl, dqx%

(2.52)

(2.53)

Changes in Coordinate System

In Chapter 4 we discuss coordinate systems which are particularly suitable
for analysis of a given linear transformation—coordinate systems for
which the matrix of the transformation is diagonal. In preparation for that
discussion we now explore the effect of a change of coordinate system on a
coordinate matrix [x] and on the matrix of a transformation [T].

Suppose 5% and Z are two different bases for an n-dimensional vector
space ‘V. We know by (2.41) that the transformations

x+[x]~ and x+[x]~

are linear and invertible. Thus we expect [xl, and [x]~ to be related by

sPd9c = PI* (2.54)

where S is an n X n invertible matrix. In fact, multiplication of [xl%  by any
invertible matrix represents a change from the coordinate system % to
some new coordinate system. We sometimes denote the matrix S of (2.54)
by the symbol S,,, thereby making explicit the fact that S converts
coordinates relative to 5% into coordinates relative to 55. Then (S,,)-’
=S,,.

Determination of the specific change-of-coordinates matrix S defined in
(2.54) follows the same line of thought as that used to determine [T] in
(2.48). By successively substituting into (2.54) the vectors x1, x2,. . . ,x, from
the basis %, we isolate the columns of S: the ith column of S is [xi]%.
Thus the unique invertible matrix S which transforms coordinate matrices
relative to 5% into coordinate matrices relative to Z is

(2.55)

where the xi are the vectors in the basis %.
Since a change-of-coordinates matrix is always invertible, we determine
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from (2.54) that
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s- ‘[xl2 = [XIX

and

s-1=$&  =s,, = ([Zll% : * ’ l : P&J (2.56)

where the zi are the vectors in the basis % . If % is a natural basis for the
space, then S can be found by inspection. On the other hand, if % is a
natural basis, we find S-l by inspection. It is appropriate to use either
(2.55) or (2.56) in determining S. We need both S and S-i to allow
conversion back and forth between the two coordinate systems. Besides,
the placing of S on the left side of (2.54) was arbitrary.

Example 4. A Change-of-Coordinates Matrix, Let & be the standard basis for
?R3. Another basis for ?Zk3  is % = {q, z,, z3}, where zl=(l, 1, I), z,=(l, 1, 0), and
z3 = (1, 0, 0). Since & is a natural basis for a3, we use (2.56) to find

(2.57)

A straightforward elimination (Section 1.5) yields

s=(f -p 4) (2.58)

We note that for an arbitrary vector x=(tt, t2, t3) in $k3, [xl6 = (tl [, 53)T. By
(2.54),

(2.59)

But then,

x = (53)z* + (52 - 531%  + (5, - 52b3

=(53)(1,1,1)+(52-53)(1,1,0)+(51-52)(1,0,0)

= tt,, 52953) (2.60)

and the validity of the change of coordinates matrix S is verified.

If neither % nor FZ is a natural basis, the determination of S can still be
systematized by the introduction of an intermediate step which does
involve a natural basis.
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Exercise 3. Suppose we need the change-of-coordinates matrix S such
that S[x]%  = [xl%,  where neither 5% nor % is a natural basis for ‘v.
Suppose 97, is a natural basis. Show, by introducing an intermediate
change to the coordinates [xl%, that

S=([z,]s : ‘a * i [z.]J’([x& : ** - : [x,],) (2.61)

Example 5. Change of Coordinates via an Intermediate Natural Basis. Two bases

for 5Yp3  are 9 5 (4, f2, f3>  and 8 f {gl, gz, g3}, where

f,(t)=l, f*(t)=l+t,  f,(t)=l+P

g,(t)= 1+ t, gJt)= t, gJt)= t+ t2

To find S such that S[fj9 = [fig, we introduce the natural basis 5% i (h,, h2, h3},
where hi(t) = t j- ‘. Then, by (2.61),

s= ([g& .: [g,], i [g&J1([fll~ 3 P21, : [f3ld

-(b 8 g)-‘(g d i))

=(-; 8-y& b ;!I=(-6 i-i)

Similarity and Equivalence Transformations

Now that we have a process for changing coordinate systems, we explore
the effect of such a change on the matrix of a transformation. Suppose T is
a linear operator on V, and that 5% and % are two different bases for V.
Then CT],,  is defined by

Pl,,wx =Pln

The change from the % to the % coordinate system is described by

s[Jd%  = [xl2

The change-of-coordinates matrix S also applies to the vector TX in ?r :

WY x = [TX1 %
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By substituting [xl, and [TX]% from these last two equations into the
defining equation for [TX],, , we find

[T],,S-‘[xl, =S-‘[TX],,

(S[Tl,,S-‘)[xl,  = [TX],

But this is the defining equation for [T],,. It is apparent that

[TIE% =S[T],,S-’ (2.62)

where S converts from the % coordinate system to the % coordinate
system. Equation (2.62) describes an invertible linear transformation on

mx, known as a similarity transformation. In Section 4.2, we find that a
similarity transformation preserves the basic spectral properties of the
matrix. It is comforting to know that any two matrix representations of a
linear system have the same properties-these properties are inherent in
the model, T, and should not be affected by the coordinate system we
select.

Example 6. A Similarity Transformation. In Example 2 we found the matrix of
the differential operator on 9’ relative to the natural basis for 9”:

Another basis for 9’ is 9 = {gl, g2, g3}, where g*(t)  = 1+ t, g2(t)  = t, and g3(t)  = t +
t2. The change-of-coordinates matrix which relates the two bases 9Z and 9 is
defined by S[fJa  =[f’j I ; we find it using (2.56):

The inverse matrix is
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Then, by (2.62),

Exercise 4. Let T: Y+%!l$  be a linear transformation. Assume ‘v and
%’ are finite dimensional. Let the invertible matrix SXs convert from the
basis 5% to the basis 3 in V. Let the invertible matrix S,, convert from
the basis 3 to the basis 8 in %. Show that

(2.63)

This transformation of the matrix [T],, is called an equivalence trans-
formation. The similarity transformation (2.42) is a special case. The term
“equivalence” is motivated by the fact that [T],, and [T],@ are equiva-
lent models of the system. The system equation TX= y is equally well
represented by the matrix equations which result from the introduction of
any coordinate systems for V and W.

The discussion of matrices of transformations has been limited to
transformations on finite-dimensional vector spaces. The primary reason
for avoiding the infinite-dimensional counterparts is our inability to speak
meaningfully about bases for infinite-dimensional spaces before discussing
convergence of an infinite sequence of vectors (Section 5.3). However,
matrices of infinite dimension are more difficult to work with (to invert,
etc.) than are finite-dimensional matrices.

2.6 Problems and Comments

*2.1 Let 5, and S, be subsets of a vector space Ir. Let W, and %, be
subspaces of V.
(a) The intersection S r n S, of the sets S, and S, is the set of

vectors which belong to both S, and $5,;  if S I n S, is empty
or if S,n S,= 8, we say S, and S, are disjoint.

(b) The union $5, u $5, of the sets $5, and S, is the set of vectors
which belong either to 5, or to S, or to both.
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(c) The sum S i + S, of the sets S i and S, is the set of vectors of
the form xi +x2, where xi is in S i and x2 is in S,.

(d) ‘%Y,  n 9.l!‘,  is a subspace.
(e) 5!$, u %!YZ  is usually not a subspace.
(f> %, + “ru;,  is the subspace spanned by %, u %,.
(g) dim(‘?6,)+dim(‘%,)=dim(~,+~J+dim(~,n  %J.

2.2 Prove that the real 3-tuple space s3 introduced in Equation (2.2) is
a vector space.

2.3 Determine whether or not the following sets of vectors are linearly
independent:
(a) The column vectors (2 1 0 1)T, (1 2 -1 1)T, and (3 0 1 1)T

in %4x1
(b) The functions f,(t)= 1+2t-  t2, f,(t)=2+2t+  t2, a n d  f3(t)

 in 9’.
(c) The functions gl(t)=  1+2t + t2- t3, g2(t)= 1 + t - t2+ t3, and

g3(t)=  1 +3t+3t2-3t3 in 5Y4.
*2.4 Modulo-2 scalars: data transmitted by radio or telephone usually

consist in strings of binary numbers (ones and zeros). A character
or number to be transmitted is represented by a binary code word
of length n. It is a sequence of these code words which makes up
the transmitted string. We can think of the set of all possible code
words of length n as vectors in a vector space. We call the space a
binary linear code (see [2.8]). The scalars used in vector space
manipulations can be restricted to binary numbers if ordinary
addition of scalars is replaced by modulo-2 addition:

o+o=o O+l=l

l+O=l l+l=O

The rules for multiplication of scalars need not be changed. One
way to check for errors in data transmission is to let the nth
element of each code word equal the sum (mod-2) of the other
elements in the word. If a single error appears in the transmitted
word, the nth element will fail to give the proper sum.
(a) Let V be the set of 5 x 1 matrices with the mod-2 scalars as

elements. Show that ‘v is a vector space. (Assume that addi-
tion and scalar multiplication of the matrices is based on the
mod-2 scalars.)

(b) Let %Y be the subset of ‘V consisting in vectors for which the
fifth element equals the sum of the other four elements. Show
that % is a subspace of V.

(c) Find a basis % for %. Determine [xl,, where x = (1 1 0 1
1)T.



Sec. 2.6 Problems and Comments 8 3

(d) The subspace (?!lJ is a binary linear code. A code can also be
described by a “parity check” matrix P for which the code is
the nullspace. Find the parity check matrix for the code %.

2.5 The set of all real m x n matrices, together with the usual defini-
tions of addition and scalar multiplication of matrices, forms a
vector space which we denote by ‘?Xmxn.  Determine the dimension
of this linear space by exhibiting a basis for the space.

*2.6 Let Ir and % be vector spaces. With the definition of linear
combination of transformations given in (2.27),
(a) The set of all transformations from V into Gtl(;  forms a vector

space.
(b) The set C( V, W) of all linear transformations from ?r into

‘?l! forms a subspace of the vector space in (a).
(c) The set of all linear transformations which take a particular

subspace of V into 8, constitutes a subspace of I?( Ir, %).
(d) If dim(Y)= n and dim(%)=,,  then dim(E(‘V,%))=mn.

*2.7 Exploring linear combinations by row reduction. Let % 9 (y,, . . . , y,>
be a set of m x 1 column vectors. The linear combination y
= 2y, + * l l + c,y, can be expressed as y= Ax by defining

A = ( yi i y2 i . . . i y,) and x k (c, . . . c,)‘. Row reduction of the

matrix (A i y) for an unspecified vector y A (7,. . - qJT, or the
equivalent row reduction of (A : I) for an m X m matrix I, deter-
mines the form of the vectors in span( 3 ) and pinpoints any linear
dependency in the set % . If 9 is linearly independent, the row
reduction also determines the coordinates with respect to % of
each vector y in span( ‘3 ). Let

y=( g, yl=( a)¶ Y2=( ;J y3=( g9 y4=( a,

(a) Row reduce (A i I).
(b) Determine the space spanned by % ; that is, determine the

relationships that must exist among the elements {qi}  of y in
order that y be some linear combination of the vectors in % .
Determine a basis for span( % ).

(c) Determine which linear combinations of the vectors in %
equal the specific vector y given above.

(d) The form of span( % ) can also be determined by row reduc-
tion of A’. The nonzero rows of the row-reduced matrix
constitute a basis for span( 9 ). Any zero rows which appear
indicate the linear dependence of the set ‘% .
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2.8 For the following sets of vectors, determine if y is in span{y,}.  If so,
express y as a linear combination of the vectors {y,}.

(a) y=(i),  YI=( $ Y249 Y3= (4)

(b) y=(i),  YI=($ Y2=($ y3= (i>

(c) y=(;;)9  yl=(;).  y2=(99 y3=('i)

2.9 Find a basis for the subspace of C?’ spanned by the functions
fl(t)=  1+ t +2t2, f2(t)=2t+  t2+ t3, and f3(t)=2+3t2-  t3. Extend
the basis for the subspace to a basis for C?’ by adding appropriate
vectors to the basis.

2.10 Find the coordinate matrix of the vector x= (1, 1, 1) in %k3:
(a) Relative to the basis 5% = { (1, 0, 0), (1, -1, 0), (0, 1, -1)).
(b) Relative to the basis 3 = {( 1, 1, -l), (1, -1, l), (-1, 1,

l>>*
2.11 Find the coordinate matrix of the function f relative to the basis

9 = {gi, g,, g3}, where f(t) i t, gl(t) f l+ t, g2(t) 9 l+ t2, and
g3( t) = 1 - t2.

2.12 Find the coordinate matrix of the function g relative to the basis

?F= {fl, f,, f,}, where f,(t)  i 1- t, f2(t) i 1- t2, f,(t)  2 1 + t - t2,

and g(t) b & +[,t +c3t2.
2.13 Find the coordinates of the vector x in ‘%2x2 relative to the basis

%L = (xl, x2, x3, x4}, where

2 14 Let ?P2x2 denote the space of polynomial functions of the form.
f(s, t)= aI, + a,,s+ a,,t + a,,st. Find a basis for C!?2x2  which in-
cludes the function f&s,  t) = 2s - t - 1. Find the coordinate matrix
of the general vector f in C?2x2 relative to that basis.



Sec. 2.6 Problems and Comments 85

2.15 Let 1/ be the space of continuous functions. Define the forward

difference operator A,,: Ir+V by (A,f)(t) A [f(t+  &)-f(t)]/6  for
all f in ‘V and for all t, where 6 >0 is a fixed real number. Show
that As is linear.

2.16 Financial planning: the financial condition of a family unit at time t
can be described by f(t) = f(t - 6) + af(t - 6) + g(t) where f(t) is the
family savings at time C, f(t - 6) is the savings at a previous time
t - 8, a is the interest rate per time interval 6, and g(t) is the deposit
at time t. (No deposits occur between t - 8 and t.)
(a) Let the time interval 6 be 1 month. If we consider t only at

monthly intervals, the above financial model can be expressed
as the difference equation, f(k)  = (1 + a)f(k - 1) + g(k). Given
f(0) = $100, a = 0.005 (i.e., 6% compounded monthly), and
g(k)=$lO  for k= 1, 2,…, determine the savings versus time
over 1 year by computing f(1) from f(O),  f(2) from f(l),  etc.
(This computation is known as “marching.“)

(b) The above financial model can be rewritten as

The quantity b i a/8 is the interest rate per unit time;

u(t) 4 g(t)/6  is the deposit rate for the interval. If we let 6+0,
the model becomes a differential equation, f(t) = bf(  t) + u( t).
Let f(0) = $100, b = 0.005 per month, and u(t) = $10 per month
for t > 0; find the savings versus time over 1 year by solving the
differential equation. Compare the result with (a).

(c) An arbitrary nonlinear time-varying differential equation with
initial conditions can be approximated by a difference equa-
tion in order to obtain an approximate solution via the simple
marching technique of (a). Approximate the differential equa-
tion of (b) by using the forward-difference approximation f(t)
w(l/C)(f(t+E)-f(t), e = 1 month, and considering t only at
monthly intervals. Solve the difference equation for a 1 year
period using f(O), b, and u(t) as given in (b). Compare the
result with (b). How can the difference approximation be
improved?

2.17 The electrostatic potential distribution within a two-dimensional
charge free region satisfies Laplace’s equation:

A a2f(s9t) + a2f(&t) =.
(.V2f)(s,  t) = ~ -

as2 at2
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For the potential distribution between two parallel plates of spac-
ing d, the model reduces to f”(s)=0 with f(0) and f(d) given.
(4

(b)

cc>

Assume the differential operator D2 acts on e2(0,d),  a space
of twice-differentiable functions. Find the nullspace of D2, a
subspace of e2(0,d).  The nullspace is the solution space for
the above differential equation. Express the solution space in
terms of the known boundary values f(0) and f(d).  What is the
dimension of the nullspace of D2?
Define the central-difference operator A on e2(0,d) by

(Af)(s) i f(s+ $) -f(s- ;)

The derivative of f can be expressed as the limit of the
central-difference approximation, f’(s)w(Af)(s)/&  Verify that
D2, as it acts on L?‘(O,d),  can be approximated arbitrarily
closely by the second-central-difference approximation, D2
WA2/iS2.
Suppose the plate spacing is d = 5. Let 6 = 1, and evaluate the
finite-difference approximation A2f = 8 at s = 1, 2, 3, and 4 to
obtain four algebraic equations in the variables f(O),
f(l) , . . . ,f(5). Formulate these algebraic equations as a 4 X 6
matrix equation Ax= 8. Compare this matrix equation with
the differential equation D2f = 8; that is, compare the spaces
on which the operators act; also compare the dimensions of
their solution spaces. Solve the matrix equation in terms of the
boundary values f(0) and f(5). Compare the discrete solution
with the continuous solution found in (a).
This problem can also be carried out for the two-dimensional
case, where f(s, t) is given on a closed boundary. The finite-
difference approach in (b) and (c) is widely used in the
solution of practical problems of this type. The equations,
sometimes numbering as many as 100,000, are solved by
iterative computer techniques. See Forsythe and Wasow [2.4].

2.18 According to the trapezoidal rule for approximate integration, if we
subdivide the interval [a, b] into n segments of length 6, and denote
g(a+j8) by 6, j=O, l,..., n, then for a continuous g,
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We can view the trapezoidal rule as an approximation of a function
space integral operation by a matrix multiplication Ax, where A is

lxn andxi(go.+.g,JT.
(a) Find the matrix A which expresses the trapezoidal rule for

6 = 1 and n = 5. Apply the trapezoidal rule to accurately repre-

sent the integral of the discontinuous function g(s) e 1 for

0 < s < 2, g(s) 4 0 for 2 < s < 5. Hint: at the discontinuity use
the midpoint value, (g; + gT)/2.

(b) We can also approximate a general integral operator by a

matrix multiplication. Suppose (Tf)(t) s jik(t,s)f(s)  ds for t
in [a, b]. We can treat the function k(t, s)f(s)  as we did g(s) in
(a). Subdivide both the s and t intervals into n segments of
length 6, and use the same subscript notation for function
values as above. Then if k(t,s)f(s) is continuous,

for j=O, I,..., n. We can approximate the integral operation
by a matrix multiplication, y = Ax, where x = (foe 0 . f,)’ and
Y = ((TOO  * . . (Tf),,)‘. Find A for 6= 1, n=5,  a=O, b=5, and

Hint: use midpoint values as in (a). Note that the operator is
ordinary indefinite integration.

(c) Apply the matrix multiplication found in (b) to obtain the
approximate integral of f(s) = 3s2. Compare the approximation
to the actual integral at the points t = 0, 1,…,5.

*2 19. Exploring the nullspace and range by row reduction: Let

Multiplication by A is a linear transformation from %4x1 into
(?liL3x  ‘. Multiplication by AT is a linear transformation from a3 x ’
into YlL4” ‘. In Section 5.4 we find that if y is in range(A)  and x is
in nullspace(A9,  then x l y = 0 where x l y is the dot product of
analytic geometry. Furthermore, if z is in range(AT)  and w is in
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nullspace( then z l w = 0. By means of these dot product equa-
tions, we can use bases for nullspace(A3  and range(A3  to find
bases for range(A)  and nullspace( and vice versa. We can also
show that rank(A)  =rank(A’).  In this problem we obtain null-
space(A) and range(A)  directly from A’.
(a) Row reduce (A i I). Use the results of the row reduction to

determine bases for nullspace and range(A).
(b) Row reduce (A’ : I). Show that the nonzero rows in the

left-hand block of the row-reduced matrix constitute a basis
for range(A).  Show that the rows of the right-hand block
which correspond to zero rows of the left-hand block of the
row-reduced matrix constitute a basis for nullspace(

2.20 Define T: $P3+ C? (0, 1) by (Tf)(t)  B jAk( t,s)f(s)  ds for all f in C?‘,
where

k(t,s)=  t(1 -s) f o r  t < s

=(1-t)s  f o r  t>s

Find a basis for range(T).  Describe nullspace(

2.21 Let % be the space of polynomial functions f of the form

f(s, t) f c, + c2s  + c,t + c,st for all s and t. Define T: w +G2l(i by

(Tf)(s, t) 9 (a/%)f(s,  t) for all f in % .
(a) Find a basis for the range of T.
(b) Determine the rank and nullity of T.

2.22 Define T: 9’lL2x2+911,2x2  by

T( :; f:) 9 ( y2 c4cIc3)

for all choices of the scalars cl, c2, c3, and c4. Find nullspace  and
range(T)  by exhibiting a basis for each.

2.23 Expected value: the throws of a single die constitute an experiment.
Let II‘ be the space of random variables defined on this experi-
ment. We can think of the probability mass function a(u) as the
relative frequency with which the outcome u occurs: o(a)  = d for
u=l, 2 ,..., 6.
(a) A random variable x in V associates a value x(a)  with each

possible outcome of the experiment. The value which x
associates with an actual trial of the experiment is called a
sample value of x. The probability mass function o,(x) speci-
fies the relative frequency with which the sample value x
occurs during repeated trials. Find w,(y)  for the random
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2.24

variable y defined by y(a) 4 2 for 0 = 1 or 2 and by y(a) 4 0
for u=3, 4, 5, or 6.

(b) The expected value of x is the average, over many trials, of the
sample values of x. Thus

Find E(y) for the random variable y given in (a).
(c) Show that the functional E: v+% is linear. Pick a basis %

for V. Let & g {(1)} be a basis for 3. Find [y]% and [ElxXG,
where y is the random variable in (a).

(d) If f: ?r+ V then f(x) is a random variable. Express E (f(x))  in
terms of o(u). Find E(y2) for the random variable y given in
(a). If g: Ir x V+ Ir, can E be applied to g(x, y)?

Hadamard matrices: let f(s) represent the light intensity versus
position in one line of a television picture. Let the n x 1 column
vector x be a discrete approximation to f. Then x can be viewed as
a one-dimensional photograph. Suppose the data x must be trans-
mitted for remote viewing. One way to reduce the effect of trans-
mission errors and to reduce the amount of data transmitted is to
transmit, instead, a transformed version of x. A computationally
simple transformation is the Hadamard transform—multiplication
by a Hadamard matrix. A symmetric Hadamard matrix H consists
in plus and minus ones, and satisfies H-l  = H (see [2.9]). Denote
the transformed vector by X = Hx. Let n = 8 and

The Hadamard transform spreads throughout the elements of X the
information which is concentrated in a single element of x; it
concentrates information which is spread out.
(a) D e t e r m i n e  t h e  e f f e c t  o f  H o n  t h e  p h o t o g r a p h s  x

=(11111111)T and x = &i,  where q is the ith standard basis
vector for %8x1.
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2.25

(b) Find the transform of the photograph x = (2 2 2 3 2 2 2 2)T. As-
sume that an error during transmission of X reduces the third
element of X to zero. Determine the effect of the error on the
reconstructed photograph.

(c) The inverse transform, x= HX, can be interpreted as an
expansion of x in terms of the columns of H. The columns of
H are analogous to sinusoidal functions; the number of zero
crossings corresponds to frequency. Let x be the photograph
in (b). Determine the effect on the reconstructed photograph
of not transmitting the highest frequency component of X (i.e.,
the effect of making the second element of X zero). Determine
the effect on the reconstructed photograph of eliminating the
zero frequency component (i.e., the effect of making the first
component of X zero).

The space C?‘(O,  cc) consists in the continuously differentiable func-
tions on [0, co]. Define the Cartesian product space ?r by

Yi el(o,w)>:  ..’ x E?‘(O,  cc). Denote the vector-valued func-
n-1

tions in Ir by x. We can treat the values of x as vectors in ?Rn x I;
that is, x(t)=(f,(t).  * . f,(t))‘, where fj is in C?‘(O,  00). Let A be a real
n x n matrix. Define the linear transformation T: V+ % by

This transformation is central to the state-space analysis of
dynamic systems.
(a) Determine an appropriate range of definition %$ for T.
(b) Find a basis for nullspace if n = 2 and

2.26 Assume e < 6~ 1. Then the following matrix is nearly singular:

Use inverse iteration to find a basis for the near nullspace of A.

2.27 Define T: CR,*+ CR,* by ‘JXl, t2) i (Cl  + 2t2,t1 - 25,) for all (cl,<*) in
CR,*.  Let % = {(1, l), (1, -l)}. Find [T],,.
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2.28

2.29

2.30

2.31

2.32

2.33

2.34

Define T: by

(a) Determine [TIF,  G2, the matrix of T relative to the standard
bases for CR3 and Ck2.

(b) Determine [T],, , where % = {(1, 0, -l), (1, 1, 1), (1, 0, 0)}
and % = {(1, 0), (1, 1)}.

Define T: C?L2-+ CR3 by T(5,, t2) f (Cl + t2, & - t2, 2t2) for all (&,  t2) in
%2. Let % = {(1, 1), (1, -1)) and ‘% = {(1, 1, -1), (1, -1, 1), (-1,
1,1)}. Find [T],, .

Let C?2x2 denote the space of polynomial functions of the form
f(s,t)=a,,+ a,,s+a,,t  + a,,st. Define T: C?2x2+W  by

(Tf)(s, t) = jsf(u,  t)du
0

where ‘%’ =range(T).
(a) Find bases, g for q2 x2 and 9 for qti .
(b) Find [T],, .
(c) Determine T- ’ and [T- I]@%.  How else might [T- ‘lgF be

obtained?
The sets % = {(1, -1, 0), (1, 0, 1), (1, 1, 1)} and 3 = {(1, 1, 0),
(0, 1, 1), (1, -1, 1)} are bases for $k3. Find the change of
coordinates matrix S,, which converts coordinates relative to 5%
into coordinates relative to %I .

Let gl(t)  = 1 - t, g2(t) = 1 - t2, and g3(t) = 1 + t - t2. The set 4
= {g,, g,, g3} is a basis for 03. Another basis is % = {f,, f2, f3} where
f/Jt)= P-'.
(a) Find [f], for the arbitrary vector f(t)=tl +t2t +c3t2.
(b) Find the coordinate-transformation matrix S such that [fle

= S[f],.

Define T: Cfi,2+a3  by T (t1,t2)  e (5‘2-5,,51,251-52)  for all &,S,>
in Ck2. The sets % = {(1, l), (1, -l)} and % ={(1, 2), (2, l)} are
bases for Ck2. The sets ‘% = {(1, 1, -1), (1, -1, 1), (-1, 1, 1)} and
x = {(1, 1, 1), (0, 1, 1), (0, 0, 1)} are bases for C!R3.
(a) Find [T],, .
(b) Find the coordinate transformations S,, and S,, .
(c) Use the answers to (a) and (b) to compute [T],, by means of

an equivalence transformation.

Define T: a2+ a2 by T(5,,t2) 9 (tr + 2t2,5, - 2t2) for all (tl, t2) in
$k2.  The sets 5% = {(1, 2), (2, 1)} and % = {(1, 1), (1, -1)} are bases
for CR2.
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(a) Find [T]%,,.
(b) Find the coordinate transformation S,, .
(c) Use the answers to (a) and (b) to compute [T], q by means of

a similarity transformation.

2.35 Multiplication by an invertible matrix can be interpreted either as a
linear transformation or as a change of coordinates. Let CX =
{x1,x2}  be a basis for a two-dimensional space ‘V and x a vector in

V. Then [x,1% = (A) and [x2]%  = (7).  Let

(a) Alias interpretation: assume A[x]~ =[x]~  , where % = {yl,y2}
is a second basis for ‘Ir. Find [ylln and [y2]%. Sketch [xJ~,
[X21Xx [Xl%? [Y,lw and [y21n as arrows in a plane. What is the
relationship between [xl% and the basis {[yljX, [y2]%};  that
is, what is meant by the notation [xl%  ?

(b) Alibi interpretation: assume A[x], =[Tx],.  Sketch [x,]~,

[x215%  9 [Xl%  9 and [TX], as arrows in a plane. What is the
relationship between [TX],  and the basis {[xJX,  [x21X};  that
is, what is meant by the notation [TX],?

2.7 References

[2.1]

[2.2]

[2.3]

[2.4]

*[2.5]

*[2.6]

[2.7]

[2.8]

[2.9]

[2.10]
[2.11]

Churchill, R. V., Fourier Series and Boundary Value Problems, McGraw-Hill, New
York, 1941.
Cramer, Harald and M. R. Leadbetter, Stationary and Related Stochastic Processes,
Wiley, New York, 1967.
Forsythe, George E., “Singularity and Near Singularity in Numerical Analysis,” Am.
Math. Mon., 65 (1958), 229-40.
Forsythe, George E. and Wolfgang R. Wasow, Finite Difference Methods for Partial
Differential Equations, Wiley, New York, 1960.
Halmos, P. R., Finite-Dimensional Vector Spaces, Van Nostrand, Princeton, N. J.,
1958.
Hoffman, Kenneth and Ray Kunze, Linear Algebra, Prentice-Hall, Englewood Cliffs,
N. J., 1961.
Papoulis, Athanasios, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, New York, 1965.
Peterson, W. Wesley, Error-Correcting Codes, M.I.T. Press and Wiley, New York,
1961 .
Pratt, William K., Julius Kane, and Harry C. Andrews, “Hadamard Transform
Image Coding,” Proc. IEEE, 57, 1 (January 1969), 58-68.
Royden, H. L., Real Analysis, 2nd ed., Macmillan, New York, 1968.
Wylie, C. R., Jr., Advanced Engineering Mathematics, 3rd ed., McGraw-Hill, New
York, 1966.



3

Linear Differential Operators

Differential equations seem to be well suited as models for systems. Thus
an understanding of differential equations is at least as important as an
understanding of matrix equations. In Section 1.5 we inverted matrices and
solved matrix equations. In this chapter we explore the analogous inversion
and solution process for linear differential equations.

Because of the presence of boundary conditions, the process of inverting
a differential operator is somewhat more complex than the analogous
matrix inversion. The notation ordinarily used for the study of differential
equations is designed for easy handling of boundary conditions rather than
for understanding of differential operators. As a consequence, the concept
of the inverse of a differential operator is not widely understood among
engineers. The approach we use in this chapter is one that draws a strong
analogy between linear differential equations and matrix equations,
thereby placing both these types of models in the same conceptual frame-
work. The key concept is the Green’s function. It plays the same role for a
linear differential equation as does the inverse matrix for a matrix equa-
tion.

There are both practical and theoretical reasons for examining the
process of inverting differential operators. The inverse (or integral form) of
a differential equation displays explicitly the input-output relationship of
the system. Furthermore, integral operators are computationally and
theoretically less troublesome than differential operators; for example,
differentiation emphasizes data errors, whereas integration averages them.
Consequently, the theoretical justification for applying many of the com-
putational procedures of later chapters to differential systems is based on
the inverse (or integral) description of the system. Finally, the application
of the optimization techniques of Chapters 6-8 to differential systems often
depends upon the prior determination of the integral forms of the systems.

One of the reasons that matrix equations are widely used is that we have
a practical, automatable scheme, Gaussian elimination, for inverting a
matrix or solving a matrix equation. It is also possible to invert certain
types of differential equations by computer automation. The greatest
progress in understanding and automation has been made for linear,
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constant-coefficient differential equations with initial conditions. These
equations are good models for many dynamic systems (systems which
evolve with time). In Section 3.4 we examine these linear constant-
coefficient models in state-space form and also in the form of nth-order
differential equations. The inversion concept can be extended to partial
differential equations.

3.1 A Differential Operator and Its Inverse

Within the process of inverting a differential operator there is an analogue
of the elimination technique for matrix inversion. However, the analogy
between the matrix equation and the differential equation is clouded by
the presence of the boundary conditions. As an example of a linear
differential equation and its associated boundary conditions, we use

-f” =u w i t h  f(O)=  art a n d  f(b)  =  CQ (3.1)

Equation (3.1) can be viewed as a description of the relationship between
the steady-state temperature distribution and the sources of heat in an
insulated bar of length b. The temperature distribution f varies only as a
function of position t along the bar. The temperature distribution is
controlled partly by u, the heat generated (say, by induction heating)
throughout the bar, and partly by constant temperature baths (of
temperatures cyr and [x2, respectively) at the two ends t = 0 and t = b. Thus
both the distributed input u and the boundary inputs { ai} have practical
significance. The concepts of distributed and boundary inputs extend to
other ordinary and partial differential equations.

A Discrete Approximation of the Differential System

In order to obtain a more transparent analogy to matrix equations and
thereby clarify the role of the boundary conditions, we temporarily
approximate the differential equation by a set of difference equations.* Let
b = 4, substitute into (3.1) the finite-difference approximation

*The approximation of derivatives by finite differences is a practical numerical approach to
the solution of ordinary and partial differential equations. The error owing to the finite-
difference approximation can be made as small as desired by using a sufficiently fine
approximation to the derivatives. (See Forsythe and Wasow [3.3].) Special techniques are
usually used to solve the resulting algebraic equations. See P&C 3.3 and Varga [3.12].
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and evaluate the equation at t = 1, 2, and 3:

95

-f(O)+2f(l)  -f(2) =u(l)
-f(l)+2f(2)  -f(3) = u(2)

- f(2) + 2f(3) - f(4) = u(3) (3.4)

f(O) =a

f(4) =a:

It is obvious that this set of algebraic equations would not be invertible
without the boundary conditions. We can view the boundary conditions
either as an increase in the number of equations or as a decrease in the
number of unknowns. The left side of (3.2), including the boundary
conditions,  is  a matrix multiplication of the general vector (f(0)
f( 1) * ’ * f(4))= in the space %5x ‘. The corresponding right-hand side of
(3.2) is (u(1)  u(2)  u(3)  (xi (~2)~; the boundary values increase the dimension
of the range of definition by two. On the other hand, if we use the
boundary conditions to eliminate two variables, we reduce the dimension
of the domain of the matrix operator by two, f(0) and f(4) become part of
the right-hand side, and the reduced matrix operates on the general vector
(f(l)  f(2) f(3))’ in 9R,3x ‘. By either the “expanded” or the “reduced” view,
the transformation with its boundary conditions is invertible. In the next
section we explore the differential equation and its boundary conditions
along the same lines as we have used for this discrete approximation.

The Role of the Boundary Conditions

A differential operator without boundary conditions is like a matrix with
fewer rows than columns: it leads to an underdetermined differential
equation. In the same manner as in the discrete approximation (3.2),
appropriate boundary conditions make a linear differential operator invert-
ible. In order that we be able to denote the inverse of (3.1) in a simple
manner as we do for matrix equations, we must combine the differential
operator - D2 and the two boundary conditions into a single operator on a
vector space. We can do so using the “increased equations” view of the
boundary conditions. Let f be a function in the space e2(0,b)  of twice
continuously differentiable functions; then -f” will be in C?(O,b), the
space of continuous functions. Define the differential system operator T:
e2(0, b)-+ e (0, b) x ‘JR2 by

Tf 9 (-f”,f(O),f(b)) (3.3)

The system equations become

Tf = (u, “1,(x2) (3.4)
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We are seeking an explicit expression of T- ’ such that f = T- ‘(u,  ai, (w,).
Because of the abstractness of T, an operation which produces a mixture
of a distributed quantity u and discrete quantities {(xi}, it is not clear how
to proceed to determine T-l.

Standard techniques for solution of differential equations are more
consistent with the “decreased unknowns” interpretation of the boundary
conditions. Ordinarily, we solve the differential equation, - f” = u, ignoring
the boundary conditions. Then we apply the boundary conditions to
eliminate the arbitrary constants in the solution. If we think of the
operator - D2 as being restricted through the whole solution process to act
only on functions which satisfy the boundary conditions, then the
“arbitrary” constants in the solution to the differential equation are not
arbitrary; rather, they are specific (but unknown) functions of the
boundary values, { aj}. We develop this interpretation of the inversion
process into an explicit expression for the inverse of the operator T of (3.3).

How do we express the “restriction” of -D2 in terms of an operator on
a vector space? The set of functions which satisfy the boundary conditions
is not a subspace of e2(0,b);  it does not include the zero function (unless
a =a1 2=O). The analogue of this set of functions in the three-dimensional
arrow space is a plane which does not pass through the origin. We frame
the problem in terms of vector space concepts by separating the effects of
the distributed and boundary inputs. In point of fact, it is the difference in
the nature of these two types of inputs that has prevented the differential
equation and the boundary conditions from being expressed as a single
equation.* Decompose the differential system (3.1) into two parts, one
involving only the distributed input, the other only the boundary inputs:

-fpu with f,(O) = fd( b) = 0 (3.5)

-fp(j with f,(O) = LYE, fb( b) = a2 (3.6)

Equations (3.5) and (3.6) possess unique solutions. By superposition, these
solutions combine to yield the unique solution f to (3.1); that is, f = fd+ fb.
Each of these differential systems can be expressed as a single operator on
a vector space. We invert the two systems separately.

We work first with (3.5). The operator -D2 is onto C?(O, b);  that is, we
can obtain any continuous function by twice differentiating some function
in e2(0,  b). However, -D2 is singular; the general vector in nullspace
(- D2) is of the form f(t) = ci + c,t. We modify the definition of the
operator - D2 by reducing its domain. Let ?f be the subspace of functions
in e2(0,b)  which satisfy the homogeneous boundary conditions of (3.5),

*Friedman [3.4] does include the boundary conditions in the differential equation by treating
the boundary conditions as delta functions superimposed  on the distributed input.
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f(0)  = f(b) = 0. Define the modified differential operator Td: y+ (? (0, b) by

Tdf k -D2f for all f in V. The “distributed input” differential system (3.5)
becomes

(3.7)

The boundary conditions are now included in the definition of the
operator; in effect, we have “reduced” the operator -D2 to the operator
T, by using the two boundary conditions to eliminate two “variables” or
two degrees of freedom from the domain of the operator -D2. The
operator Td is nonsingular; the equation - f”(t) = 0 has no nonzero
solutions in Ir. Furthermore, T, is onto; eliminating from the domain of
- D2 those functions which do not satisfy the zero boundary conditions of
(3.5) does not eliminate any functions from the range of -D2. Suppose g is
in e2(0, b), and that g(0) and g(b) are not zero. Define the related function

f in ‘v by f(t) i g(t)-[g(O)+  t(g(b)-g(O))/b].  We have simply subtracted
a “straight line” to remove the nonzero end points from g; as a result,
f(O)=f(b)=O. But -D2f = - D’g. Both f and g lead to the same function in
C?(O,b).  Every vector in C?,(O, b) comes (via - D2) from some function in
Y. Thus Td is onto and invertible.

The differential system (3.6) can also be expressed as a single invertible
operator.  The nonzero boundary condit ions of (3.6) describe a
transformation U: C2(0, b)+ CR,‘,  where

Uf i (f(O),f(b))

Since e2(0, b) is infinite dimensional but CR2 is not, U must be singular. We
modify the operator U by reducing its domain. Let % be the subspace of
functions in e2(0,b)  which satisfy the homogeneous differential equation
of (3.6), -f;(t) = 0; %J is the two-dimensional space Y2 consisting in
functions of the form f(t)= ci + c,t. We define the modified operator T,:

?I)‘+ a2 by T,f e (f(O), f(b))  for all f in 9’. The “boundary input” differen-
tial system (3.6) can be expressed as the two-dimensional equation

(3.8)

The differential equation and boundary conditions of (3.6) have been
combined into the single operator,  T,. I t  is  apparent  that  T, is
invertible-the operator equation is easily solved for its unique solution.

The Inverse Operator

We have rephrased (3.5) and (3.6) in terms of the invertible operators T,
and T,, respectively. Because (3.5) and (3.6) constitute a restructuring of
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(3.1), we can express the solution to (3.1) as

=T-‘(u,ar,,a2) (3.9)

where T is the operator of (3.3).
Since T, is a differential operator, we expect T,’ : e(O, b)-+ ‘v to be an

integral operator. We express it explicitly in the general form (2.34):

fd(t)=(T,‘u)(t)=/bk(t,s)u(s)ds (3.10)
0

The kernel function k is commonly referred to as the Green’s function for
the differential system (3.1). In order that (3.10) correctly express the
inverse of T,, fd(t) must satisfy the differential system (3.5) from which T,
is derived. Substituting (3.10) into (3.5) yields

d2 b
-f;(t)= - --& k(t,s)u(s)ds

J
b d2k(w)

= -

dt2
u(s)h=u(t)

0

with

fd(0)  = lbk(O,s)u(s)ds  = 0
0

f,(b)= &=‘k(b,s)u(s)ds=O

for all u in (Z (0, b). These equations are satisfied for all continuous u if and
only if

d2k(t,s)
-

dt2
=qt-s) with k(O,s) = k(b,s)  =0 (3.11)

That is, the Green’s function k, as a function of its first variable t, must
satisfy the differential equation and boundary conditions (3.5) for u(t)=
8(t - s), where 6 (t-s) is a unit impulse (or Dirac delta function) applied
at the point t = s.* We can use (3.11) to determine the Green’s function.

*See Appendix 2 for a discussion of delta functions. We use some license in interchanging the
order of differentiation and integration when delta functions are present. The interchange can
be justified, however, through the theory of distributions (Schwartz [3.10]).
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For practical purposes we can think of 6 (t - s) as a narrow continuous
pulse of unit area, centered at t = s. [In terms of the steady-state heat-flow
problem (3.1), the function 6 (t - s) in (3.11) represents the generation of a
unit quantity of heat per unit time in the cross section of the bar at t = s.]
However, 6 (t - s) is not a function in the usual sense; its value is not
defined at t = s. It is not in e2(0, b). Therefore, the solution k to (3.11)
cannot be in C2(0,  b). We simply note that the domain e2(0, b) and range
of definition C?(O, b) of the operator - D2 were defined somewhat
arbitrarily. We can allow a “few” discontinuities or delta functions in
- D2f if we also add to e2(0, b) those functions whose second derivatives
contain a “few” discontinuities or delta functions.

The operator T, - ’ : 9L2+ 9’ can also be expressed explicitly. Since T, - ’
acts linearly on the vector (LX,, 1x2) in CR2 to yield a polynomial in Y2, we
express T, - ’ as

fb=Tb-l(al,a2)=a1P,+a2P2 (3.12)

where p1 and p2 are functions in ‘?? 2. We refer to the function pj(t) as the
boundary kernel for the differential system (3.1). Just as the Green’s
function is a function of two variables, t and s, so the boundary kernel is a
function of both the continuous variable t and the discrete variable j.
Because of the simplicity of the differential operator of this example, the
introduction of the boundary kernel seems unnecessary and artificial. For
more complicated differential operators, however, the boundary kernel
provides a straightforward approach to determination of the full inverse
operator. In order that (3.12) correctly describe T,-‘, f, must satisfy the
differential system (3.6):

-fb” = - qp;’ - a2p;  = 0

f,(O) = ‘yIPI + ‘x2p2P)  = a1

f,(b) = 'YIP@) + a2~2@>  = a2

for all (x1 and (Ye. Thus the boundary kernel p must obey

-p;‘(t)=0 w i t h  p,(O)=l, p,(b)=0

-pi(t)=0 w i t h  p2(0)=0,  p2(b)=  1
(3.13)

We can use (3.13) to determine the boundary kernel.
We have defined carefully the differential system operator T, the “dis-

tributed input” system operator T,, and the “boundary input” system
operator T, in order to be precise about the vector space concepts involved
with inversion of differential equations. However, to continue use of this
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precise notation would require an awkward transition back and forth
between the vector space notation and the notation standard to the field of
differential equations. We rely primarily on the standard notation. We use
the term differential system to refer to the differential operator with its
boundary conditions (denoted {- D2, f(O), f(b)} in this example) and also
to the differential equation with its boundary conditions [denoted as in
(3.1)]. We refer to both the inverse of the operator and the inverse of the
equation as the inverse of the differential system. Where we refer to the
purely differential part of the system separately, we usually denote it
explicitly, for example, as - D2 or as - f” = u.

A Green’s Function and Boundary Kernel

We solve for the Green’s function k of the system (3.1) by direct integra-
tion of (3.11). The successive integration steps are depicted graphically in
Figure 3.1. It is clear from the figure that the integral of - d2k/ dt2 is
constant for t <s and t >s, and contains a jump of size 1 at t=s. We
permit the value of the constant c to depend upon the point s at which the
unit impulse is applied.

dk(t,s)
- - = c(s),

dt
t<s

=c(s)+ 1, t>s

Integration of - dk/dt yields continuity of - k at s:

-k(t,s)=c(s)t+d(s), t<s

=c(s)s+d(s)+(c(s)+l)(t-s),  t>s

Applying the boundary conditions we find

- k(O,s)=c(s)(O)+d(s)=O *d(s)=0

- k(b,s)=c(s)s+(c(s)+  l)(b-s)=O a(s)=  9

Thus

(b-s)t
k(td b=-, t<s

(b - t)s
=-, t>s

b
(3.14)
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Figure 3.1. Graphical integration of (3.11).

where both t and s lie in the interval [0,  b].
By integration of (3.13) we determine the boundary kernel p associated

with (3.1). The general solution to the jth differential equation is p,.(t)=
Cjl+ c,+. Using the boundary conditions we find

(3.15)

Having found k and p, we insert them into (3.10) and (3.12) to obtain
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T,-’  and T,-‘. Combining the two inverses as in (3.9) produces

(3.16)

Equation (3.16) is an explicit description of the inverse of the linear
differential system (3.1).

A Matrix Analogy

A differential equation with an appropriate set of boundary conditions is
analogous to a square matrix equation. We explore this analogy in order to
remove some of the abstractness and mystery from differential operators
and their inverses. An example of a matrix equation and its corresponding
inverse is

c :)(:;)=(~3 and (::)=L: -Xi:)
Any such pair of equations can be expressed as Ax= y and x= A-‘y,
respectively, for some square matrix A. The inverse matrix equation is
more clearly analogous to an inverse differential equation (or integral
equation) if we express the matrix multiplication in the form of a
summation. Denote the elements of x and y by & and Q, respectively. Then
the equation x = A- ‘y becomes*

&= ,$ (A-‘)~B+ i = I,..., n (3.17)

The symbol (A-‘), represents the element in row i and column j of the
n X n matrix A- ‘. Thus the inverse matrix, a function of the two integer
variables i and j, is the kernel of a summation operator. In the form (3.17),
the inverse matrix equation x =A- ‘y is obviously a discrete analogue of
the integral equation fJt)=J$(d,s)u(S)ds of (3.10). The Green’s function
k( t,s) is the analogue of the inverse matrix A-‘. If we compare the inverse
matrix equation (3.17) to (3.16), the full inverse of the differential system
(3.1), the analogy is clouded somewhat by the presence of the boundary
terms. The true analogue of A-’ is the pair of kernel functions, k and p.

*See (2.35).
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Because k(t,s)  and Pi(t) appear as “weights” in an integral or summation,
the inverse form of the differential system is somewhat more useful to the
intuition than is the differential system itself.

We can also draw an analogy between the process of inverting the
matrix A and the process of solving for k and p. The solution to the
equation Ax = Ei, where ei is the ith standard basis vector for 9Lnx ‘, is the
ith column of A- l. The solution process is analogous to solving (3.11) for
k(t,s) with s fixed; it is also analogous to solving (3.13) for b with j fixed.
The row reduction (A i I)+(1 i A-‘) produces all columns of the inverse
matrix simultaneously. Thus the inversion of A by row reduction is
analogous to the determination of k and p by solving (3.11) and (3.13),
respectively. In general, the process of computing k and p requires more
effort than does the direct solution of (3.1) for specific inputs u and { ai}.
However, the resulting inverse equation (3.16) contains information about
the solution for any set of inputs.

3.2 Properties of nth-Order Systems and Green’s Functions

In Section 3.1 we introduced the concepts of a differential operator and its
inverse by means of a simple second-order example, (3.1). We now explore
these concepts in detail for more general linear differential systems.
Included in this section is an examination of noninvertible differential
systems and a development of conditions for invertibility. Techniques for
explicit determination of the Green’s function and boundary kernel are
treated in Section 3.3.

We define a regular nth-order linear differential operator L : P (a, b)+
e(G) by

(Lf)(t)  Ai go(t)~“‘(t)+gl(t)f’“-“(t)+  l ’ * +g,(t)f(t) (3.18)

where the coefficients { g,.} are continuous and go( t)#O on [a, b].*  The
corresponding nth-order differential equation is Lf = u, where the distri-
buted input function u is continuous on [a, b]. It is well known that L is
o n t o  C?(a,b);  t h e  nth-order differential equation without boundary condi-
tions always has solutions (Ince [3.6]). The homogeneous differential equa-
tion is defined as the equation Lf = 0, without boundary conditions (the
input u is zero). The homogeneous differential equation for the operator

*If the interval [a,b] were infinite, if go were zero at some point, or if one of the coefficient
functions were discontinuous, we would refer to (3.18) as a singular differential operator. In
Section 5.5 we refer to the regular second-order linear differential operator as a regular
Sturm-Liouville operator.
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(3.18) always has n linearly independent solutions†; we call a set {v,, . . . , vn}
of independent solutions a fundamental set of solutions for L. We some-
times express such a set as the complementary function for L:

(3.19)

where c,,..., cn are unspecified constants. Both the complementary func-
tion f, and the fundamental set of solutions {vi}  are, in reality, descriptions
of the n-dimensional nullspace of L.

In order that L of (3.18) be invertible, we must add n appropriate
boundary conditions to eliminate the n arbitrary constants in the com-
plementary function. We denote the ith boundary condition for (3.18) by
&(f) = a,., where ai is a scalar and csi is a linear functional on (?” (a, b).g A
typical boundary condition is some linear combination of f and its first
n - 1 derivatives evaluated at the end points of the interval of definition.
For example,

PI(f)  f y,f(a) + y,f’(a) + 7$(b)  + YJV) = (~1 (3.20)

(where the { yi} are scalars) is as general a boundary condition as we would
normally expect to encounter for a second-order differential operator
acting on functions defined over [a,b]. The second boundary condition for
the second-order differential equation, &(f) = (Ye,  would be of the same
form, although the particular linear combination of derivatives which
constitutes p2 would have to be linearly independent of that specified by
the coefficients (y ,, y2, ys, y4) in &. There is, of course, no reason why the
boundary conditions could not involve evaluations of f and its derivatives
at interior points of the interval of definition. We refer to the boundary
condition 1si(f) = 0, where the boundary input q is zero, as a homogeneous
boundary condition.

Consider the following nth-order differential system:

Lf=u

iSi(f)=cwi, l,...,mi =
(3.21)

where L is defined in (3.18) and Isi is an n th-order version of (3.20); m is
typically but not necessarily equal to n. We call a solution fP to (3.21) a

†See P&C 3.4.
‡Of course, it is possible for the boundary conditions associated with a physical system to be
nonlinear functions of f. We consider here only linear differential equations and linear
boundary conditions.
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particular solution for the differential system. A completely homogeneous
solution fh for the differential system is a solution to the homogeneous
differential equation with homogeneous boundary conditions (the homo-
geneous differential system):

Lf=8 (3.22)
&(f)=O,  l,...,mi =

Thus a completely homogeneous solution for the differential system is a
solution with all inputs zero. Any solution f to (3.21) can be written as
f = fp + fh, where fP is any particular solution and f, is some homogeneous
solution. The set of completely homogeneous solutions constitutes the
nullspace of the differential system (or the nullspace of the underlying
differential operator).* A system with a nonzero nullspace is not invertible.

Exercise 1. Suppose

(Lf)(t)  i f”(t)=u(t) (3.23)

with the boundary conditions

P,(f) i fyO)= a1 /s2(f)  i f’(1) = c9 (3.24)

What is the completely homogeneous solution to (3.23)-(3.24)? Show that
the general solution to (3.23)-(3.24) is

f(t)=S,‘i&)d7do+a,t+f(O) (3.25)

where

I
1
u(T)dT=  al - a2

0
(3.26)

Note that the differential system (3.23)-(3.24) is not invertible. No solution
exists unless the inputs u and { cyi} satisfy (3.26).

The Role of the Homogeneous Differential System

The matrix analogue of the nth-order differential system (3.21) is the
matrix equation Ax= y (where A is not necessarily square). Row reduction
of A determines the nullspace of A (the solution to Ax= 0); it also shows

*See (3.4) and (3.9).
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the dependencies in the rows of A and the degree of degeneracy of the
equation-the degree to which the range of the matrix transformation fails
to fill the range of definition. To actually find the range of the matrix
transformation (specific conditions on y for which the equation is solv-
able), we can follow either of two approaches: (a) row reduce AT (the rows
of AT span the range of A)*; or (b) row reduce (A i I). If A is square and
invertible, approach (b) amounts to inversion of A.

For the differential system (3.21), the analogue of row reduction of A is
the analysis of the completely homogeneous system (3.22). We focus first
on this analysis, thereby determining the extent to which (3.21) is under-
determined or overdetermined. Then assuming the system (3.21) is invert-
ible, we perform the analogue of row reduction of —inversion of the
differential operator.

The solutions to the homogeneous differential equation, Lf = 8, are
expressed as the complementary function f, of (3.19). We apply the m
homogeneous boundary conditions to f,, thereby eliminating some of the
arbitrary constants in f, :

(3.27)

The nullspace of the differential system (3.21) consists in the functions
f, = CIVl + * l l + c,v,, where some of the arbitrary constants {ci}  are
eliminated by (3.27).

The key to the differential system (3.21) lies in B, a boundary condition
matrix (or compatibility matrix) for the system. In point of fact, B com-
pletely characterizes (3.22). It describes not just the boundary conditions,
but rather the effect of the boundary conditions on a set of fundamental
solutions for L. In general, the m boundary conditions, in concert with the

*see P&C 2.19. In Section 5.4 we introduce the adjoint operator, the analogue of AT.  The
orthogonal decomposition  theorem (5.67) is the basis of a method for determining the range

AT.
of an operator from the nullspace of its adjoint; this method is the analogue row reduction
of
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nth-order differential equation Lf = u, can specify either an underdeter-
mined or overdetermined set of equations. Exercise 1 exhibits symptoms of
both the underdetermined and overdetermined cases. Of course, B is not
unique since it can be based on any fundamental set of solutions. Yet the
rank of B is unique; rank(B) tells much about the solutions to (3.21)*:

1. If rank(B) = m = n, then (3.27) precisely eliminates the completely
homogeneous solution, and (3.21) is then the analogue of an invertible
square matrix equation; the system is invertible.

2 .  I f  rank(B) =  p  < n ,  then  (n - p ) of the constants { ci} in the
characteristic function remain arbitrary and the nullspace of the system
has dimension (n - p). There are (n - p) degrees of freedom in the solutions
to (3.21); the system is singular.

3. If rank(B) = p < m, then (m - p ) rows of B are dependent on the rest.
As demonstrated by Exercise 1, these dependencies in the rows of B must
be matched by (m - p) scalar-valued relations among the boundary values
{ ai} and the distributed input u, or there can be no solutions to (3.21)
(P&C 3.5). The system is not onto e(a, b).

The following example demonstrates the relationship between rank(B) and
the properties of the differential system.

Example 1. The Rank of the Boundary Condition Matrix. Let

(M)(t) f f”(t)=u(t)

for t in [0, 1]. The set {vt,v2},  where VI(t)= 1 and vz(t)= t, is a fundamental set of
solutions for t. We apply several different sets of boundary conditions, demonstrat-
ing the three cases mentioned above.

1. #4(r)  4 w-3 = al, 820 b f(l) = CQ. In this case,

Since rank(B) = 2 = m = n, the system is invertible. We find the unique solution by
direct integration:

2 .  &(f) i f(O)= (pi. For this single boundary condition,

B=(v,(O)  vdO))=(l 0)

*Ince [3.6].
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and rank(B)  = 1. Since n = 2, we should expect one degree of freedom in the
solution. Since m = rank(B),  we should expect a solution to exist for all scalars a,
and all continuous functions u. By direct integration, the solution is

f(t)=Ifl~~(~)~~rlr+d,t+a,
0 0

where di is an arbitrary constant.

3. &(f)  9 f(0) = al, &(f) 4 f( 1) = a2, &(f) f f’(0) = a3. Then,

Because rank(B) = 2 and m = 3, one scalar-valued function of u, al, a2, and a3 must
be satisfied in order that a solution exist. Since rank(B)= n, if a solution exists for a
given set of inputs (u, al, a2), that solution is unique. We find the solution by direct
integration and application of the three boundary conditions:

where u, al, a2, and a3 must satisfy

a2-al-a3-
//

’ su(7)dds=o
0 0

4 .  B,(f) i f’(0)= al, 132(f) b f’(l) = a2. This case is presented in Exercise 1.

Rank(B)  = 1, but m = n = 2. We expect one scalar-valued condition on the inputs,
and one degree of freedom in the solutions. The general solution and the restriction
on the inputs are given in (3.25) and (3.26), respectively.

It is apparent from Example 1 that if m < n, the system is underdeter-
mined; there are at least (n - m ) degrees of freedom in the solutions. On
the other hand, if m > n, the system is usually overdetermined; since
rank(B) < n for an nth-order differential system, the input data must satisfy
at  least  (m - n ) different scalar-valued restrictions in order that the
differential equation and boundary conditions be solvable.

Ordinarily, m = n; that is, the differential equation which represents a
physical system usually has associated with it n independent boundary
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conditions { #Ii}. These n boundary conditions are independent in the sense
that they represent independent linear combinations of f, f(l), . . . , f(“- ‘)
evaluated at one or more points of [a,b].  However, we see from the fourth
case of Example 1 that a boundary condition matrix B can be degenerate
even if the boundary conditions are independent. Thus for a “square”
differential operator, the condition for invertibility (or compatibility) is

det(B)  # 0 (3.28)

where B is a boundary condition matrix as defined in (3.27).
It can be shown that (3.28) is satisfied for any differential operator for

which m = n and for which the boundary conditions are linearly indepen-
dent and are all at one point (P&C 3.4). Only for multipoint boundary
value problems can the test (3.28) fail. Exercise 1 is such a case.

For the rest of this chapter we assume (3.28) is satisfied, and proceed to
determine the inverse of the differential system (3.21). In Section 4.3,
where we determine eigenvalues and eigenfunctions of differential opera-
tors, we seek conditions under which (3.28) is not satisfied. These condi-
tions occur, of course, only with multipoint boundary value problems.

The Green’s Function and the Boundary Kernel

Our procedure for inverting the system (3.21) parallels the procedure used
with the second-order example (3.1). Of course, the compatibility condition
(3.28) must be satisfied. Assume m = n. We begin by splitting (3.21) into
two parts, one involving only the distributed input, the other only the
boundary inputs:

Lf=u
Isi( i=l,...,n (3.29)

Lf=e
&(f)=q  i= l,...,n (3.30)

where L is given in (3.18). The completely homogeneous equation (3.22) is
a special case of both (3.29) and (3.30). Thus both are characterized by any
boundary condition matrix B derived from (3.22). If (3.28) is satisfied, both
(3.29) and (3.30) are invertible. The inverse of (3.29) is an integral operator
with a distributed kernel. The inverse of (3.30) is a summation operator
involving a boundary kernel. These two kernels describe explicitly the
dependence of f(t) on the input data u(t) and { oli).

Assume the inverse of (3.29) is representable in the integral form

(3.31)
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for all t in {a,b}. The kernel k is known as the Green’s function for the
system (3.21). If (3.31) is the correct inverse for (3.29), f must satisfy (3.29):

(Lf)(t)=Llbk(t,s)u(s)a5
a

= ‘Lk(t,s)u(s)ds=u(t)
sa

( Wf)(t)-Wjbk(t,s)u(s)~
a

= b&.k(t,s)u(s)ds=O
/

j = l,...,n
a

for all u in C?(a,b).  Both L and pi treat the variable s as a constant, acting
on k(t,s) only as a function of t. Each operator acts on the whole “t”
function k(-,s). It is evident that Lk(t,s) exhibits the “sifting” property of
a delta function (see Appendix 2). On the other hand, ~ik(t,S) acts like the
zero function. Consequently, the Green’s function k must satisfy

d*k( t,s)
Lk(t,s) ’ go(t) dtn + * *. +gn(t)k(t,s)=a(t-s)

(3.32)
~ik(t,s)=O l,...,nj =

for all t and s in [a,b]. Because the delta function appears in (3.32), we
cannot rigorously interchange the order of the differential operator L and
the integration without resorting to the theory of generalized functions
(Appendix 2). However, we can justify the formal interchange for each
specific problem by showing that the Green’s function k derived from
(3.32) does indeed lead to the solution of (3.29) for every continuous
function u.

Assume the inverse of (3.30) is representable as a summation operator of
the form:

f(t)= i Pj(t)aj
j-1

(3.33)

We can think of p as a kernel function of the two variables j and t. We call
p the boundary kernel for (3.21). To find the equations which determine p,
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we substitute (3.33) into (3.30):

Lf=L ~ Pj~j
j=l

n
= C aj(LPj)=e

j-1

= i ajP,(pj)=ai  i=l,...,n
j- 1

for all { ai}. Suppose we let ak = 1 and aj = 0 for j# k. It follows that for
k=l ,...,n, Lp,=O,  1sipk’l  for  k=i, and  flip,=0 for  k#i. Thus  the
boundary kernel p must satisfy

dnPj( t,
(LPj)(t) ’ go(t)7 + * * l +g*(t)&(t)=o j= L..,n (3.34)

isi (pi)  = ag mj = 1 9*-*, n; j= l,...,n

for all t in [a, b], where 60 is the Kronecker delta (see A2.11 of Appendix
2). According to (3.34), the n components {pi) of the boundary kernel
constitute a fundamental set of solutions for the operator L; furthermore,
{pi) is a fundamental set for which the boundary condition matrix B of
(3.27) is the n X n identity matrix.

By solving (3.32) and (3.34), we can invert any regular n th-order
differential system which has a nonsingular boundary condition matrix.
The inverse of the differential system (3.21) (with m = n) consists in the
sum of the inverses of (3.29) and (3.30), namely,

f(t)= Jbk(t,s)u(s)l+ 5 ajpj(t)
a j-1

(3.35)

where k and p are determined by (3.32) and (3.34), respectively.
Theoretically, we can invert any linear differential operator, ordinary or

partial, which has appropriate boundary conditions. That is, we can
convert any invertible linear differential equation to an integral equation
analogous to (3.35). As a model for a system, the integral equation is more
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desirable than the differential equation from two standpoints. First, the
boundary conditions are included automatically. Second, integral opera-
tors tend to “smooth” functions whereas differential operators introduce
discontinuities and delta functions.* It is well known that numerical
differentiation amplifies errors in empirical data, but numerical integration
does not (Ralston [3.9, p. 791). The rest of this chapter is devoted to
techniques for determining the inverse (or integral) model for various types
of ordinary differential operators. Techniques and examples which apply
to partial differential operators can be found in Friedman [3.4], Stakgold
[3.11], Morse and Feshbach [3.8], and Bergman and Schiffer [3.1].

3.3 Inversion of nth-Order Differential Systems

In Section 3.1 we determined the Green’s function and boundary kernel
for a simple second-order system, (3.1). The Green’s function and
boundary kernel for the general nth-order differential systems of Section
3.2 cannot be determined by the direct integration technique used for that
simple system, In this section we describe general procedures for solving
(3.32) and (3.34) to obtain k and p for the nth-order differential system
(3.21) with n independent boundary conditions. The procedures are
demonstrated in detail for regular second-order variable-coefficient
differential systems.

Obtaining a Complementary Function

Most techniques for determining particular solutions to differential
systems are based on the complementary function (3.19). Techniques for
determining the Green’s function k and the boundary kernel p also depend
heavily on the complementary function (or the equivalent, a fundamental
set of solutions). In point of fact, the individual segments or components of
k and p are of the form of the complementary function.

I t  i s  w e l l  k n o w n  t h a t  t h e  c o m p l e m e n t a r y  f u n c t i o n  f o r  a
constant-coefficient differential operator consists in sums of exponentials.
Let L of (3.18) be the constant-coefficient operator

LiD”+a,D”-‘+.-a  +a,,1 (3.36)

To find which exponentials are contained in the complementary function
for L, we insert a particular exponential v(t) = e@ into the equation Lf = 8

*Integral operators are continuous, whereas differential operators are not. See the discussion
of continuous operators in Section 5.4.
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and solve for p. The result is

(3.37)

This equation, known as the characteristic equation for L, has n roots

ppp2,..*,1yt*  If the n roots are distinct, the complementary function is

f,(t) = cl exp( pit) + . . * + cn exp( Pnt) (3.38)

Equation (3.38) can be verified by substituting f, into Lf = 9. If two roots
are equal, say, p, = p2,  then the corresponding fundamental solutions in
(3.38) must be replaced by ci exp( ,uif) + c,t exp( ,uit). This equal root case is
discussed further in Section 4.4.

We are unable to deal with the variable-coefficient operator (3.18) with
much generality. An approach that can be used to seek the complementary
function for the variable-coefficient operator is the power series method
(the method of Frobenius). The method consists in assuming a power
series form for the complementary function, substituting the series into the
homogeneous differential equation, equating the coefficient on each power
of t to zero, and solving for the coefficients of the power series. The sum of
the series, where it converges, is at least part of the complementary
function. The sum will not, in general, consist of elementary functions. For
example, Bessel functions arise as fundamental solutions to Bessel’s
equation (a second-order variable-coefficient differential equation); the
power series method provides an expression for one of the two
fundamental solutions to Bessel’s equation. In the event that the power
series method does not provide a full set of fundamental solutions for the
differential equation, other methods must be used to complete the
complementary function. See Ince [3.6] or Wiley [3.13, p. 255].

Example 1. Power Series Method—Variable Coefficients Suppose

(Lf)(t)  : f’(t)+ tf(t) (3.39)

We find the complementary
general form

function for (3.39) by assuming a power series of the

fc(t)=t=(Co+CIt+C2t2+  * * *)

where the constant a allows for noninteger
homogeneous equation and regroup terms:

powers of t. We first insert f, into the

f(t)+  tf(t)=acOta-’ +(a+l)c,ta+[(a+2)c2+c0]ta+l

+[(a+3)c,+c,]ta+2+[(a+4)cq+c2]tu+3+  -es

=o
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Equating each coefficient to zero, we obtain
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We assume, without
arbitrary; then

loss of generality, that c,+O.  It follows that a=0 and co is

and

Determination of the Green’s Function and Boundary Kernel—An Example

We solved for the kernel functions k and p associated with (3.1) by direct
integration of the differential equation. Unfortunately, that simple
approach does not apply to most differential equations. In the following
example we introduce a general technique for finding k and p.

The model for a particular armature-controlled dc motor and load is the
differential equation

;i)(‘)+$(t)=u(t) (3.40)

where u(t) is the armature voltage at time t and +(t) is the angular position
of the motor shaft relative to some reference position. Let the boundary
conditions be

+(O)= a, and C/D(~)  = a2 (3.41)

That is, we seek the “trajectory” (or angular position versus time), of the
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shaft in order that it be in position (xi at time 0 and pass through position
a2 at time b. Comparing this problem to that of (3.21), we note that
L=D2+Q &(+)=W),  and #12(+)=+(b). The symbol + replaces the
symbol f used earlier.

Finding the Green’s function for the differential system (3.40)-(3.41) is
equivalent to exploring the trajectory $B of the motor shaft for all possible
applied voltages u(t),  but for (pi = a2 = 0. The Green’s function must satisfy
(3.32):

Clearly k(t,s) satisfies the homogeneous differential equation in each of
the regions [O,s)  and (s, b]; that is, in the regions where 6 (t - s) is zero. We
let k(t,s)=f,(t) for each of the two regions [O,s)  and (s,b]:

k(t,s)=cl+c2e-‘, t in [O,s)

=dl+d2e-‘, t in (s,b]

Since k(t,s)  is a function of s, the arbitrary constants must depend on s.
We eliminate half of the arbitrary constants by applying the boundary
conditions

k(O,s)=c,+c,=O + c2= -cl

k(b,s)=d,+d2eBb=0  + d2= -ebdl

It is the second (or highest) derivative of k that introduces the delta
function in (3.32); for if the first derivative included a delta function, the
second derivative would introduce the derivative of the delta function.*
Since d2k/dt2  includes a unit impulse at t = s, dk/dt must include a unit
step at t = s, and k itself must be continuous at t = s. We express these facts
by the two “discontinuity” conditions:

*See Appendix 2 for a discussion of unit steps, delta functions, and derivatives of delta
functions.
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Applying these conditions to k(t,s),  we find
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-d2e-S-(-c2e-J)=  1

A messy elimination procedure among the boundary condition equations
and discontinuity condition equations yields

cl(s)= e9--eb and  d,(s) = e”-l
eb- 1 eb-1

It follows that

k(t,s)=
(1 - e-‘)(e’-  e”)

eb-1
?Qs

(3.42)

(1 - ebe-‘)(e’-  1)
=

eb-1
t>s

To get a feel for the nature of this system (for which +(O)=+(b)  = 0), we
use k to determine the shaft trajectory Q, and velocity profile C$ for a
specific input u(t) = 1:

+(t)= lbk(t,s)u(s)h
0

= l-ebe-’  *
eb_ l I, (es- l)dr+ yJb(eS-eb)dS

-1 c

= t-
( 1
--j$+ (l-e-‘)

+(t)=l- -j$ e-’
( 1

The trajectory $D and the velocity profile i are plotted in Figure 3.2 for
b = 1. Observe that, in general, the motor shaft cannot be at rest at t = 0
and at t = b if the shaft positions are specified; it is precisely the freedom
in the initial and terminal velocities which allows us to choose both the end
points, #B(O) and +(b),  and an arbitrary continuous input voltage u.

The boundary kernel p for the system (3.40)-(3.41) describes the tra-
jectory rg(t) as a function of the boundary conditions HO)=  (ri and
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Figure 3.2. Shaft position and velocity for +(O)  = #(l) = 0 and u(t)  = 1.

C/B(~) = LYE  with no voltage applied to the motor; that is,

Perhaps the most direct approach to the determination of pi is to let
+(t) = crv,( I) + c2v2( t), a linear combination of the fundamental solutions
for (3.40), then apply the boundary conditions (3.41) to obtain the
coefficients Ci as a function of CX,  and 1~~.  Rather than use this approach, we
attack the defining equations for pi in a more formal manner which
parallels the determination of the Green’s function. The two approaches
are equivalent in the amount of computation they require. The boundary
kernel satisfies (3.34):

iqt>+bl(t)=o i&(t) +b2(t) =o
&(p,)=p,(O)=  1 &(P2)=Pz(O)=O

JB,(p,)=p,@)=O  JB2(P2)=PZw=  l

The boundary condition statements are reminiscent of the boundary
condition matrix (3.27). In point of fact, pt and p2 each consist in a linear
combination of the fundamental solutions v,(t) = 1 and v2( t) = e-t. Apply-
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ing the boundary conditions to p,(t)  = c, + c2e -‘, we get

or

where B is, indeed, the boundary condition matrix of (3.27). Similarly,
using p2(  t) = d, + d2e - ‘, we find

We can combine the two coefficient equations into the single matrix
equation

which has the solution

The function pj is a specific linear combination of the two fundamental
solutions specified above; the jth column of B-’ specifies the linear
combination. Thus

eb
m= -& + -p-y

p2(t)= L + LIZLest
eb-1 eb-1

(3.43)

The shaft position and velocity, as functions of the boundary conditions,
are
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Figure 3.3 shows the position and velocity of the motor shaft for ai = 0 and
IY~ = 1. The shaft is already in motion at t = 0, and exhibits an “undriven”
decay in velocity until it reaches the position +(b) = 1 rad. If the boundary
conditions were ai = a2 = 1, the shaft would sit at rest in the position
+((t)  = 1 rad; again an undriven trajectory.

The inverse of the system (3.40)-(3.41) is the sum of the separate
solutions for the distributed and boundary inputs. That is,

where k and p are given in (3.42) and (3.43), respectively. The nature of the
system (3.40)-(3.41) does not seem in keeping with the nature of dynamic
[real-time) systems. The motor must anticipate the input u(t) (or the
Impulse 6 (t - s)) and appropriately select its velocity at t = 0 in order to be
able to meet the requirement on its position at t = b. We are more likely to
meet such a two-point boundary value problem when the independent
variable t represents not time, but rather a space variable. Yet a two-point

90)

I

b

Figure 3.3. Undriven shaft position and velocity for a, = 0 and a2 = 1.



120 Linear Differential Operators

boundary value problem can arise in a dynamic system if we impose
requirements on the future behavior of the system as we did in (3.41).

Summary of the Technique

The technique demonstrated above for determining the Green’s function
and the boundary kernel depends upon knowledge of the complementary
function. We can apply the technique to the regular nth-order system
(3.21) if the corresponding complementary function can be determined.
Assume L of (3.21) has the complementary function f = crvr + . . . + c,v,.
Further assume that the system is invertible (i.e., we have n independent
boundary conditions for which (3.28) is satisfied). We obtain the Green’s
function k and the boundary kernel p for the system (3.21) by following
the technique used for the system (3.40)-(3.41).

Equation (3.32) determines the Green’s function k. The unit impulse
6 (t - S) is zero for all t # S. Therefore, k(t,s) satisfies the homogeneous
differential equation for t#s; k(t,s)  is equal to the complementary func-
tion (3.19) in each of the two regions [a,~) and (s, b]. Because the comple-
mentary function f, is used in two separate regions, we must determine two
sets of n arbitrary constants:

k(t,s)=  blv,(t)+  . +. + b,,v,,(t), t in [a,s)
= d,vl(t)  + . m . + dnvn(t), t in (s,b] (3.44)

Half of the 2n constants can be eliminated by the homogeneous boundary
conditions of (3.21): &k(t,s)=O,  i=l , . . . ,n. The rest are determined by
appropriate “discontinuity” conditions at t = S. Only the highest derivative
term, g,(t)d”k(t,s)/dt”, can introduce the delta function into (3.32)
(otherwise derivatives of delta functions would appear); therefore, we
match the two halves of k(t,s)  at t= s in such a way that we satisfy the
following n conditions:

kdk
’ dt

)..., dn-2k
dtn-2

are continuous at t = s

d”-‘k(s+,s)  d”-‘k(s-,s)  1
#I-’ -

=-
dt”-’ go@)

(3.45)

That is, d”-‘k(t,s)/dt”-’  must contain a step of size l/g,(s) at t=s. Then
g,(t)d’k(t,s)/dt”  will include the term 8 (t-s).*

*See Appendix 2 for a discussion of steps, delta functions, and derivatives of delta functions.
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The boundary kernel p is specified by (3.34). Each component of p is a
linear combination of the fundamental solutions for L:

pj=cljvl+--- +cnjvn j=l,...,n (3.46)

Applying the n boundary conditions of (3.21) as required by (3.34), we find

St(Pj)
. =

i H

Sr(vl)  ’ ’ ’ Bl(‘n)
. .. . .

Pn iP,> Pn iv,> � l � i (�n)

0
clj

..
.

)Ol i

=. ij , j=l,...,n
. .

c . l
n/

d

These n sets of equations can be expressed as

(3.47)

It follows that the coefficients for pj in (3.46) are the elements in the jth
column of B-l, where B is the boundary condition matrix defined in
(3.27). Specifically, cO is the element in row i and column j of B-l.

Exercise 1. Let f’(t)+ tf(t)=u(t)  with f(O)= (pi. (The complementary
function for this differential equation was determined in Example 1.) Show
that the inverse of this differential system is

f(t) = exp( - t2/2)itexp(s2/2)u(s)  ds + aI exp( - t2/2> (3.48)

Second-Order Differential Systems

Many of the ordinary and partial differential equations that arise in the
modeling of physical systems are second order. Some of the second-order
partial differential equations can be reduced, by a substitution of variables
or by integral transforms, to second-order ordinary differential equations.*
Furthermore, use of the “separation of variables” technique in solving
second-order partial differential equations produces sets of second-order

*See Kaplan [3.7].
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ordinary differential equations. Thus the general second-order ordinary
differential equation with variable coefficients is of considerable practical
importance. We present explicit expressions for the Green’s function and
the boundary kernel for an arbitrary regular second-order differential
system; these expressions are obtained in terms of a fundamental set of
solutions for the differential operator.

The regular second-order differential system is†

go(t)r”(t)  + g,(t)f’(t) + g2(9f(t)  =w

km = a1 and P2(f)  = (r2
(3.49)

where gi is continuous and g,(t)#O in the region of interest. Assume vr and
v2 are independent solutions to the homogeneous differential equation. By
(3.44), the Green’s function is of the form

k(t,s)=  blv,(t)+  b2v2(t), t<s

= d,v,( t) + d2v2(  t), t > s

The discontinuity conditions (3.45) become

Since dk/dt has a step of size l/g,(s), then go(t)d2k/dt2  includes a unit
impulse. These two discontinuity equations can be put in the matrix form

The solution is

d,- b,= -
v2m

d2-  b,=
Vl (4

w(s) go(s)  ’ w(s) go(s)

where w(s)  is the Wronskian determinant*:

(3.50)

† In Section 5.5 we refer to the differential operator of (3.49) as a regular Sturm-Liouville
operator.
*Note that the solution is undefined for w(s) = 0. It can be shown that if v1 and v2 are
independent solutions to the homogeneous differential equation, then w(s)#O  for all s in the
interval of interest. See P&C 3.7.



Sec. 3.3 Inversion of nth-Order Differential Systems 123

The boundary conditions &k (t, s) = P2k( t, s) = 0 provide two more linear
algebraic equations which, together with the above pair of equations,
determine the constants b,, b,, d,, and d2, and therefore, k(t,s).  However,
without specific information about the nature of the boundary conditions,
we can carry the solution no further. The solution for a dynamic system
(initial conditions) is given in Exercise 2. Two-point boundary conditions
are treated in Exercise 3.

Exercise 2. Let the boundary conditions of (3.49) be

p*(f) 2 f(a) a n d  #12(f)  i f’(a) (3.5 1)

Show that the corresponding Green’s function is

k(t,s)=O, t in [a,s)

A@, t) (3.52)
= go(s)w(s)  9 t in (s, 4

where w is given by (3.50), and

Show also that the corresponding boundary kernel is

PdO =
v;(4w) - 6 m2w

44
(3.53)

P2W =
vd4v2W  -v2Wvdt)

w(a)

Exercise 3. Let the boundary conditions of (3.49) be fir(f) 4 f(a)  and

f12(f)  i f(b). Show that for this two-point boundary value problem

k(t,s)=  ’
goww

r
A(b,s)A(a, t)

A(a,b)  ’
a<tQs

A(b,s)A(a,t)

A@, b)
+ A@, t), s<t<b

A(& t)
PI(t)= - -

A@, t)

A@, b) and  P2(9=  qgq

(3.54)

where A(s, t) is given beneath (3.52) and w(s) is defined in (3.50).
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Exercise 4. Use (3.54) to find k and p for the dc motor system (3.40)-
(3.41). Compare the result with (3.42) and (3.43).

It is apparent that we could derive an explicit expression for the inverse
of a regular nth-order linear differential system [assuming the boundary
conditions satisfy the invertibility condition (3.28)]. The inverse would
involve n independent fundamental solutions and the nth-order Wronskian
determinant of these n solutions. Of course, as indicated by Exercise 3, the
manipulation can be complicated. The determination of the Green’s func-
t ion  for  an  nth-order two-point boundary value problem requires the
solution of 2n simultaneous algebraic equations with coefficients which are
functions of s. In contrast, the Green’s function for the initial condition
problem (or one-point boundary value problem) requires the solution of
only n simultaneous equations because k( t,s) = 0 for t < s. Of particular
interest is the constant-coefficient initial condition problem, for which
determination of the Green’s function reduces to inversion of an n x n
matrix of constants.

3.4 Time-Invariant Dynamic Systems

The initial value problem is at the heart of dynamic systems-systems for
which the variable t represents time. The linear time-invariant (or
constant-coefficient) dynamic system merits special attention if only
because its inversion is easily automated using standard computer
programs for solving matrix equations. Furthermore, many dynamic
systems are adequately represented as linear time-invariant systems. We
examine these systems in detail in this section.

The Inverse of the nth-Order System

The general nth-order
conditions is

constant-coefficient differential equation with initial

P(t)+a,r(“-l)(t)+  - -. +a,f(t)=u(t)

P,(f) % f(i-l)(0)=ai i = l,...,n

(3.55)

for real scalars {a,.} and t 2 0. The characteristic equation for (3.55) is
(3.37); assume it has n distinct roots pl,. . . ,P~ (the multiple root case is
considered in Section 4.4). Then the fundamental solutions for (3.55) are

vi(t) 2 exp( pit), i= l,..., n.
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The Green’s function, as given by (3.44), is

k(t,s)=b,exp(p,t)+  *a* +b,exp(kt), tin [O,s)

=d,exp(p,t)+... + dn exp( pnt), t in (s, 00)

All n boundary conditions apply to the first half of k( t, s), the half
involving the unknowns b,, . . . , b,. As a result,

This boundary condition matrix is the Wronskian matrix of the functions
{ exp(  hit)} at t = 0. The matrix is also known as the Vandermond matrix for
the system (3.55). It is invertible if and only if the roots pl,. . . ,pn are
distinct as assumed.* Therefore, b, = . . . = b,, = 0, and k(t,s) = 0 for t in
[O,s). The discontinuity conditions (3.45) at t = s are

d, exp( pts) + . . . + d,exp( fins)=0 (k continuous)

d, 1-11  exF$ PI’> + * * ’ + dnPn  exP( l-$zs) = O (dk/ dt continuous)
. .

4 kc2 exp’(  pg) + . . - + d,&+‘exlj( hs) = 0 ( dnS2k/dt n-2 continuous)

d,y;-’ exp( pts) + . . . + d,&‘- ‘exp( pns) = 1 (unit step in d”-‘k/dt”-‘)

We substitute the new variables 4 2 di exp( piis), i = 1,. . . , n into the discon-
tinuity equations to obtain

(3.56)

*If the roots were not distinct, we would use a different set of fundamental solutions {vi},  and
obtain a different boundary condition matrix. The Wronskian matrix is explored in P&C 3.7.
The Vandermond matrix is examined in P&C 4.16.
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Because the roots { pi}  are distinct, the Vandermond matrix is invertible,
and (3.56) can be solved by means of a standard computer program to
obtain {di}.  Notice that the new variables { di} are independent of s. The s
dependence of the variables { 4} has been removed by the substitution. In
terms of the new variables, the Green’s function becomes

k(t,s) =0 for 0 < t < s
=d,exp[  pl(t-s)]+. . * +$exp[  pn(t-s)] fort 2 s

(3.57)

The boundary kernel for the system (3.55) is found from (3.46) and
(3.47). Equation (3.47) is

Then, by (3.46),

pi(t)=cvexp(lFllt)+...  +cnjexp(pnt),  j=l,...,n (3.58)

where the coefficients for pi are obtained from the jth column of the
inverse Vandermond matrix:

The inverse of the differential equation and boundary conditions of
(3.55) is

(3.60)



Sec. 3.4 Time-Invariant Dynamic Systems 127

where {4} and { cV}  are specified by (3.56) and (3.59), respectively. The
computer program which produces (3.59) will simultaneously solve (3.56).
Section 4.4 explores the computational difficulties which arise when the
characteristic equation of the system has nearly equal roots.

The shape of the Green’s function for a time-invariant (i.e., constant-
coefficient) dynamic system depends only on t-s, the delay between the
time s that an impulse is applied at the system input and the time t that the
output k(t,s) is observed. That is, k(t,s)= k(t - s,O). Therefore, actual
measurement of the response of the physical system to an approximate
impulse is a suitable method for determining the Green’s function. The
response of such a system, initially at rest, to an impulse input u(t) = S (t) is
commonly referred to as the impulse response of the system. We denote the

impulse response by g, where g(t) 4 k(t,O). Then the integral term in
(3.60) can be rewritten as a convolution of u and g.*

[‘k(t,s)u(s)ds=  Stg(t  -s)u(s)ds
0 0

The components of the boundary kernel also can be measured physi-
cally; pj(t) is the response of the system with no distributed input u, and
with the initial conditions CXJ = 1, Cwi
(3.56)-(3.59) that L&= tin for i= 1

= 0, for i#j. Furthermore, we see from
, . ..,n. Therefore, the impulse response is

equal to one of the initial condition responses; specifically,

Pn(t)= k(t,O)=g(t) (3.61)

Applying a unit impulse 8(t) is equivalent to instantaneously applying to
the system (at rest) the unit initial condition f@- “(0) = 1 (all other initial
conditions remaining zero); if we can apply this initial condition some
other way, we do not need an approximate impulse in order to measure the
impulse response of the system.

Exercise 1. The differential equation (3.40) for an armature-controlled dc
motor is

Show that for given initial conditions, +(O) and C&O),  the Green’s function,

*See Appendix 2 for a discussion of convolution.
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boundary kernel, and inverse equation are
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k(t,s)=O, O<t<s
= l_ ,-(t-s), tas

PI(t) = 1

p2(t)=l-e-’
(3.62)

+(t)=jo’[l-e-“-“)]u(S)dS++(O)+(l-e-$(O)

Compare (3.62) with (3.52) and (3.53).

The State-Space Model

The nth-order constant-coefficient differential equation with initial condi-
tions, (3.59, can be expressed as a first-order vector differential equation
by redefining the variables. If u(t) = 0, the quantities f(O), f(‘)(O),  . . . , fi”- “(0)
determine the trajectory f(t) for all t; these n quantities together form a
more complete description of the state (or condition) of the system at t = 0

than does f(0) alone. Let f, % f, f, e r”), . . . ,fn A r<“-  l). Then (3.55) can be
expressed as the following set of n first-order differential equations.

I, =f2W

i,(t) = f3W

i,- l(t) =mw
i,(t) = - a,f,( t) - . l l - dlw + u(t)

By defining x 3 (f, . . . f,JT  and i b (ii . l l ill)=, we write the n individual
equations as

(3.63)

The square matrix of (3.63) is known as the companion matrix for the n th
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order differential operator (3.55). The initial conditions of (3.55) become

(3.64)

We call x(t) the state vector of the system at time t. Since the differential
system (3.55) has a unique solution, the state at time t can be determined
from the state at any time previous to t. The state provides precisely
enough information concerning the condition of the system to determine
the future behavior of the system for a given input. The vector x(t) is in
9lLn x ‘. Therefore, we call ‘%,“’ x ’ the state space of the system. The
variables {fi(t)} are known as state variables.

Equations (3.63) and (3.64) are of the general form

k(t)=Ax(t)+Bu(t), x(0) given (3.65)

However, the notation of (3.65) is more general than that of (3.63) and
(3.64). The input u can include more than one function. A meaningful
equation is defined by any n x n matrix A and nX m matrix B; the
resulting vector equation describes the evolution in time of a system with
m inputs and n outputs. A general set of coupled linear time-invariant
differential equations can be expressed in this state-space form (P&C
3.18). We refer to (3.65) as a state equation. We call x(t) the state vector
and its elements the state variables; A and B are the system matrix and the
input matrix, respectively.*

We should note that the description of a dynamic system by a
state-space model is not unique. If we multiply both sides of (3.65) by an
arbitrary invertible n x n matrix S, we obtain

Srit(  t) = SAx( t) + SBu( t)

Defining y = Sx, we find

f(t) = SAS- ‘y(t) + SBu(  t)

=Ay(t)+h(t)

*See Zadeh and Desoer [3.14]
discussion of state-space models.

or DeRusso, Roy, and Close [3.2] for a more complete
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with y(O)= Sx(0) given. This second state-space differential equation is
equivalent to (3.65) as a representative of the system. The state vector y(t)
is a representation of x(t) in new coordinates. Thus the state variables and
system matrix which describe a given system are not unique. In Section 4.2
we explore the essential characteristics of a matrix, its eigenvalues. We find
that the similarity transformation SAS-’  does not affect the eigenvalues.
Consequently, all system matrices which represent the same system have
the same essential characteristics. State space models of dynamic systems
are analyzed in terms of their eigenvalues in Sections 4.3 and 4.5.

Example 1. A State Equation. The differential equation for the armature-
controlled dc motor of Exercise 1 is

m +&t> =u(t), &u = aI, MO = (3

Defining the state variables f,(t) i #(t) and f2(t)  2 c&t),  we obtain the following
state equation

*w=(; Jxw+( !+(I), x(0)=( Z;)

The system
equation.

matrix is the companion matrix for the second-order differential

Let us find an integral equation which is the inverse (or explicit solution)
of the first-order vector-valued differential system (3.65). Although we
work directly with the system in the specific form (3.65), we note that the
equation can be expressed in terms of a general differential operator L
acting on a vector-valued function space. Let f be in (9 (0, co); then fik) is
in and x is in the Cartesian product space:

?r= eye, co) x P-‘(0, 00) x * * - x eye, co)

The system (3.65) is equivalent to the following operator equation on ‘V:

LX b jL -Ax = Bu with x(O)  given (3.66)

We express x as an integral operation on the whole vector-valued function
Bu.

Inversion of the State Equation

The state equation for an nth-order time-invariant dynamic system is

k(t)=Ax(t)+Bu(t), x(O)  = x0 (3.67)
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where A and B are arbitrary n X n and n X m matrices, respectively. The
state vector x(t) and the input vector u(t) are in wx ’ and TILmx ‘,
respectively. We invert (3.67) by the same approach we used for the
nth-order differential system; we invert separately the two component
equations

k(t)-Ax(t)=Bu(t), x(0)  = 9 (3.68)

i(t)-Ax(t)=& x(O)  = x0 (3.69)

Assume the inverse of the “boundary input” system (3.69) is of the form

x(t) = q t)x(O) (3.70)

where the boundary kernel @(t) is a n X n matrix commonly referred to as
the state transition matrix. (It describes the “undriven” transition from the
state at “0” to the state at t.) In order that (3.70) be the correct inverse, x(t)
must satisfy (3.69),

for any initial condition vector x(O).  Therefore, the state transition matrix
must satisfy

(3.7 1)

Rather than treat the system (3.71) one element at a time, we work with
the whole n x n matrix-valued system. We use the power series method to
find the complementary function for the system. Assume

where each Ci is a constant n X n matrix. We substitute @(t) into the
differential equation of (3.71) and equate the coefficient on each power of t
to the zero matrix 8 to find

It follows that Co is arbitrary and

(3.72)
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We have used the symbol eAt to represent the sum of the “exponential-
looking” matrix series of (3.72):

A2t2
e”lAI+At+-?;-a--

.

We call eAt a fundamental matrix for the state equation of (3.67); the
matrix is analogous to a fundamental set of solutions for an nth-order
differential equation. Applying the boundary conditions of (3.71) to (3.72),
we find m(O) = eAoCo = I. It is clear from the definition of eAt that eAo=  I;
therefore, Co = I and the state transition matrix (or boundary kernel) for
the state-space system (3.67) is

*p(t)  = eAt (3.73)

Example 2. A State Transition Matrix. In Example 1 we found the system
matrix A for the differential equation &t) + &t) = u(t):

To find the fundamental matrix for this system, we sum the defining infinite series:

If the matrix A of Example 2 were not simple, it would be difficult to
sum the infinite series for eAr  by the method of that example. It would not
be easy to recognize the function to which each scalar series converges.
Arbitrary functions of matrices are examined in detail in Section 4.6, and
practical techniques for computing functions of matrices are developed.
These techniques can be used to compute eAt for an arbitrary square
matrix A.
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Exercise 2. Show that for the fundamental matrix eAr  of Example 2,

(3.74)

Properties (3.74) apply to all time-invariant systems, that is, all systems
which have a constant system matrix (P&C 3.19).

We can view Bu as a vector-valued distributed input to (3.67). Therefore,
we assume the inverse of the distributed-input state equation (3.68) is an
integral equation of the form

x(t)= imK(t,s)Bu(s)dr (3.75)

where the n X n matrix K(t,s) is called the matrix Green’s function for the
system (3.67). (By the integral of a matrix we mean the matrix of integrals.)
We substitute (3.75) into (3.68) to determine the equations which describe
K:

(3.76)

for all vectors u with elements which are continuous functions. To see
more clearly the conditions on K(t,s)  which follow from (3.76), note that

In other words, if we let G(s) denote the matrix with elements g#(s), then
the equation /FK(  t, s)G(s) dr = G(t) is satisfied by K(t,s)  = 6 (t - s)I. Thus
in order to satisfy (3.76), it is sufficient that K meet the following
requirements:

dK(t,s)
F -AK(t,s)=6(t-s)I

dt
K(O,s) = 9

(3.77)
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The approach we use to solve (3.77) for K is essentially the same as that
used for the nth-order scalar system (3.55). For t#s, K(t,s)  satisfies the
same n x n differential equation, (3.71), as does the state transition matrix.
Thus, using the general solution to (3.71) found earlier,

K( t, s) = eAtBO, t in [O,s)

= e*‘D0, t in (s, 00)

where B. and Do are n x n constant matrices. The boundary conditions of
(3.76) require K(0, s) = eAeBo  = 8 ; since eAo  = I, B, =8. From (3.77), we also
note that K must satisfy a discontinuity condition at t =s. The delta
functions on the right-hand side of (3.77) must be introduced by the
highest derivative, dK/dt;  otherwise derivatives of delta functions would 
appear. Consequently, the diagonal elements of K contain a unit step at
t = s, whereas off-diagonal elements are continuous:

K(s+ ,s)-K(s-,s)=ehDO-8-I

Then, using (3.74), Do= (e”)-  ’ = ehkr,  and

K(t,s) =8, t<s
= e*bs) , t>s

(3.78)

The- inverse of the state-space system (3.67) is the sum of (3.75) and
(3.70); Q, and K are given by (3.73) and (3.78), respectively:

(3.79)

The inverse system is fully determined by the state transition matrix eAt
and the input matrix B. In Section 4.6 we determine how to evaluate eAt by
methods other than summing of the series (3.72).

At the heart of the solution (3.60) for the nth-order dynamic system
(3.55) is the Vandermond matrix for the system. If the state equation is
derived from the nth-order differential equation as in (3.63), we would
expect the Vandermond matrix to be involved in the solution (3.79) of the
state equation. We find in P&C 4.16 and (4.98) that if the system matrix A
is the companion matrix for an nth-order dynamic system, the Vander-
mond matrix is intimately related to both A and eAt.

Exercise 3. Show that for the system of Examples 1 and 2,

x(t)= ($) = I’( ’ $;‘))u(s)ds+  ( *(“)+;;$;;-t’o)e-t) (3.80)
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Equation (3.80) should be compared with its second-order scalar equiva-
lent (3.62). The state-space solution usually contains more information
than its scalar counterpart-information about derivatives of the solution
is stated explicitly.

Exercise 4. Use the solution (3.79) at t = a to determine the form of the
solution to the state-space system (3.67) if the initial conditions are given at
t = a instead of t =O; that is, show that

f(t)=  p?A(t-S)Bu(s)ds+  eA(‘-u)x(a)
a

The discussion beneath the nth-order scalar solution (3.60) extends to
the more general state-space solution (3.79). We can interpret K(t, 0) = eAr
as the matrix impulse response of the state-space system. Since the matrix
A is constant, it is appropriate to measure physically the state transition
matrix eAt.  By (3.70), the jth column of a(t) (or e*‘) consists in the
“undriven” decay of x(t) from the initial condition x(O)= 5, the j t h
standard basis vector for %Y x ‘. From measurements of the n columns of
eAt we can determine the full inverse equation (3.79) without explicit
determination of the system matrix A (P&C 3.20).

The techniques used to invert the first-order state-space system (3.67) are
applied to a second-order vector differential system in P&C 4.32. As with
the state-space system, the Green’s function for this system can be
obtained from the boundary kernel; the latter can be measured physically.
The inverse for this second-order vector system involves several functions
of matrices. We discuss methods for evaluating general functions of
matrices in Section 4.6.

3.5 Problems and Comments

3.1 Forward integration: the differential system f”(t) + ;f( t) + (l/400)
f3(t)=  0, f(0) = 10, f’(O)= 0 describes the unforced oscillations of a
mass hanging on a spring. The spring has a nonlinear force-
elongation characteristic; f(t) denotes the position of the mass at
time t. There are many numerical integration techniques for obtain-
ing an approximate solution to such a nonlinear differential equa-
tion with initial conditions (see [3.9]). The following technique is
one of the simplest. We concern ourselves only with integer values
of t, and replace the derivatives by the finite-difference approxima-
tions f’(n)mf(n+  1)-f(n)  and f”(n)mf(n+  l)-2f(n)+f(n-  1). Use
these finite-difference approximations and the differential system
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to express f(n + 1) in terms of f(n) and f(n - 1). Compute
f(M%.., f(8). How might the above finite-difference approxima-
tion be modified to obtain a more accurate solution to the differen-
tial equation?

3.2 Backward integration: a (nonlinear) differential equation with final
end-point conditions (rather than initial conditions) can be solved
by backward numerical integration. Backward integration can be
carried out be means of any forward integration routine. Suppose
the  d i f fe rent ia l  sys tem i s  o f  t h e  f o r m  f(“)(t)  +  F(f( t),

w ,..., f@-‘)(t),t)=O  with f(t,>,f’(t,>  ,..., r’“-‘I($)  specified. Show
that the change of variables f(t) = f(+- s) = g(s) converts the final
conditions on f to initial conditions on g and produces a differen-
tial equation in g which differs from the differential equation in f in
the sign on the odd-order derivatives.

3.3 Relaxation: the finite-difference approximation to a two-point
boundary value problem can be solved by a simple iterative
technique known as relaxation [3.3]. Suppose f”(s)= 1 with f(0)
= f(5)=0. Consider the values of f only at integer values of s.
Replace the second derivative by the approximation f”(n)af(n  +
1) - 2f(n) + f(n - l), and express f(n) in terms of f(n - 1) and f(n +
1). Let the initial values of f(l), . . . , f(4) be zero. A single step in the
iteration consists in solving successively for each of the values

f(l) , . . . , f(4)  in terms of current values of f at the two neighboring
points. Repetitive improvement of the set of values {fm(k)}  results in
convergence of this set of values to the solution of the set of
difference equations, regardless of numerical errors, and regardless
of the order in which the values are improved during each iteration.
(a) Carry out six iterations for the above problem.
(b) Find the exact solution to the set of difference equations by

solving the equations simultaneously. Compare the results of
the iteration of (a) with the exact solution for the differential
system.

*3.4 An intuitive understanding of the following properties of differen-
tial systems can be gained by examining a finite-difference
approximation to the second-order case. See [3.6] for a rigorous
discussion of these statements.
(a) A regular nth-order linear differential equation has n inde-

pendent solutions.
(b) A boundary condition consisting in a linear combination of

values of f, f’, . . . , fin-l)  need not be independent of the regular
n th-order differential equation; consider, for example, f”(s)
= 0 with f’(0) - f’( 1) = 0.
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(c) If the boundary conditions associated with a regular nth-order
differential equation consist in n independent linear combina-
tions of the values f(a),  f’(a), . . . , P - “(a),  at a single point a in
the domain of f, then the differential system has a unique
solution.

3.5 The following differential system is degenerate:

Find the solutions to the differential system in terms of the inputs
u, ai, a2, and (x3. Also find the relations among the inputs that must
be satisfied in order that solutions exist. (Hint: the solution to the
differential equation is expressed in terms of +(O) and #(O) in
(3.80).) What relationship exists between the number of dependent
rows in a boundary condition matrix for a system and the number
of different relations which must be satisfied by the inputs to that
system?

3.6 Let L be a regular nth-order differential operator and { &.(f)  = 0,
i = 1 , . . . , m} a set of homogeneous boundary conditions. Let V be
the space of functions in P (a, b) which satisfy the homogeneous

differential equation Lf = 8. Let 9 i {vi,  v2,. . . ,vn} be a funda-
mental set of solutions for L; 9 is a basis for V. Define T:

Ir+w by Tf 9 (&(f),...,/3m(f’))  for all f in V. Let & be the
standard basis for CR,“. Show that the matrix [T],, is a boundary
condition matrix for the differential system {L,&, . . . ,&,}.

*3.7 The Wronskian: let f,, . . . , f, be in C? (a, b). The Wronskian matrix
of fi, . . . , f, at t is defined by

The Wronskian determinant is w(t) i det(W( t)).
(a) S h o w  t h a t  {fi,...,f,} cannot be linearly dependent unless

w(t)=0 for all t in [a,b].
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(b) The fact that w(t) = 0 for some t does not ordinarily imply that
the set {f,, . . . , f,} is dependent; try, for example, f r( t) = t2 and
f2(t) = t3 at t = 0. Suppose, however, that f,, . . . ,f, are solutions
to an nth-order homogeneous differential equation defined on
[a, b]. Then if w(t) = 0 for any t in [a, b], {f,, . . . , f,} is a linearly
dependent set.

3.8 Difference equations: an arbitrary linear constant-coefficient
difference equation can be expressed in the form

a,(E”f)(k)  + a,(E*- ‘f)(k) + - - * + a,,f(k) =u(k), k=O, 1,2,...

where E is the shift operator defined by (Ef)(k) 9 f(k + 1); we
concern ourselves only with integer values of the argument of f.
The order of the difference equation is the number of boundary
conditions needed to specify a unique solution to the equation; that
is, the order is n -p, where p is the lowest power of E to appear in
the equation. (See [3.2].)
(a) The solutions to the homogeneous difference equation (the

equation with u(k) = 0) usually consist of combinations of
geometric sequences. Substitution of the sequence f(k) = r k,
k=0,1,2  ,..., into the homogeneous equation shows that non-
trivial sequences must satisfy the following characteristic
equation: aOr’ + a,?-‘+ . . . + an = 0. Find a basis for the
nullspace of the difference operator T defined by

(Tf)(k)  i 2(E2f)(k)-3(Ef)(k)+f(k)

=2f(k+2)-3f(k+  l)+f(k)

What is the dimension of the nullspace of an nth-order
difference operator?

(b) Let fl,..., f, be infinite sequences of the form fj(k), k
=0,1,2  ,.... The Casorati matrix of f,, . . . , f, is defined by

The infinite sequences f I,. . . , f, are linearly independent if and
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3.9

3.10

3.11

3.12

3.13

3.14

*3.15

only if c(k) # 0 for k = 0, 1,2,. . . , where c(k)  is the Casorati
determinant, det(C(k)).  Use the Casorati determinant to show
the independence of the basis vectors found in (a).

Use the power series method to find the complementary function
for the differential operator (D- 1)2.

Define L: e’(O, l)+ e (0,l)  by L i -D - a1. Find the Green’s
function k and the inverse equation for the differential system
Lf=u,  f(O)=f(l).

Define L: e2(0,  b)+ (? (0, b) by L i D2- 3D+21. Find the Green’s
function k, the boundary kernel p, and the inverse equation for the
differential system Lf = u, f(0)  = (x1, f(b) = (r2.

Find the inverse equation for each of the following differential
systems:
(a) f”+6f’+5f=u, f(O)=a,, f’(O)=a,
(b) f” + 2f’ + 2f = u, f(0) = a,, f’(0) = a2
(c) f”’ + 6f” + 5f’ = u, f(0) = a,, f’(0) = a2, f”(0) = a3
The following differential system describes the steady-state tem-
perature distribution along an insulated bar of length b: - f” =u,
f(O)= a,, f’(b)+f(b)= (Ye.  (The second boundary condition implies
that heat is removed by convection at point b.) Show that the
inverse equation for this system is

For the differential system d’(t) -f(t) = u( t), f’( tl) = a, t, > 0,
(a) Find the complementary function by the power series
method;
(b) Find the Green’s function k( t, s);
(c) Find the boundary kernel pi(t);
(d) State explicitly the inverse equation.
Let pi and p2 be the roots of the characteristic equation for the
differential system f” + a$’ + a,f = u, f(0)  = f’(0) = 0.
(a) Use (3.56) and (3.57) to find the Green’s function k for this

system. If p2*pl,  computed values of p2-  ,ui and exp( p2t)-
exp( pit) will be badly in error. What is the effect of near
equality of the roots on the numerical computation of k(t,s)
and lk(t,s)u(s)di?
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(b) If p2wp1, the fundamental set {exp( p, t),exp(  p2t)} is nearly
dependent. A better fundamental set (not nearly dependent)
in this circumstance is

Derive a power series expansion of v2 which can be used to
compute values of v2 without numerical division by the in-
accurate quantity p2 - pi. Show that as p2--+pl,  {vl(f),v2(t)}
+{exp(  l%t)JexP(  l%N*

(c) Equation (3.52) expresses the Green’s function k in terms of
the functions {vi}  of (b). Evaluate the Wronskian determinant
w in this expression in terms of exponentials. Values of k(t,s)
and J k( t, s)u(s) ds can be computed accurately by using this
expression for k(t,s)  together with computed values of vl,v2,
and w. Show that this expression for k(t,s)  is a rearrangement
of the expression for k( t, s) found in (a).

3.16 One method for obtaining the Green’s function for a constant-
coefficient differential system is to solve (3.32) by means of one-
sided Laplace transforms. Use this technique to show that the
inverse of the differential equation i+02f =u, with constant w and
given values of f(0) and i(O), is

3.17 The approximation of derivatives by finite-differences leads to the
approximate representation of differential equations by difference
equations. For instance, the use of a second-central difference plus
a forward difference converts the second-order differential system
c/b” +rp’=u, $3(O)= CY,, +‘(O)= a2 to the approximately equivalent
second-order difference system 2+( i + 2) - 3+( i + 1) + cp(i)  = u( i + I),
HO)= ai, +(l)= cr,+ (or. A general form for the n th-order constant-
coefficient difference system with initial conditions is

f(i+n)+atf(i+n-l)+.s*  +a,f(i)=v(i)

f(O)=u,,  f(l)=u, . . . . f(n- l)=y,

for i=O,1,2 ,... .
By analogy to the inverse equation for the nth-order differential
system, we assume the inverse of the nth-order difference system is



Sec. 3.5 Problems and Comments

of the form

f(i)= 5 k(i,j)v(j>  + 5 p,(i)f(m-  1)
j-0 m=l

141

for i=O,1,2 ,... .
(a) Show that the discrete Green’s function k(i,j)  is specified by

the difference system

for i=O,1,2 ,... and j=O, I,2 ,... .
(b) Show that the discrete boundary kernel p,(i)  is specified by

the difference system

p,(i+n)+a,p,(i+n-  I)+ a**  +anp,(i)=O

PAP)  = s,,+ 1

for i=O,1,2 ,..., m= l,..., n, and  ,..., n- 1.
(c) Find the inverse of the second-order difference system

mentioned above by solving the difference systems corres-
ponding to those in (a) and (b). Hint: solutions to homo-
geneous constant-coefficient difference equations consist in
sums of geometric sequences of the form f(i) = r i, i = 0, + 1, &
2,... .

3.18 The following pair of coupled differential equations relates a pair
of system outputs {fi(t)} to a pair of inputs {U,(t)} :

f;’ +3f;+2f2=u,,

f; +r;+r,=u,,

f1(0),f;(0),f2(O),f;(O)  specified.

(a) Find a first-order state equation of the form (3.65) which is
equivalent to the set of coupled equations. (Hint: use as state
variables the output functions and their first derivatives.) Is
the state equation unique?

(b) The solution to the state equation is determined by the state
transition matrix (3.73). How could this matrix function be
computed for the system in (a)?

3.19 Properties of state transition matrices: the concept of a state transi-
tion matrix extends to time-varying dynamic systems [3.14]. sup-
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pose a dynamic system satisfies x(t) =A( t)x(t),  where x(t,) is given
and A(t)  is an n X n matrix. We can express the solution in the form
x(t) = Q(t, te)x( to).  We refer to the n x n matrix @(to,  t) as the state
transition matrix. The state transition matrix has the following
properties:

(b) @(to,tl)@(tl,t~=@(t,,t~  for all  t,, t,, and t2;
(4 W,,t,)-‘=W,J,);
(d) If A(t)&A(s)dr=  &A(s)dsA(t),  then @(t, to) = exp &A(s)ds

(see P&C 4.29);
(e) det @( t, to) = exp I:, trace[A(s)]ds,  where trace[A(s)] is the sum

of the diagonal elements of A(s).
3.20 A certain system can be represented by a differential equation of

the form i + a$ + a,f = u. The values of the coefficients a, and a2
are unknown. However, we have observed the response of the
undriven system (u(t)  = 0 for t > 0) with various initial conditions.
In particular, for f(0) = 1 and i(O)  = 0, we find that f(t) = 2e-‘- ee2*
and i(t)= 2(eS2’- e-’ ) for t > 0. Also, for f(0) = 0 and i<O)  = 1, we find
that a n d  i(t)=2ew2’-e-’  f o r  t>O.
(a) Determine the state equation in terms of a, and a2.
(b) Use the transient measurements to determine the state transi-

tion matrix and the precise inverse of the state equation.

3.21 Discrete-time state equations: by using finite-difference approxima-
tions for derivatives,  an arbitrary nth-order linear constant-
coefficient differential equation with initial conditions can be
approximated by an nth-order linear constant-coefficient difference
equation of the form

f((k+n)T)+a,f((k+n-1)7)+***  +a,f(kr)=u(kr)

for k = 0, 1,2,. . . , with f(O),f(T),  . . . ,f((n - 1)~) given. The quantity 7
is the time increment used in the finite-difference approximation.
(a) P u t  t h i s  nth-order difference equation in state-space form;

that is, develop an equivalent first-order vector difference
equation.

(b) Determine the form of the inverse of the discrete-time state
equation.
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Spectral Analysis
of Linear Systems

In this chapter the central theme is the decomposition of the abstract linear
equation TX= y into sets of simple linear equations which can be solved
independently. Our initial purpose for exploring this decomposition is to
obtain conceptual simplification of the system model. It is easier to think
about the behavior of one scalar variable at a time than to think about the
behavior of a vector variable. Furthermore, the solutions to the decom-
posed pieces of the original equation usually have physical meanings which
provide insight into the behavior of the system. (See for example, P&C
4.7 or the discussion of the analysis of three-phase power systems by the
method of symmetrical components.)

There are also computational reasons for examining the decomposition
process. Generally speaking, decomposition provides an alternative to
inversion as a technique for solving or analyzing the equations which
describe a system. In particular, decomposition provides a practical
technique for computing solutions to linear differential equations with
arbitrary inputs (Section 5.5). In some instances decomposition provides
both solutions and insight at no additional computational expense as
compared to inversion. (Again, see the discussion of symmetrical
components mentioned above.)

The ability to combine the solutions to small subproblems into a
solution for the full system equation depends on the principle of linearity.
Consequently, we restrict ourselves to linear models in this chapter in
order to be able to fully develop the decomposition principle. We find that
we can decompose most linear systems into sets of simple scalar
multiplications. We refer to such “completely decomposable” systems as
“diagonalizable” systems. A few systems are not diagonalizable or are so
nearly nondiagonalizable that we cannot accurately compute fully
decomposed solutions. We still split them into as small pieces as possible.
Nondiagonalizable finite-dimensional systems are discussed in Sections 4.4
and 4.5. In Section 4.6 we explore the concept of functions of matrices for
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both the diagonalizable and nondiagonalizable cases. We encountered
several such matrix functions in Chapter 3; we find the need for others in
later chapters. The discussion of diagonalization of infinite-dimensional
systems and of functions of linear operators on infinite dimensional spaces
is begun in Section 4.6, but is not completed until Section 5.5.

4.1 System Decomposition

In this section we explore the subdivision of the system equation TX= y
into a set of “smaller” equations which can be solved independently. Our
ability to subdivide a linear equation in this manner is based partly on the
fact that the effect of a linear transformation T on a basis determines the
effect of T on all vectors in the space. In finding the matrix of a
transformation, for instance, we simplified the process of determining the
matrix elements by examining the effect of the transformation on the basis
vectors. Consequently, we begin our investigation of decomposition by
subdividing the vector space on which the transformation T acts. We can
think of the space as a sum of smaller subspaces.

Definition. Let %, and ?l& be subspaces of the vector space V. We call
li the direct sum %,@ “2LI-, of %, and w2 if*

(a) Y=%?4f,+W2 (%‘, and “w; span V) and
(b) w,. %-,=e@J1 and w2 are linearly independent)

Example 1. Direct Sum in Arrow Space. The two-dimensional arrow space is the
direct sum of two different lines which intersect at the origin (Figure 4.1). If the
two lines are identical, they are not independent and do not span the arrow space.

Figure 4.1. Direct sum in arrow space.

*See P&C 2.1 for definitions of the sum and intersection of subspaces.
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This arrow space is also the sum of three lines which intersect at the origin.
However, that sum is not direct; only two of the lines can be independent.

It is apparent from Figure 4.1 that for any finite-dimensional space
every splitting of a basis into two parts determines a direct sum; that is, if

{X i,. . . ,xn} is a basis for V, span{x,,  . . .,xn} = span{x,,  . . .,x,}@span
{xk+p”., xn}. It is apparent that the two subspaces can also be subdi-
vided. Although we have not yet defined a basis for an infinite-
dimensional space, the concept of splitting a basis applies as well to direct
sums in infinite-dimensional spaces (Sections 5.3-5.5).

Example 2. Direct Sum in a Function Space. Let e ( - 1,l) be the space of
continuous functions defined on [-1,1]. Let %, be the even functions in 6?
( -1 ,1) ;  f,(- t)=fe(t). Let ‘?lF2  be  the odd funct ions in  C?(- 1,l); f,(- t)=
- fo(t). Any function f in C? (- 1,l) decomposes into even and odd components:

Thus 5!lFr and W, span e( - 1,l). The even and odd components of f are unique;
for if f, and f, are even and odd functions, respectively, such that f = f, + f,, then

Only the zero function is both even and odd; therefore, 5!lJ1  n Gw;= 6, and
~(-1,1)=WgYx~.

Example 2 demonstrates an important property of the direct sum. Using
bases for %, and ‘6!$,,  it is easily shown that Ir = %, $ “w, if and only if
each x in V decomposes uniquely into a sum, x=x1 +x2,  with xi in %J,
and x2 in %,.

It is a small step to extend the direct sum concept to several subspaces.
We merely redefine independence of subspaces: 7.K,, …, ‘?4&  are linearly
independent if each subspace is disjoint from the sum of the rest,

%&n( 2 35-j)=e
j#i

(4.1)

With the modification (4.1) we say V is the direct sum of { wi } if the
subspaces { qi } are linearly independent and span Y. We denote the
direct sum by

Y=~,mlJ*cB-@~p (4.2)

The previous comments concerning splitting of bases and unique decom-
position of vectors also extend to the direct sum of several subspaces.
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Exercise 1. Demonstrate in the two-dimensional arrow space that pair-
wise disjointness is not sufficient to guarantee independence of
9s wp.l,“‘,

Example 3. Direct Sum of Three Subspaces. Let f r (t) = 1 + t, f2( t) = t + t2, and
f,(t)= 1+ t2 be a basis for 9’. Define G2Ici =span{f,},  i= 1,2,3. Then q3= (jN,@

“w;@  (?lS3.  Let f(t) i v1 +q2t  +q3t2  be a specific vector in 93. By the process of
determining coordinates of f relative to the basis {f,, f,, f,} for q3, we decompose f
uniquely into

a sum of vectors from G2Lci,,  %!Y2,  and 7X3,  respectively.

Projection Operators

We can express the direct-sum decomposition of a space in terms of linear
operators on the space. Suppose ‘v = Tti,  CD “rti2;  any vector x in V can be
written uniquely as x = xi +x2 with xi in wi. We define the projector (or

projection operator) P, on %, along w2 by P,x f xi (see Figure 4.1). We

call the vector x1 the projection of x on ?JJ,  along %,. Similarly P,x L x2
defines the projector on %!Y,  along ‘?,Ki.

Example 4. Projector on q3. Let fl, f2, and f3 be the functions defined in

Example 3. Redefine %I, i span{f,} and W2 i span{f,,f,}. Then q3=  %,CT3‘?K2.
In Example 3, the general vector f(t)=)), + q2t + q3t2 in CY3 is decomposed into a
linear combination of f,, f2, and f,. From that decomposition we see that the
projections of f on %, and QJ2,  respectively, are

The bases for W, and G21(;, combine to provide a basis which is particularly
appropriate for matrix representation of the projectors. Using (2.48), the matrix of

the projector P, relative to the basis $7 9 {f 1, f2, f,} is
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Similarly, the matrix of P2 with respect to 9 is

010 0
[p21as=  ~‘~‘i”‘O’

( 10:o 1

Example 4 emphasizes the fact that a projector acts like the identity
operator on its “own” subspace, the one onto which it projects, but like the
zero operator on the subspace along which it projects. The following
properties of projectors can be derived from the definition and verified by
the matrices of Example 4. Assume v = q6, @ “w;. Let Pi be the projector
on ‘%i along %!l$  (j# i), and xi = Pix. Then

(a) Pi is linear

(b) Pi2 = Pi (i.e., PiXi = Xi)

(c) PiPj = 8 (i.e., Pixj  = 8 for j# i)

(d) range (Pi) = (Ui
(4.3)

(e)

I f  l=?l!@-$ ‘U,,  we can define the projector Pi on 5!lJi along
~jzi~j,  for i= l,..., k. The properties (4.3) apply to this set of projectors
as well.

Reduced Operators

The projectors in Example 4 act like scalar multiplication on certain
vectors in Ir; Pi acts like multiplication by 1 on all vectors in the subspace
wi, and like multiplication by zero on wj, j# i. Other operators also act
in a simple manner on certain subspaces. Define the nonlinear operator G:
‘312-4R2  by

G&A,) e ((51 -t2)2+2529252)

On the subspace ‘?lF, A span{(1,0)}, G acts like the simple “squaring”

operation, G(a,0)=(a2,0).  On the subspace w2 i span{(1,1)}, G acts like
the “doubling” operation G(b,b)=(2b,2b). In point of fact, as far as
vectors in ?lJ, and %Y, are concerned we can replace G by the “simpler”

operators G, : %,+ %, defined by G,(& 0) p (t2,0) and G,: (?JJ2+  w,

defined by G2(5,n  4 2(&t). We are able to reduce G to these simpler
operators because the action of G on 55, produces only vectors in %, and
the action of G on ‘?lF2 produces only vectors in w2.
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Definition. Let G be an operator (perhaps nonlinear) on V. The subspace
‘% (of V) is invariant under G if for each x in w, Gx is also in G2l(i ; that
is, if G( ?lJ) is contained in ‘% .

Example 5. Invariance of the Nullpace and Range. Let G: ‘V-V. Then range
(G) is invariant under G, for G takes all vectors in Y, including those in range(G),
into range(G). By definition, G takes nullspace into 8. If G(8)- 8, then 8 is in
nullspace( In this case, nullspace is also invariant under G. These subspaces
are pictured abstractly in Figure 2.6.

If G: T-V,  and % is a subspace of V which is invariant under G,

then we can define a reduced operator G, : % + % by G% x h Gx for all
x in %. The operators G, and G, discussed earlier are examples of
reduced operators. The following illustration shows that the reduced
operator G, is truly different from G.

Example 6.  Reduced Linear Operators. We define T: $k2+??L2 by

(4.4)

The matrix of T relative to the standard basis & is

The subspaces %, h span{(1,0)} and ‘;II(;, p span{(3,2)} are invariant under T.

Therefore, we can define the reduced operators T,: ‘?lf,+%i  by T&O) 2 T&O)

= 2(& 0) and T2: w2+%!lf2  by T2(3&2&)  i T(3&m=4(3&2Q.  Using 5% i {(1,0)}

as a basis for %, and 9 A {(3,2)} as a basis for G2LT2 we find

[T,l, c = ([T,(M01,)  = (2)

fT21,  % = ([T,(3,2)],)  = (4)

The reduced operators T, and T2 are scalar operators, represented by 1 X 1
matrices. They are very different from T, which is represented by a 2X2  matrix.
Clearly the domain and range of definition of a transformation are necessary parts
of its definition.

Solution of Equations by Decomposition

The combination of three basic concepts—direct sum, invariance, and
linearity—leads to the spectral decomposition, a decomposition of an
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operator or an equation into a set of scalar multipliers or scalar single-
variable equations. The decomposition provides considerable insight into
the nature of linear models. It also provides a technique for solving
equations which is an alternative to inverting the equations.

If T is a linear operator on Ir, if V = W, $ . . - 83 WP, and if each ‘?.6i is
invariant under T, then the set { wi } of subspaces decomposes T into a set

of reduced linear operators T,: ‘?$, + %,. defined by Tix p TX for all x in
pi. Analysis of a system represented by T reduces to analysis of a set of
independent subsystems represented by {Ti}  ; that is, we can solve the
equation TX = y by the following process.

The Spectral Decomposition Process (4.5)
1. Using the direct sum, decompose y into the unique combination

2. Using the invariance of Wi under T, solve the subsystems

Txi = yi i= 1,2,...,p

(in effect solving the reduced equations Tixi = y,).
3. Using the linearity of T, get the solution x by adding

x=x1 + * * * +xp

If the reduced operators Ti are simple scalar multipliers like those of
Example 6, then solution of the subsystem equations is trivial; that is, if
TXi = AiXi for each xi in ‘?JJi , then hiXi  = yi and parts (2) and (3) of (4.5) can
be expressed as

(4.6)

If we know the invariant subspaces pi and the scalars Ai, the primary
effort required to carry out this procedure is that in decomposing Y-

Example 7. Solution of an Equation by Decomposition. Let T: %‘+a2  be as in
(4.4):

T(t,, 52)  i @t, + %2,%2)

From Example 6 ,  we know the subspaces  (%‘I  A span{(1 ,0))  and %2 A

span{(3,2)} are invariant under T; furthermore, T acts like T,x h 2x for x in W,,

and like T2x p 4x for x in a2. Also Ir = %, @ ‘?lJ2.  Therefore, we can solve the
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equation

Tx=y A (711,112)

by the process (4.5). We decompose y by solving (7),,q2) = c,(l,O) + c,(3,2) to find

(q1,q2)=(ql-  F) (Lo)+(p) (33

A Y*+Y2

By (4.6)

The procedure (4.5) is essentially the one we use to determine the
steady-state solution of a constant-coefficient differential equation by
Fourier series. It is well known that a continuous function f can be
expanded uniquely as a Fourier series of complex exponentials of the form
e i2nk*/b,  where i = m and b is the length of the interval over which f is
defined. Each such exponential spans a subspace %!, . The Fourier series
expansion is possible because the space of continuous functions is in some
sense the direct sum of { GzII‘k  }. But each subspace %, is invariant under
any linear constant-coefficient differential operator; for instance, (D2 + D)
e”*=(  p2+ p)eN, a scalar multiple of e p*  Thus the solution to certain.
differential equations can be found by an extension of (4.6). See P&C 5.35.

The Spectrum

The real goal of most systems analyses is insight into the system structure.
Most linear models have a structure which permits decomposition into a
set of scalar operations. It is not yet clear what effect the subdivision of a
linear operator T has on the overall computation. In fact, since one result
of the decomposition is valuable insight into the structure of the system
represented by T, perhaps we should expect an increase in total
computation. Although this expectation is justified, we find that under
certain circumstances the decomposition information is known a priori.
Then decomposition can also lead to reduced computation (Section 5.2).

Definition. An eigenvalue (or characteristic value) of a linear operator T
on a vector space ?r is a scalar A such that TX =xX for some nonzero
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vector x in v. Any nonzero x for which TX = Ax is called an eigenvector of
T associated with the eigenvalue A.

The eigenvector x spans a subspace of Y. Each member of this sub-
space (or eigenspace) is also an eigenvector for the same eigenvalue. In
fact, because T is linear, any one-dimensional subspace which is invariant
under T must be an eigenspace of T. The identity operator I clearly has
only one eigenvalue; the whole space ‘v is the eigenspace for A = 1.
Similarly, for the zero operator 9, V is the eigenspace for A = 0. If
V = %, Cl3 ‘X2, then for the projector Pi of (4.3), pi is the eigenspace for
A = 1 and %ij  is the eigenspace for A= 0.

The eigenvectors of an operator which acts on a function space are often
called eigenfunctions. We will refer to the eigenvalues and eigenvectors (or
eigenfunctions) of T as the eigendata for T. The eigendata usually have
some significant physical interpretation in terms of the system represented
by T.

Example 8. Eigendata for a Transformation in a2. The operator T: 9L2-+5L2  of
(4.4) is

T& 52) p (XI+ 3&, 452)

It has two eigenvalues: A, = 2 and A, = 4. The corresponding eigenspaces are
span{(1,0)} for Ai and span{(3,2)} for AZ.

Example 9. Eigendata for Differential  Operators. The exponential function e@
and its multiples form an eigenspace for any linear constant-coefficient differential
operator without boundary conditions. For instance, since

d” p-1
peN+aldtn-Le*+---  -#-aneM= (j.k’+alpn-‘+---  +an)eP’

for any complex scalar p, the differential operator Dn + a,D”- ’ + - - - + an1 has the
eigenfunction e p corresponding to the eigenvalue X = pn + a1 pn- ’ + e - - + a,. A
differential operator without boundary conditions possesses a continuum of
eigenvalues.

Example 10. An Operator Without Eigenvalues. A linear differential operator
with homogeneous boundary conditions need not have any eigenvalues. For
example, the only vector that satisfies

df( 0
- =Af(t),dt f(0) = 0

is the zero function, regardless of the value we try for the eigenvalue A. Thus the
operator D acting on the space of differentiable functions f which satisfy f(O)=0
has no eigenvalues. Furthermore, any nth order linear differential operator with n

boundary conditions is without eigenvalues.independent one-point homogeneous
[See the discussion following (3.28).]
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The problem of finding eigenvalues for a linear operator T: V+V is
basically the problem of determining values of A for which the equation

(T-AI)x=  8 (4.7)

has nonzero solutions x; that is, we seek the values of X for which the
operator T - AI is singular. Once we have a specific eigenvalue, say, A,,
obtaining the corresponding eigenvectors involves the determination of
nullspace(T-  A,I)  —the solution of (4.7) with A =X,. The determination of
eigendata and the use of eigendata in practical analysis are explored for
finite-dimensional systems in Section 4.2 and for infinite-dimensional
systems in Section 4.3.

4.2 Spectral Analysis in Finite-Dimensional Spaces

In this section we convert (4.7) to a matrix equation for the case where li
is finite-dimensional. We also examine the spectral (eigendata) properties
of matrix equations. Practical computation of eigendata for finite-
dimensional problems, a more difficult task than appears on the surface, is
discussed at the end of the section.

In Section 2.5 we found we could convert any equation involving a
linear operator on a finite-dimensional space into an equivalent matrix
equation. If T: Ir+V, we simply pick a basis % for Ir. The basis
converts the equation TX = y into the equation [T],% [xl%  = [y]% . We gener-

ally define A A [T],,, and use the simpler matrix notation A[x],  =[y]%.
The eigenvalues and eigenvectors for T are then specified by the matrix
equivalent of (4.7):

G=wl~ = PI, (4.8)

The values of h for which (4.8) has nonzero solutions constitute the
eigenvalues of T. We also refer to them as the eigenvalues of the matrix A.

From Section 1.5 we know that the square-matrix equation (4.8) has
nonzero solutions if and only if

det(A-hI)=O (4.9)

Equation (4.9) is known as the characteristic equation of the matrix A (or of
the operator T which A represents). If A is an n x n matrix, then

c(X) A det(XI-A)=(-  l)“det(A-XI) (4.10)
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is an nth order polynomial in A called the characteristic polynomial of A (or
of T). An nth order polynomial has precisely n (possibly complex) roots.
(This fact follows from the fundamental theorem of algebra.) The set

iA r, . . . ,&} of roots of c(A)  constitutes the complete set of eigenvalues of A
(or T); the set is called the spectrum of A (or T). We often refer to an
analysis which involves eigenvalues as a spectral analysis. Since A= Ai
makes A- AI singular, there must be at least one nonzero eigenvector for
each different eigenvalue. A solution [xl%  of (4.8) for X=Xi  is an
eigenvector of A for Xi. The corresponding vector x is an eigenvector of T
for Xi.

Example 1. Finding Eigendata from [Tj. Let T: CR.‘+  (X2 be defined as in (4.4) by

T(5,, 52)  4 (25, + 352,452)

Using the standard basis E for a2 as in Example 6, (4.8) becomes

((; ~)-A(:, !$I~ =Wl,

or

( 2;h 43x)M6 =( 3

The characteristic equation is

I
2-x

0
4!AI=(2-A)(4-h)‘0

The eigenvalues of A (and T) are X1  = 2 and A, = 4. We find the eigenvectors of A
for Xi by solving (4.8) with A=&:

The scalars cl and d, are arbitrary; there is a one-dimensional eigenspace for each
eigenvalue. The eigenvectors of T for & are found from the relationship between a
vector and its coordinates relative to the basis & :

[Xl& =( E;) w x=c,(1,o)+c~(o, 1)

Therefore, the eigenvectors of T corresponding to h, and A2 are

xt=c*(1,0)+0(0,1)=c,(1,0)

X,=3d,(1,0)+2dI(0,1)=d,(3,2)
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In our previous discussions of vector spaces we have been able to allow
freedom in the type of scalars which we use. We have thought primarily in
terms of real numbers. However, in the discussion of eigenvalues this
freedom in choice of scalars can cause difficulty. A real polynomial need
not have real roots. Thus an operator on a space with real scalars may not
have real eigenvalues; on the other hand, a complex eigenvalue has no
meaning for such a space. The usual engineering practice is to accept the
complex scalars whenever they appear, and assign them an appropriate
meaning if necessary. We follow this approach, and assume, whenever we
speak of eigenvalues, that the characteristic equation has a full set of roots.

Exercise 1. Define the operator T on a2 by

‘I’(&&)=  (51cos+-52sin+,  ~2~~~++~1sin+) (4.11)

This operator describes “rotation through the angle +” in ?7L2. Show that
the eigendata for T are

A, =cos++ isin+= e’*, x1=(1,-i)

A,=cos@-  isin+=  em’*, x2=(1,i)

where i=m. The vector (1, sfr i) is not a real 2-tuple; it is not in 9L2.
We could have used any basis in Example 1. The eigenvalues and

eigenvectors of T are properties of T; they do not depend upon the basis.
Suppose we use the invertible change of coordinate matrix S-i to convert
(4.8) from the % coordinate system to a new coordinate system % as in
(2.54):

P& =s-l[~lz:

The effect of the change of coordinates on the matrix of T is represented
by the similarity transformation (2.62): [T],, = S[T],, S-i. Recalling that
A= [T],,, we find that (4.8) can be expressed as ([T],,  -xI)[x]z
= (S[T],, S- ’ - hI)[x]%  = S([T],, - AI)S ‘[xls = [ 61,. Multiplying by
the invertible matrix S - ‘, we find

(4.12)

Clearly, any h which is an eigenvalue of A is also an eigenvalue of any
other matrix [T],, which represents T. The similarity transformation,
[T],, = S- ‘AS, results in a change in the coordinates of the eigenvectors
of T corresponding to h, but it does not change either the eigenvectors of T
or the characteristic polynomial of T.
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Example 2. Invariance of Eigenvalues under a Change of Coordinates. The
transformation T: 9L2+%2 of Example 1 is

T(E,, (2‘2)  p (%I + %2&2)

The eigenvectors (1,0) and (3,2) found for T in Example 1 form a basis for 9L2;
denote this basis by ‘5X.  With respect to this basis,

[T]ec = [T(l,O)ln i [‘WI,)(

=2 0
( 10 4

Then

The characteristic polynomial and the eigenvalues are those found in Example 1.

Diagonalization

It is apparent that the matrix of any linear operator T with respect to a
basis of eigenvectors for T is of the form demonstrated in Example 2. If %
is a basis of eigenvectors, [T],, has the eigenvalues of T on its diagonal;
the rest of the matrix is zero. We call a linear operator T: v+‘v
diagonalizable if there is a basis % for T which is composed of
eigenvectors of T. We refer to the diagonal matrix [T],, as the spectral
matrix of T, and denote it by the symbol A. If A is the matrix of T relative
to some other basis, say %, for V, we will also refer to A as the diagonal
form of A.

A basis of eigenvectors converts the operator equation TX= y to the
matrix equation

WI, = [Yin (4.13)

Equation (4.13) is actually a matrix version of the process (4.5) for solving
an equation by decomposition. Finding an eigenvector basis %
corresponds to finding a direct-sum decomposition of the space into
subspaces wi which are invariant under T. Finding a coordinate matrix
[y]% is equivalent to the decomposition of y in (4.5). Inverting the diagonal
(or “uncoupled”) matrix A amounts to solving the reduced equations,
Tixi = hixi = yi. When we find x from the coordinates [xl,, we are merely
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combining the subsystem solutions as in (4.6). The process of computing
eigenvalues and eigenvectors of matrices has been automated using a
digital computer. Furthermore, the process of diagonalizing a matrix
equation is more mnemonic than the decomposition process (4.5); the
visual manner in which the eigenvalues and eigenvectors interact is easy to
remember. Equation (4.13) is a clear and simple model for the system it
represents.

What types of linear operators are diagonalizable? That is, for what
finite-dimensional systems is there a basis of eigenvectors for the space?
Since the existence of an eigenvalue 4 implies the existence of a
corresponding eigenvector Xi, we expect the eigenvectors of an operator T
on an n-dimensional space V to form a basis if its n eigenvalues are
distinct. We verify that the n eigenvectors are independent if the
eigenvalues are distinct by the test (2.11). Let

CIX, + $x2+ - * ’ + CnXn  = 8

where Xi is an eigenvector of T for the eigenvalue &. Operating with
(T - X,I) we obtain

CAL )
-A, x,+C2(h2-hl)x~+“’ +cn(x,-X,)x,=8
0

Successively operating with (T - &I), . . . , (I’ - Xn _ ,I) eliminates all terms
but

since h,#Aj,  Cn = 0. By backtracking, we can successively show that cn- i
=... =c 1 = 0; the eigenvectors are independent and form a basis for the
n -dimensional space.

In the above proof we applied the operator
&,- iI) to a general vector in the space 31tnx ’ (i.e., to a linear combination,
x = Z cixi, of the eigenvectors in the basis). Suppose we operate once more,
using the factor (T-&I).  Then, for any x, we obtain

That is,

(4.14)

Recall from (4.10) that if A is a matrix of T, the characteristic polynomial
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for T is c(A)=  det @I-A)=@  -A,)*  * . (A-X,,).  Thus (4.14) is an operator
analogue of c(A)  which we denote by c(T). The characteristic polynomial
in T annihilates all vectors in the space. This fact is commonly known as
the Cayley-Hamilton theorem. It applies as well to matrices—a square
matrix satisfies its own characteristic equation:

c(A)=8 (4.15)

Although we have proved the theorem only for an operator which is diagonal-
izable, it holds for all square matrices [see (4.85)].

Example 3. A Nondiagonalizable Matrix. Suppose

Then

c(A)=det(XI-A)

=(X-h,)*

The only eigenvalue for A is A = X, . Using (4.8) we solve for the associated
eigenvectors of A:

(A-Vhl, p (; ;)( f)=( ;)

o r

Ma =spm(  (i))

There are not enough independent eigenvectors
The characteristic polynomial in A is

of A to form a basis for 37&2x1 .

c(A)=(A-&I)*

=o 2*43
( )0 0

It is apparent that the Cayley-Hamilton theorem also applies to matrices which do
not possess distinct eigenvalues.

Although repeated eigenvalues can signal difficulty, it is possible for the
eigenvectors to form a basis even though the eigenvalues are not distinct.
A notable example is the identity operator; any vector in the space is an
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eigenvector for the eigenvalue h = 1. In Section 4.4 we discuss further those
operators that are not diagonalizable.

Most matrices have distinct eigenvalues, and are thus diagonalizable.
For a diagonalizable matrix A, the eigenvalues by themselves (or the
equivalent spectral matrix A) give a rough idea of the manner in which the
system operates. However, in order to be specific about the operation of
the system, we need to know what A does to specific vectors [xl% on which
it operates. Thus we need the eigenvectors of A. In the process of finding
the eigenvectors, we relate A and A. A change of basis is the key. Let T act

on a finite-dimensional space ?r. Assume A= [T],,  . Let % f {x,, . . . ,xn}
be a basis for V composed of eigenvectors of T. Let {[xi],, . . . ,[x,], } be
the corresponding basis for ‘YR,’  x ’ composed of eigenvectors of A. Define
the change of basis matrix S by

W% = [xl* (4.16)

Then, by (2.55),

(4.17)

Furthermore, by (2.62),

Plwx =S-‘[T&S

=S-‘AS

=A (4.18)

We call the matrix S, the columns of which are eigenvectors of A, a modal
matrix for A.* Of course, the definition of S in (4.16) is arbitrary; the roles
of S and S-l can be reversed. In order to help keep in mind which of the
matrices S and S- ’ is the modal matrix, we note that A in (4.18) multiplies
the eigenvectors of A in the modal matrix.

An engineer often generates a system model directly in matrix form. The
matrix form follows naturally from the use of standard models and
standard physical units. When the underlying transformation is not ex-
plicitly stated, it becomes cumbersome to carry the coordinate notation
[xl, for the vectors on which the n x n matrix A operates. Under these
circumstances, we will change the notation in (4.8) to

(A-hI)x=  9 (4.19)

*In some contexts the eigenvectors are referred to as modes of the system.
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where x is a vector in %’ x ‘. This new notation can cause confusion—we
are using the same notation x for both a vector (on which T operates) and
its coordinate matrix (which A multiplies.) We must keep in mind that A
and x may be representatives of an underlying transformation T and a
vector x on which it operates.

Example 4. Diagonalization of a Matrix. Let

A=( -4-I ;)

Then c(A)=det(AI-A)=(A-5)2  (A+ l)=O. The eigenvalues of A are Al=% x2=5,
As= -1. The eigenvectors for h = 5 satisfy

or 5s = & + 2t2. The eigenspace of A for A = 5 is two-dimensional; one basis for this
space is

xl=( ;), x2=( 9

The eigenvectors for A= -1 satisfy

(A+I)x= (-f -2 @)=(;)

or, by row reduction, 5, = - 5s and t2 = - 25,.  The eigenspace of A for A = -1 is
one-dimensional. We choose

as a basis for this eigenspace. We use the eigenvectors x1, x2, and x3 of the matrix A
as the columns of a modal matrix S for A. We find S-l from S by row reduction:
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The diagonal form of A is:

161

The eigenvalues appear on the diagonal of A in the same order as their correspond-
ing eigenvectors appear in the modal matrix.

Eigendata and Inverse Operators

If T is an invertible operator and x is an eigenvector of T for the
eigenvalue A, it follows from the definition (TX =hx) that

(4.20)

That is, x is also an eigenvector for T-l corresponding to the eigenvalue
1 /h. Furthermore, T is invertible if and only if h = 0 is not an eigenvalue of
T. This fact is easily seen if T acts on a finite-dimensional space: suppose
A is a matrix of T (relative to some basis). Then A = 0 is an eigenvalue of T
if and only if

det(A-OI)=O (4.21)

But (4.21) is just the condition for noninvertibility of A (and T). If A is a
diagonal form of A, the relationship between the eigenvalues and inverti-
bility is even more transparent. If A= 0 is an eigenvalue of A, then A has a
zero row, and A and T are not invertible.

Example 5. Eigendata for an Inverse Matrix. The inverse of the matrix A of
Example 4 is

Using the spectral matrix A and the modal matrix S for A (from Example 4), we
find the spectral matrix for A- ' by

o r
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Thus A and
matrices).

A-’ have inverse eigenvalues, but the same eigenvectors (modal

Computation of Eigendata for Matrices

Computation of the eigenvalues and eigenvectors of a square matrix
appears straightforward. We need only solve for the roots Xi of the
characteristic polynomial, c(A)  = det (AI - A), then solve the equation (A -
X,1)x=  8 for the eigenvectors associated with &. For the selected low-order
matrices used in the examples and in the Problems and Comments, the
eigendata can be computed exactly using this approach. As a practical
matter, however, the process is difficult for an arbitrary diagonalizable
matrix. For a matrix larger than, say, 3 X3, we resort to the digital
computer.

Determination of the characteristic polynomial of the matrix by comput-
ing the determinant of AI-A is an expensive process. Computation of a
simple n x n determinant requires n3/3  multiplications, without the com-
plication of the unspecified variable A. * A more efficient approach for
finding c(A) is Krylov’s method, which is based on the Cayley-Hamilton
theorem (4.15).† The characteristic equation for the n x n matrix A can be
written

c(h)=X”+b,h”-‘+...  +b,=O (4.22)

where the coefficients { bi} are, as yet, unknown. By (4.15),

c(A)=A”+b,A”-‘+..*  +b,A=8

Then for an arbitrary vector x in ‘Snx ‘,

A”x+ b,A”-‘x+ . . l + b,,x=8 (4.23)

For a specific x, the vector equation (4.23) can be solved by row reduction
to obtain the coefficients { bi}. Note that the powers of A need not be
formed. Rather, x is multiplied by A n times. The method requires
approximately n3 multiplications to compute (4.23), then n3/3 multiplica-
tions to solve for the coefficients {bi} by Gaussian elimination.

Example 6. Computing c(h) by Krylov’s Method Let A be the system matrix of
Example 1, Section 3.4:

*See Appendix 1 for a discussion of determinants and their evaluation.
†Ralston [4.13]. Refer also to P&C 1.3c .
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The characteristic equation is second order:

c(h)=X2+bJ+b2=0

c(A)=A’+  b,A+ b,I=8

Let x = (1 1)T. Then

A2x+ b&x+ b2x=8

o r

(-;)+h( -:)+b2(  :)=(:)

The solution to these equations is b, = 1, b2=0. Therefore,

c(X)=A2+X

Suppose that in Example 6 we had let x=(1 - l)T, the eigenvector of A
for X= -1. Then (4.23) would have been

(-;)+b’( -~)+b~(-:)=(FJ
an underdetermined set of equations. The difficulty arises because A+ I,
one of the two factors of c(A), is sufficient to annihilate x. If we use an
eigenvector of A in (4.23), we can determine only those factors of c(A) that
annihilate the eigenvector. Thus is it possible to make a poor choice for x
in (4.23); try another! If the eigenvalues are not distinct, similar difficulties
arise. (Try Krylov’s method for A=I.)

Once we have c(A),  we still need a scheme for finding its roots. A
suitable method for finding the real roots is the iterative technique known
as Newton’s method. This method is discussed in detail in Section 8.1. If
we need only the eigenvalues of A [as in evaluating functions of matrices
by (4.108)], and if these eigenvalues are real, Krylov’s method together
with Newton’s method is a reasonable approach to obtaining them.

Denote the eigenvalue of A which is of largest magnitude by A,. If A, is
real, the power method obtains directly from A both its largest eigenvalue
A, and a corresponding eigenvector XL. The method relies on the “domi-
nance” of the eigenvalue h,. Suppose eigenvectors of an n x n matrix A
form a basis {x1,. . . , xn} for Wx ‘. Then any vector x in 9Vx ’ can be
expressed as x= XI= r CiXi.  Repeated multiplication of x by A yields Akx
=~~=IciAkXi= Zy= I ciAFxi.  If one of the eigenvalues A, is larger in magni-
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tude that the rest, then for large enough k, Akx~cLhFxL,  an eigenvector for
h,. Furthermore, X, is approximately equal to the ratio of the elements of
Ak+ lx to those of Akx. We explore the use of the power method in P&C
4.17. The method can be extended, by a process known as deflation, to
obtain all the eigendata for A. However, computational errors accumulate;
the method is practical only for a few dominant eigenvalues. See Wilkin-
son [4.19].

Practical computation of the full set of eigenvectors of an arbitrary
matrix is more difficult than is computation of the eigenvalues. The
eigenvalues {A,},  by whatever method they are obtained, will be inexact, if
only because of computer roundoff. Therefore, (A -41) is not quite singu-
lar; we need to compute the “near nullspace” of (A-41) (i.e., the “near
solution” to (A - AiI)x = 0). In Section 2.4 we describe the inverse iteration
method for determining a vector in the “near nullspace” of a nearly
singular matrix. We now justify that method. If a matrix B is nearly
singular, its near nullspace is precisely the eigenspace for its smallest (least
dominant) eigenvalue, A,. Then the near nullspace of B is also the eigen-
space for the largest (dominant) eigenvalue l/h, of B- *. If X, is real, we
can determine an eigenvector x, corresponding to X, by applying the power
method to B- ‘. We pick an arbitrary vector zO,  and repetitively determine
zk+ i = B- ‘zk;  for large enough k, the vector zk is a good approximation to
xs; the ratio of the components of zk to those of zk+ , is essentially A,. Thus
the inverse iteration method is just the power method applied to the
inverse matrix. In practice, rather than explicitly computing B- ‘, we would
repetitively solve Bz, + 1 = zk, a less expensive operation.

The inverse iteration method can be used to obtain the eigenvectors of a
matrix A which correspond to a previously computed real eigenvalue 4.
Just repetitively solve (A-X,I)z,+  i =zk for some initial vector zO; after
several iterations, zk will approximate an eigenvector Xj corresponding to
4. The ratio of the elements of zk+r to those of zk will approximate l/A,
where h, is the smallest eigenvalue of the matrix B = A - 41. The eigenvalue

is a measure of the nonsingularity of B and, therefore, the inaccuracy in
Ai; a better approximation to the eigenvalue of A is Ai +h,. A highly
accurate value of pi implies a low value of X, and, consequently, rapid
convergence. Of course, small A, also implies an ill-conditioned matrix
(A- X,.1); yet, as discussed in Section 2.4, the resulting uncertainty in the
solution will be a vector in nullspace (A-41).  The inverse iteration
method works well as long as the eigenvalue 4 is “isolated.” Any method
will have trouble distinguishing between eigenvectors corresponding to
nearly equal eigenvalues. *

*Wilkinson [4.19].



Sec. 4.2 Spectral Analysis in Finite-Dimensional Spaces 165

Example 7. Computing Eigenvectors by Inverse Iteration. Let A be the following
matrix

The exact eigendata of A are

&=l, xi= f ,
0

A*=-1,  x*= y
0

Suppose we have computed the eigenvalue 1, = 1 + c, perhaps by means of Krylov’s
method and Newton’s method. The equation (A-X$)x= 8 has no nonzero solu-
tion. We use inverse iteration with the matrix (A-x,1) to approximate the true
eigenvector x1. Denote zk = (qi~)~ and zk+ 1 =(& 52)‘.  Then

has the exact solution

Let ze=(l l)T. Then

This sequence rapidly approaches a true eigenvector for A, even if the approximate
eigenvalue Xi contains significant error. If e = 0.1, for instance, z1 = -10 (1 .52)T

and q= 100 (1 .501)T. The smallest eigenvalue of (A-X& is clearly A,= - E, which
approaches zero as the error in xi approaches zero. It is apparent that for small e,
the elements of zk would soon become very large. Practical computer implementa-
tions of the inverse iteration method avoid large numbers by normalizing zk at each
iteration.

If A is symmetric, the eigenvalues of A are real (P&C 5.28) and there is a
basis of eigenvectors for the space. * The most efficient and accurate
algorithms for determination of the full set of eigendata for a symmetric
matrix avoid computation of the characteristic polynomial altogether.
Rather, they perform a series of similarity transformations on A, reducing
the matrix to its diagonal form A; the eigenvalues appear on the diagonal.
Since A = S- ‘AS,  where S is a matrix of eigenvectors, the sequence of

*See Section 5.4.
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similarity transformations determines the eigenvectors of A. See P&C 4.11
for an example of such a method.

Because methods that produce the full set of eigendata for a matrix
must, in effect, determine both S and S- ‘, we should expect the accuracy
of the results to be related to the invertibility of the modal matrix S. In
point of fact, it can be shown that if S is ill-conditioned, the eigenvalues
are difficult to compute accurately; some of the eigenvalues are sensitive
functions of the elements of A. As a general rule, symmetric matrices have
easily determined eigenvalues, whereas unsymmetric matrices do not. For
a full discussion of computer techniques for computing eigendata, see
Wilkinson [4.19] and Forsythe [4.6].

Application of Spectral Decomposition-Symmetrical Components

Since a sinusoid of specified frequency is completely determined by two
real numbers, its amplitude and phase, we can represent it by a single
complex number; for example, the function 2 sin(ot + +) is equivalent to

the complex number 2ei+, where i = m . Therefore, complex numbers
adequately represent the steady-state 60-Hz sinusoidal voltages and cur-
rents in an electric power system (assuming physical units of volts and
amperes, respectively).

Figure 4.2 is a simplified description of a three-phase electric power
system. The complex amplitudes of the generated voltages, load voltages,
and load currents are denoted by Ei, Vi,  and Ii, respectively. These voltages
and currents are related by the following matrix equations:

E-V=ZI (4.24)

V=WI (4.25)

Figure 4.2. A three-phase electric power system.
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where E = (E, E2 E3)T,  V = ( V, V2 V3)=, I = (I, 1Z 13)T,  and Z and W are
3 x 3 impedance matrices. In a typical power system, the generating system
is balanced; that is, Z has the form

(4.26)

A useful approach to analyzing a three-phase power system is to change
coordinates in (4.24)-(4.25) in order to diagonalize (4.24). The method is
known to power system engineers as the method of symmetrical com-
ponents.

Exercise 2. Show (or verify) that the eigenvalues hi and corresponding
eigenvectors xi of Z are

A,=z,+2z,  x, =z,-z2 A- =zi-z2

x*=( 1) x+=( i2) x-=( $i
(4.27)

(4.28)

where a = ei2v’3,  a 120” counterclockwise rotation in the complex plane.
(Note that a2+ a + 1 = 0.) Let S =(xg i x, i x-).  Show (or verify) that

(4.29)

Each of the eigenvectors (4.28) represents the complex amplitudes of a
symmetrical three-phase sinusoidal quantity (voltage or current). The sub-
scripts indicate the relative placement of the elements of each vector in the
complex plane. The generated voltage vector E typically has the form of
x,. The eigenvalues (4.27) can be interpreted as impedances associated
with the symmetrical (eigenvector) components of the voltage and current
vectors.

The engineer usually needs to analyze the generation and distribution
system under various loads. If the load impedance matrix W is an arbitrary
matrix, it need not simplify during diagonalization. However, system loads
are usually of a more specialized nature. For example, if the load is
balanced (a goal of system planners), W is of the same form as Z. both
(4.24) and (4.25) diagonalize simultaneously, only positive sequence quanti-
ties appear in the equations, and the matrix equations reduce to two scalar
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equations. Certain unbalanced loads (such as a line-to-line fault) also lead
to specialized forms of W for which symmetrical component analysis is
useful. A more complete discussion of symmetrical component analysis
can be found in Rothe [4.15].

4.3 Spectral Analysis in Function Spaces

Spectral analysis is at least as helpful for understanding differential sys-
tems as it is for matrix equations. Furthermore, for many distributed
systems (those described by partial differential equations) it provides the
only reasonable approach to the determination of solutions. This section is
devoted primarily to a discussion of spectral analysis of differential sys-
tems. We found in Example 9 of Section 4.1 that for a differential operator
without boundary conditions, every scalar is an eigenvalue. The differen-
tial operators of real interest, however, are the ones we use in modeling
systems. These ordinarily possess an appropriate number of boundary
conditions. Suppose

(4.30)

It is convenient to decompose this differential system into two pieces:

Lf = u with & (f) = 0, i = 1 n,a-*, (4.3 1)

and

Lf = 8 with /3i (f) = cri, j = 1 n,**., (4.32)

Equation (4.32) is essentially finite dimensional in nature-by substituting
for f the complementary function f, = clvl + - - l + c,,vn of (3.19), we con-
vert (4.32) to the matrix equation

(4.33)

We examined the eigendata for matrix operators in Section 4.2. We focus
now on the infinite-dimensional problem (4.31).

We seek the eigenvalues and eigenfunctions for the system T defined by
L together with the homogeneous boundary conditions of (4.31). That is,
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we only allow L to operate on functions which satisfy these boundary
conditions. The equation which defines the eigendata is (4.7); thus

(L-AI)f=  8

&(f)=O  l,...,ni = (4.34)

We introduce, by means of an example, a procedure for obtaining from
(4.34) the eigenvalues and eigenfunctions associated with (4.31). The ar-

mature-controlled motor of (3.40)-(3.41) is modeled by L+ 4 D2++ D+,

with pi(+)  f +(O) and p2(+)  4 +(b).  For this specific L and { pi}, (4.34)
becomes

(4.35)

We first  obtain a fundamental set of solutions for (L-XI). The
characteristic equation for (L-AI), found by inserting +(t) = e@, is

y2+p-A=0

with roots

I f λ = −λ = − $, then the fundamental solutions are

vi(t) = e-*i2 v2( t) = te -r/Z

Any nonzero solutions to (4.35) for A = - $ must be of the form f = c,vi +
c2v2  and must satisfy the boundary conditions:

The boundary condition matrix is invertible; c, = c2=0.  There are no
nonzero solutions for h = - 4, and A = - $ is not an eigenvalue.

If A# - $, a pair of fundamental solutions is
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A different but equivalent pair is

We let g= erg, + c2g2, and again invoke the boundary conditions:

There is a nonzero solution g (or nonzero coefficients { ci})  if and only if
the boundary condition matrix is singular; thus, denoting the boundary
condition matrix by B(A),

det (B(A))  = embj2exp
-(‘+;)‘/“) _ e-b,2exp(  (’ +4;)1’26)  =o

o r

(4.36)

By analogy with the finite-dimensional case, we are inclined to refer to
det (B(X))  = 0 as the characteristic equation for the operator T (L with the
homogeneous boundary conditions). However, the term characteristic
equation is commonly used in reference to the equation (in the variable EC)
used earlier to determine the fundamental solutions for L. Therefore, we
call det(B(X))=  0 the eigenvalue equation for T. We may also refer to it as
the eigenvalue equation for L if it is clear which homogeneous boundary
conditions are intended. The eigenvalue equation (4.36) is a transcendental
equation in X. To find the roots, recall from the theory of complex
variables that*

ln(ea+iY)= a + iy + i2l&, k=O, _+l, +2, . . .

for real scalars cr and y. Thus (4.36) becomes

(l+4X)‘/2b+i29rJz=0 k=O, 21, 22, . . .

*See Chapter 14 of Wylie [4.18].
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and the eigenvalues (for which nonzero solutions exist) are

x,=-+ $
( 1

2
k= 1, 2, 3, . . . (4.37)

Note that k = 0 has been deleted; it corresponds to X = - $, for which case
g, and g, are not a fundamental set of solutions. Since k is squared, the
positive and negative values of k yield identical values of A; thus, the
positive values are sufficient.

We obtain the eigenfunctions & corresponding to the eigenvalue Ak by
solving (4.35) with A=&. The solutions involve the roots pk of the
characteristic equation:

Since these roots are complex, we use the sinusoidal form {hi} for the
fundamental solutions:

+k(t)=c,e-‘/2COS  F +c,e-‘/‘sin(  $0
( 1

The boundary conditions yield

It follows that ci =0 and c2 is arbitrary. Letting c2= 1, we obtain the
eigenfunction

(4.38)

corresponding to the eigenvalue A&.
The eigenfunctions for the two-point boundary value operator of (4.35)

are analogous to the modes of oscillation of a string which is tied at both
ends. The modes are harmonics of the fundamental or lowest-order mode,
e -‘/2sin(nt/  b);  that is, the frequencies of oscillation are integral multiples
of the lowest-order frequency. The number p& is the complex “natural
frequency” of the kth mode. The eigenvalue A& can be thought of as a
“characteristic number” for the kth mode. It is not clear whether or not T
is a diagonalizable operator. The eigenvalues are distinct; the set of
eigenfunctions are suggestive of the terms of a Fourier series; however, we
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wait until Chapter 5 to determine that there are sufficient eigenfunctions
{+&,  k = 1,2, . . . } to form a basis for the space of functions f on which T (or
L) operates. (See Example 3, Section 5.3.)

Finding Eigendata for Differential Operators

For general differential equations of the form (4.30) we find eigendata by
following the procedure used for the specific operator of (4.35). We first
seek values of A (or eigenvalues) for which (4.34) has nonzero solutions
(eigenfunctions). Then we determine the corresponding eigenfunctions. We
occasionally refer to the eigendata for the differential equation when we
really mean the eigendata for the differential operator which determines
the equation. Let the functions vi(A),  . . . , v,(A)  be a fundamental set of
solutions for (L -AI);  note that the functions depend on X. The solutions to
(4.34) consist in linear combinations

which satisfy the boundary conditions. The coefficients are determined by
the boundary condition matrix, whose A dependency we denote explicitly
by B(A):

(4.39)

There are nonzero solutions to (4.34) [or nonzero coefficients { Ci} in (4.39)]
only for X such that

det (B(h)) = 0 (4.40)

As discussed beneath (4.36), we call (4.40) the eigenvalue equation for T (or
for L with its boundary conditions). Its roots constitute the spectrum of T
(or of L with its boundary conditions).

Determining the complementary function for T-XI is not necessarily a
simple task. But it is the fundamental problem of differential equation
analysis-standard techniques apply. The eigenvalue equation (4.40) is
generally transcendental. Its solution, perhaps difficult, is a matter of
algebra. Once we have determined a specific eigenvalue h& we return to
(4.39) to determine those combinations of the fundamental solutions which
are eigenfunctions for A&.  The eigenfunctions are

f, = c1v,(&) + - ’ - + c,,v,(&) (4.41)
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where the scalars cr, . . . , cn satisfy

As noted in the discussion following (3.28), the boundary condition
matrix for a one-point boundary value problem is always invertible. Thus
if the boundary conditions for L are all initial conditions, (4.40) has no
roots, and the system T has no eigenvalues.

Exercise 1. Seek the eigenvalues for the operator L of (4.35) with the
initial conditions +(O) = #(O) = 0.

Example 1. Eigendata for a Heat-How Problem. Equation (3.1) is a steady-state
description of a system wherein the heat generated within an insulated bar of
length b diffuses toward heat sinks at the surfaces t = 0 and t = b. We now modify
the second boundary condition. At t = b we withdraw heat from the system by
convection. The equation and
distribution f are as follows:

modified boundary conditions for the temperature

Mt)
&f)(t) p - ----&- -u(t)

(4.42)

h(f) p f(O)= al, a(f) % f’(b)+f(b)-a2

The characteristic equation for (L-M) is

- +A=0

with roots p= -t ifl. We pick as a fundamental set of solutions (for A # 0):

vl(t)=COS  vx t, v,(t)=sinVX  t

The eigenvalue equation is

or

tanfib=-- (4.43)
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Making the substitution r p fi b, (4.43) becomes

tanr=-; (4.44)

Figure 4.3 shows the two halves of the eigenvalue equation plotted versus r for
b=2. If {r&=0, 21, +2 ,... } are the roots of (4.44), then the eigenvalues for
(4.42) are

k= 1,2,3,... (4.45)

The root r. has been eliminated. It corresponds to A= 0, for which the sinusoids are
not a fundamental set of solutions. That A=0 is not an eigenvalue is easily seen by
repeating the above, using a fundamental set of solutions for (L - OI). Since

the negative values of k are unnecessary. We find the eigenfunctions f, for Ak by
(4.41):

or cl = 0 and c2 is arbitrary. Therefore, letting c2= 1, we obtain only one indepen-
dent eigenvector,

fk(t)=sin z t
( )

(4.46)

for each eigenvalue hk = ri’/ b2, k = 1,2,3,….
In this example, the modes are not harmonic; the frequencies ri/b2 are not integral
multiples of the lowest frequency. Although the operator of (4.42) is diagonalizable
(the eigenvectors (4.46) form a basis for the domain of L), we are not presently
prepared to show it.

Eigendata for Integral Operators

We found in (4.20) that if an operator T is invertible and TX =hx, then
T- lx= (l/A)x. That is, the eigenvectors of T and T- ’ are identical and
correspond to reciprocal eigenvalues. From (4.40) we know that a differen-
tial system T has the eigenvalue h =0 if and only if det (B(A))  = det (B(0))
= 0. But this is just the opposite of the condition (3.28) for invertibility of
T. Thus a differential system T is invertible if and only if A=0 is not an
eigenvalue for T. If we think in terms of a diagonalized (cc x co) matrix
representation of T, it is clear that a zero eigenvalue is equivalent to
singularity of the operator. Thus if A=0 is an eigenvalue of T, then the



Sec. 4.3 Spectral Analysis in Function Spaces 175

Figure 4.3. Roots of the eigenvalue equation (4.44) for b = 2.

Green’s function for T does not exist. Invertible differential and integral
equations come in pairs, one the inverse of the other. Because the proper-
ties of integration are theoretically and computationally less troublesome
than those of differentation, we use the integral form to derive useful
information about the eigenfunctions of operators and the solutions of
equations (Sections 5.4 and 5.5). We also use the integral form for
approximate numerical solution of equations. Yet because integral equa-
tions are difficult to solve, we often return to the differential form and
standard differential equation techniques to determine the eigenfunctions
of specific operators or the solutions of specific equations. In the following
example, we obtain the eigendata for an integral operator from its differen-
tial inverse.

Example 2. Eigendata for an Integral Operator. The eigendata for the system T
represented by the differential operator L = D* + D with +(O) = 0 and +(b) = 0 are
given in (4.37) and (4.38). They are

Note that A- 0 is not an eigenvalue. The Green’s function for this operator is
(3.42). Using this Green’s function, we write the inverse of the differential system
a s

+(+ l-e%+
Jeb-1 0

*(es - l)U(S)ds+  F/“(es- eb)u(s)&
-1 t

= (T- ‘u)(t) (4.47)
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We expect the eigenfunctions of T- ’ to be the same as those of T. Operating on +k
with T-l, a complicated integration, we find

(4.48)

The eigenvalues of the integral operator T- ’ are clearly { I/&}.

Eigenvalue Problems in State Space

We introduced the state space model for dynamic systems in Section 3.4.
We reproduce it here:

k(t) = Ax( t) + Bu( t) x(0) = ~0 (4.49)

where A is an n x n matrix multiplying the n X 1 state vector x(t), and B is
an n x m matrix multiplying the m x 1 input vector u(t).  We know the
differential system of (4.49) has no eigenvalues—it is an initial-value
problem.* However, there is a meaningful and interesting eigenvalue
problem associated with (4.49). It has to do with the system matrix A. We
introduce the relationship between the eigendata for the system matrix and
the solutions of (4.49) by examining the system matrix for the nth-order
constant-coefficient differential equation, the companion matrix of (3.36).
The eigenvalues of A are the roots of the equation det (AI  -A) = 0.

Exercise 2. Show that if A is the companion matrix for the n th-order
constant-coefficient differential equation

D”f+a,D”-‘f+...  +a,f=u (4.50)

then the characteristic equation for A is

det(XI-A)=(A”+a,X”-‘+  ... +a,,)=0 (4.51)

*If the
solution,

initial condition
x(t) = 8.

vector is x(0) = 8, then x(t)--(t) - Ax(t)  = 0 has only the zero
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From (4.51), we see that if A is the system matrix corresponding to an
nth-order constant-coefficient differential equation, the characteristic
equation for A is the same as the characteristic equation (3.37) for the
underlying nth-order differential equation. The eigenvalues of the system
matrix are the exponents for a fundamental set of solutions to the differen-
tial equation. They are sometimes referred to as poles of the system. This
relationship between the eigenvalues of the system matrix and the funda-
mental set of solutions to the underlying set of differential equations holds
for any system matrix A, not just for those in companion matrix form. [See
the discussion below (4.94); refer also to P&C 4.16] Thus in the state-space
equation (4.49) the concepts of matrix transformations and differential
operators merge in an interesting way. The origin of the term “char-
acteristic equation for the differential equation” is apparent. Fortunately,
the state-space formulation is not convenient for boundary value problems.
Thus eigenvalues of a system matrix and eigenvalues of a differential
equation usually do not appear in the same problem.

Suppose we use the eigenvectors of the system matrix A as a new basis
for the state space, assuming, of course, that A is diagonalizable. We
change coordinates as in (4.16)-(4.18). (We can think of the state vector
x(t) in 9vx1 as representing itself relative to the standard basis for
9vX1.) If {Xl,..., xn} is a basis of eigenvectors for A corresponding to the
eigenvalues {Xi,. . .,&I, we transform X(Z)  into the new coordinates y(t) by
the transformation

y(t)=S-'x(t) (4.52)

where S is the modal matrix for A:

Then, by (4.18), (4.49) becomes

sy( t) = ASy( t) + Bu( t), SY(O)  = x0

jr(t)=S-‘ASy(t)+S-h(l)

=Ay(t)+S-‘Bu(t), y(0) = s- lx()

(4.53)

(4.54)

Equation (4.54) is a set of n uncoupled first-order differential equations
which can be solved independently. The eigenvectors (or modes) of A in a
sense express natural relationships among the state variables [the elements
of x(t)] at each instant t. By using these eigenvectors as a basis, we
eliminate the interactions-the new state variables [the elements of y(t)]  do
not affect each other.
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Example 3. Diagonalizing a State Equation The state equation for the armature
controlled dc motor of (3.40) was obtained in Example 1 of Section 3.4.
It is

a)=( 8 -:)x(0+(  !f)u(‘), x(0)=(  Z;)

The eigendata for the system matrix are

x1=0, A*= -1 xl=(;) x2=( -1)

The modal matrix is its own inverse

s-1=(:,  $4

The decoupled state equation is

P(t)=(;  j)Y(‘)+( -;)u(t), y(O)=( “““a:)

(4.55)

(4.56)

(4.57)

(4.58)

Denote the new state variables [elements of y(t)] by gl(t) and g*(t). We can solve
independently for g, and g2. On the other hand, we can use (3.79) with x, A, and B
replaced by y, A, and S- ‘B, respectively. By either approach the result is

YW i ($)=i’( !e-,-sJu(s)~+(;  f-*)( “1::;) (4.59)

Then

x(t)=s-‘y(t)

(4.60)

Compare this result with (3.80).

Note that the modal matrix in Example 3 is the Vandermond matrix for
the system. Whenever the system matrix is in companion matrix form and
the poles of the system are distinct, the Vandermond matrix is a modal
matrix; then the eigenvectors of A need not be calculated, but follow
directly from the eigenvalues. See P&C 4.16.
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Eigenvalue Problems and Partial Differential Equations

As we found in Example 10 of Section 4.1, not all differential operators
have eigenvalues. This statement applies to both ordinary and partial
differential operators. However, the most common analytical method for
solving partial differential equations, separation of variables, generally
introduces an eigenvalue problem even if the partial differential operator
itself does not have eigenvalues. In point of fact, an analytical solution to a
partial differential equation and its associated boundary conditions is
usually obtainable only by summing eigenfunctions of a related differential
operator. See Wylie [4.18]. On the other hand, some partial differential
operators do have eigenvalues. One example is the Laplacian operator V2,
defined by

V2f(s,t)  p --$-  -
a %(s, t) + a 2f(s, t)

at2
(4.61)

together with the “many-point” boundary conditions

f(s,t)=O on I? (4.62)

where I is a closed curve in the (s, t) plane,

Exercise 3. Let I? be the boundary of the rectangle with sides at s = 0,
s = a, t = 0, and t = b. Show (by separation of variables) or verify that the
eigenvalues and eigenfunctions for v2 together with the boundary condi-
tions (4.62) are:

(4.63)

Notice that A = 0 is not an eigenvalue of (4.61)-(4.62). Therefore the
operator must be invertible, and we can expect to find a unique solution to
Poisson’s equation, V2f=u,  together with the boundary conditions of
Example 3.

4.4 Nondiagonalizable Operators and Jordan Form

Most useful linear transformations are diagonalizable. However, there
occasionally arises in practical analysis a system which is best modeled by
a nondiagonalizable transformation. Probably the most familiar example is
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a dynamic system with a pair of nearly equal poles. We use such an
example to introduce the concept of nondiagonalizability.

Suppose we wish to solve the undriven differential equation (D + l)(D +
1 + e)f = 0 with the boundary conditions f(0) = cyr and f’(0) = (Ye, where c is
a small constant. The solution is of the form

f(t)= c,e-‘+c,e-(‘+‘)’ (4.64)

Applying the boundary conditions, we find

Since e is small, this equation is ill-conditioned; it is difficult to compute
accurately the multipliers cr and c2 (see Section 1.5). The difficulty occurs
because the poles of the system (or roots of the characteristic equation) are
nearly equal; the functions e-’ and e + +‘N are nearly indistinguishable
(see Figure 4.4). We resolve this computational difficulty by replacing e-*
and e-(l+c)t  by a more easily distinguishable pair of functions; (4.64)
becomes

(4.65)

where d, =c,+c, and d2=-Ec2. Since e is small, the functions e - ’ and
te-’ span essentially the same space as e-’ and e-(‘+‘)‘;  yet this new pair
of functions is clearly distinguishable (Figure 4.4b). The “new” function

Figure 4.4. Alternative pairs of solutions to (D + l)(D + 1 + r)f = 8.
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te-’ is essentially the difference between
The boundary conditions now require

the two nearly equal exponentials.

o r  f(t)=a,e-‘+(a,+az)te-f. We have eliminated the computational
difficulty by equating the nearly equal poles of the system. When the roots
of the characteristic equation are equal, (4.65) is the exact complementary
function for the differential operator.

It is enlightening to view the differential system in state-space form. By
writing the differential equation in the form (D2 + (2 + e)D + (1 + c)I)f = 8,
we recognize from (3.63) that the state equation is

x(t)=
(

0
-(l+e)  -(i+e)  X(Q1

x(O)= ;;
( )

The nearly equal poles of the system appear now as nearly equal eigen-
values of the system matrix, A, = - l,h, = -(1 + e). We know from P&C
4.16 that the modal matrix is the Vandermond matrix;

s=(l* i2)=( 4 -(:+c))

Since this matrix is ill-conditioned, we would have computational difficulty
in finding S-l in order to carry out a diagonalization of the system matrix
A. However, if we equate the eigenvalues (as we did above), the system
matrix becomes

which is not diagonalizable. Moreover, the earlier computational difficulty
arose because we tried to diagonalize a “nearly nondiagonalizable” matrix.

The above example has demonstrated the need for dealing with nondi-
agonalizable transformations. In this section we explore nondiagonalizable
finite-dimensional operators in detail. We discover that they can be repre-
sented by simple, nearly diagonal matrices which have the eigenvalues on
the diagonal. Thus the conceptual clarity associated with the decoupling of
system equations extends, to a great extent, to general linear operators.

To avoid heavy use of the cumbersome coordinate matrix notation, we
focus throughout this section on matrices. However, we should keep in
mind that an n x n matrix A which arises in a system model usually
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represents an underlying linear operator T. The eigenvectors of A are the
coordinates of the eigenvectors of T. Thus when we use a similarity
transformation, S- ‘AS, to convert A to a new form, we are merely
changing the coordinate system for the space on which T operates.

Generalized Nullspace and Range

Unlike a scalar, a linear operator U is generally neither invertible nor zero.
It lies in a “gray region” in between; U takes some vectors to zero (acting
like the zero operator); others it does not take to zero (thereby acting
invertible). Perhaps even more significant is the fact that the nullspace and
range of U may overlap. The second and higher operations by U may
annihilate additional vectors. In some ways, the subspace annihilated by
higher powers of U is more characteristic of the operator than is nullspace

(u)-

Example 1. Overlapping Nullspace and Range. Define the operator U on 9R,3x i

by Ux p Bx, where

Then U has the following effect on a general vector in 9R3x ‘:

(k)+)~qi$ u

9,3x1 range(U) range( U2)

The vectors annihilated by various powers of U are described by

The nullspace and range of Uk for k > 2 are the same as the nullspace and range of
U2.

Definition. The generalized nullspace “JtB (U) of a linear operator U acting
on an n-dimensional space Ir is the largest subspace of Ir annihilated by
powers of U. Since V is finite dimensional, the annihilation must
terminate. Let q be that power of U required for maximum annihilation.
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We call 4 the index of annihilation for U. Then %g (U)=nullspace(Uq).
The generalized range %g (U) of the operator U is defined by a*(U)
=range(Uq).  Since multiplication by a square matrix is a linear operator,
we speak also of the generalized nullspace and generalized range of square
matrices.

In Example 1, the index of annihilation is 4 = 2. The generalized range
and generalized nullspace are

Notice that Ir is the direct sum of the generalized range and the genera-
lized nullspace of U. It is proved in Theorem 1 of Appendix 3 that any
linear operator on an n-dimensional space splits the space in this manner.
It is further shown in that theorem that both “Jt8 (U) and ?i& (U) are
invariant under U, and that U acts like a reduced invertible operator on
the generalized range of U. These facts are verified by Example 1. An
operator (or a square matrix) some power of which is zero is said to be
nilpotent; U acts like a reduced nilpotent operator on the generalized
nullspace of U.

Exercise 1. Let U be the operator of Example 1. Define U,: ag (U)
+ %g (U) by U,x 4 Ux for all x in %s (U); define UZ: %g (U)+ sg (U) by

U2x  p Ux for all x in $$ (U). Pick as bases for %g (U),  !!)&(U),  and
%,3x ’ the standard bases

%l=((;)},  %=((g),(g)),  a n d %={%%)

respectively. Show that

What are the characteristics of U, and U,? Why is the matrix of U in
“block-diagonal” form? (See P&C 4.3.)
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The characteristic polynomial of an n X n matrix A can be expressed in the
form

c(X)=det(XI-A)=(X-X,)m’(h-A,)m2*  l * (A-$,)- (4.66)

where p is the number of distinct eigenvalues, and m, + - - - + mP = n. We
call m,+ the algebraic multiplicity of 4. The eigenspace for Xi is nullspace
(A-&I).  The dimension of this eigenspace, the nullity of (A - hiI),  we
denote by ki. We call ki the geometric multiplicity of &; it is the number of
independent eigenvectors of A for 4. If the geometric multiplicity equals
the algebraic multiplicity for each eigenvalue, it is reasonable to believe
that there is a basis for w xl composed of eigenvectors for A, and that A
is diagonalizable.

If hi is deficient in eigenvectors (ki < mi), we say A is defective at hi. If A
has any defective eigenvalues, we must pick noneigenvectors to complete
the basis. We seek (mi- ki) additional independent vectors from the
subspace associated with —from the generalized nullspace of (A-&I).
Define

qJi A generalized nullspace of (A - X,1)

= nullspace(A  - X,1)” (4.67)

where 4i is the index of annihilation for (A-&I).  It is shown in Theorem 2
of Appendix 3 that

dim( pi) = mi (4.68)

We will think of all vectors in the generalized nullspace of (A-&I)  as
generalized eigenvectors of A for &. Specifically, we call x, a generalized
eigenvector of rank r for Xi if

(A-A,I)~X,=  8
(4.69)

(A-hiI)‘-‘X,#  8

If x, is a generalized eigenvector of rank r for &, then (A-&1)X, is a
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generalized eigenvector of rank r - 1; for (4.69) can be rewritten

(A-A,I)‘-‘(A-~I)Xr=  8

(A-X,I)r-2(A-A,I)Xr#  8

Thus each vector in wi is a member of some chain of generalized
eigenvectors generated by repeated multiplication with (A-&I);  the last
member of each chain is a true eigenvector (of rank 1). We think of 6211‘i  as
the generalized eigenspace for 4; pi contains precisely the mi independent
vectors associated with & that we intuitively expect in a basis for ?Rnx ‘.

In Theorem 3 of Appendix 3 we show that

nt“XLqp...@q$ (4.70)

Therefore, any bases which we pick for { wi } combine to form a basis for
9lL nX ‘. Any basis for ‘%Ji consists in m, generalized eigenvectors.
Furthermore, ki of these mi generalized eigenvectors can be true eigen-
vectors for Xi.

Jordan Canonical Form

If A is diagonalizable, we can diagonalize it by the similarity transforma-
tion S- ‘AS, where the columns of S are a basis for w x * composed of
eigenvectors of A. Suppose A is not diagonalizable. What form can we
expect for the matrix S -‘AS  if the columns of S are a basis of generalized
eigenvectors of A? It depends on the way we pick the bases for the
subspaces { pi }. We demonstrate, by example, a way to pick the bases
which results in as simple a form for the matrix S- ‘AS as we can possibly
get in the presence of multiple eigenvalues. In order that the form be as
nearly diagonal as possible, we include, of course, the true eigenvectors for
Xi in the basis for pi.

Let

(4.71)
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Then c(A)=@-2)‘(h-31,  orp=2,  A,=2, m,=5, A,=3, and m,=l.  Also,

It is apparent that

(4.72)

The indices of annihilation for (A-h,I)  and (A- A,I),  respectively, are
q1=3 a n d  q2=1. The five-dimensional subspace W,, the generalized
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eigenspace for A,, consists in vectors of the form (cr t2 c3 &, & O)=;  vectors
in “w;, the generalized eigenspace for A,, are of the form (0 0 0 0 0 &)‘.
[Note that (4.68) and (4.70) are verified in this example.]

Any eigenvector for h= 3 will form a basis && for ‘?$,. Clearly, a basis
6Z1  for ‘?l!, must contain five vectors. Since there are only two independent
true eigenvectors (of rank 1), three of the vectors in the basis must be
generalized eigenvectors of rank greater than 1.

Assume we pick a basis which reflects the nullity structure of (4.72); that
is, we pick two generalized eigenvectors of rank 1 for X =2, two of rank 2
for h = 2, one of rank 3 for A = 2, and one of rank 1 for X = 3. Also assume
we pick the basis vectors in chains; that is, if x is a vector of rank 3 for
A = 2, and x is in the basis, (A - 21)x  and (A - 2I)2x will also be in the basis.
We express both the nullity structure and chain structure by the following
subscript notation:

(4.73)

This nullity and chain structure is expressed mathematically by the follow-
ing equations:

(4.74)

We propose the union of the sets &?,. as a basis, denoted & , for %6x ‘. It
can be shown that a set of vectors of this form can be constructed and is a
basis for 9?Lsx ’ (see Friedman [4.7]). Using the basis 6?, we form the
change of coordinates matrix as in (4.17):

S=(X,  ; X12  : Xl3  : X2 : X22 i X3) (4.75)

As in (4.18), this change of coordinates transforms A into the matrix
A= S- ‘AS.  Recasting this similarity relation into the form AS = SA, we
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recognize that

(4.76)

The form of A is as simple and as nearly diagonal a representation of A as
we can expect to obtain. The eigenvalues are on the diagonal. The
off-diagonal l’s specify in a simple manner the “rank structure” or “chain
structure” inherent in A.

It is apparent that whenever the columns of S form a basis for wx ’
composed of generalized eigenvectors of A, and these basis vectors consist
in chains of vectors which express the nullity structure of A as in (4.73)-
(4.74), then S- ‘AS will be of the simple form demonstrated in (4.76). It
will consist in a series of blocks on the diagonal; each block will be of the
form

By analogy with (4.16)-(4.18) in our discussion of diagonalization, we call
S the modal matrix for A. We also call the near-diagonal matrix A the
spectral matrix for A (or for the underlying transformation T). The spectral
matrix is also referred to as the Jordan canonical form of A. Each square
block consisting in a repeated eigenvalue on the diagonal and an unbroken
string of l’s above the diagonal is called a Jordan block. There is one
Jordan block in A for each chain of generalized eigenvectors in the basis.
The dimension of each block equals the length of the corresponding chain.
Thus we can tell from the nullity structure (4.71) alone, the form of the
basis (4.73) and the precise form of A (4.76). Observe that the Jordan form
is not unique. We can choose arbitrarily the order of the Jordan blocks by
choosing the order in which we place the generalized eigenvectors in the
basis.
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Example 2. Nullities Determine the Jordan Form Suppose A is a 9 x 9 matrix for
which

~(h)=det(A1-A)=(X-Ai)~@-X~)~(A-h,)

nullity(A-h,I) -3

nullity(A-AII)2= 5

nullity(A-X,I)3=6

nullity(A - X21)  = 1

nullity(A - h,I)2 = 2

nullity(A - X31)  = 1

From (4.68), the factored characteristic polynomial, and the nullities stated
above, we know that

mi=dim(U,)=6,  ki=3

mz=dim(W2)=2,  k,= 1

m,=dim(%s)=  1, k,= 1

It follows that q1 =3, 42=2, and 43= 1; higher powers than (A- hiI>’  do not have
higher nullities. The form of the basis of generalized eigenvectors of A which will
convert A to its Jordan form is

The Jordan form of A is
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Bases of Generalized Eigenvectors

We now generate a specific basis for Xsxl which is composed of genera-
lized eigenvectors of the matrix A of (4.71). That is, we find a basis of the
form (4.73) by satisfying (4.74). We use (4.69) to find the highest rank
vector in each chain. We first seek the vector xi3 of (4.73). All five of the
basis vectors in &i satisfy (A - 21)3x  = 8. But only xi3 satisfies, in addition,
(A - 21)2x#  8. Therefore, we let xi3 = (ci c2 c3 cq c5 O)T, the general solution
to (A - 21)3x  = 9. Then

(4.77)

or c3 # 0. Thus any vector in %6x ’ which has a zero sixth element and a
nonzero third element is a generalized eigenvector of rank 3 for X = 2. We
have a lot of freedom in picking xi3. Arbitrarily, we let c3= 1, and
c EC EC cc1 2 4 5 = 0. Then

x13=  (Ij 3 x,~=(A-~I)x,,=  jlj , +=(A-21)x,,=  [I

(4.78)

Notice that in (4.77) we looked at the eigenvector, xi = (A- 21)2x,3,  at the
end of the chain in order to determine the vector xi3 at the head of the
chain.

To find the remaining vectors of 6?i, we look for the vector xZ2 at the
head of the second chain. By (4.69), all vectors (d, d2 d3 d4 d, d6>’ of rank 2
or less satisfy
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or d6 = d3 = 0. The vectors which are precisely of rank 2 also satisfy

(4.79)

Again we are looking at the eigenvector at the end of the chain as we pick
the constants. We must pick d2 and d,, not both zero, such that x2 is
independent of the eigenvector xi selected above (i.e., d2 = 1, d, = 0 will not
do). Arbitrarily, we let d, = 1, d, = d, = d, = 0; d3 is already zero. Thus

(4.80)

The five vectors of (4.78) and (4.80) satisfy (4.73), and they are a basis for
%,. The equation (A - 3I)x= 0 determines the form of eigenvectors for
A= 3: x = (0 0 0 0 0 b&)=’  We arbitrarily let b6 = 1 to get

a basis for w,. By (4.76), this basis of generalized eigenvectors generates
the modal matrix S:
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The spectral matrix is

(4.81)

as we concluded earlier in (4.76).
Clearly, the chains of generalized eigenvectors which make up a basis

are not unique. In fact, many different chains end in the same true
eigenvector. It can be shown that any set of chains which possesses the
structure of (4.73)-(4.74) will constitute a basis for s6”’ if the eigenvec-
tors at the ends of the chains are independent. Because of this fact, we
might be led to find the true eigenvectors xi and x2 first, and then find the
rest of the basis by “backing up” each chain. This approach need not
work. The vectors x1 = (1 0 0 1 0 0)T and z2 = (l 0 0 -1 0 0)T are
independent eigenvectors of A. However, they are both of the form (4.79)
of eigenvectors at the end of chains of length 2. Neither is of the form
(4.77) of an eigenvector at the end of a chain of length 3. Although these
two eigenvectors can be used as part of a basis for X6” *, the basis cannot
be of the form (4.73).

Exercise 2. Attempt to determine a basis for %6x1 which is of the form
(4.73) and yet includes the eigenvectors xi = (1 0 0 1 0 0)T and x2= (1 0 0
-1 0 0)T.

Procedure for Construction of the Basis

We summarize the procedure for generating a basis of generalized eigen-
vectors. Suppose the n x n matrix A has the characteristic polynomial
(4.66). Associated with the eigenvalue hi is an mi -dimensional subspace (Vi
(Theorem 1, Appendix 3). This subspace contains ki independent eigen-
vectors for 4. Assume the basis vectors are ordered by decreasing chain
length, with each chain ordered by increasing rank. We denote this basis
for pi by

(4.82)
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where 4 is the length of the jth chain for hi and qi is the index of
annihilation for (A-&I);  thus qi is the length of the longest chain. The
nullities of various powers of (A-Q determine the structure of (4.82) just
as (4.73) is determined by (4.72). The procedure for construction of the
basis 6?i is as follows:

1. Determine the form of vectors of rank qi or less by solving (A-
XiI)“X= 8.

2. Observe the true eigenvectors (A-IQ)%- ‘x; choose from the vectors
found in (1) a total of (nullity(A-&I)*-  nullity(A-&I)“-  *) vectors which
lead to independent eigenvectors. These vectors are of rank qi, and are the
highest rank generalized eigenvectors in their respective chains.

3. Multiply each vector chosen in (2) by (A-&I),  thereby obtaining a
set of generalized eigenvectors of rank(q,.  - l), which is part of the set of
basis vectors of rank (e - 1).

4. Complete the set of basis vectors of rank(q,  - 1) by adding enough
vectors of rank (4i - 1) to obtain a total of (nullity(A -hiI)%- ’ - nullity(A -
h,I)qm2) vectors which lead to independent eigenvectors. This step requires
work equivalent to steps I and 2 with qi replaced by (qi - 1). The vectors
which are added are highest rank vectors in new chains.

5. Repeat steps 3 and 4 for lower ranks until a set of ki eigenvectors is
obtained.

Because wxl=%,@..* @wp, we can obtain a basis & for Xnx ’
consisting of generalized eigenvectors of A by merely combining the bases
for the subspaces %,. :

@ = ( @,,  . . . , @$}

Proceeding as in the example of (4.71), we can use the basis & to convert
A to its nearly diagonal Jordan canonical form A.

Example 3. A Basis of Generalized Eigenvectors. Let

The process of finding and factoring
We merely state it in factored form:

the characteristic polynomial is complicated.

c(A)=det(hI-A)=(A-3)‘(X-2)
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Therefore, X1  = 3, ml = 5, X, = 2, and m2 = 1. Furthermore,

Clearly, nullity(A-3I)=3  and nullity(A-31)2=5=  ml. It is also apparent that
nullity(A- 31j3 = 5. Thus k, = 3, ql = 2, and dim{ a,) = 5. Moreover,

(A-21)=

and nullity(A - 21) = 1. As a result, k, = 1, q2=1,  and dim(GW2)=  1. [Note that
dim (‘Xi) + dim (Gzlr,) = dim ( S6” ‘).I From the nullity information above, we know
that the Jordan form of A is

We find a basis 4? for 9lL6x ’ consisting in chains of generalized eigenvectors with
the following structure:

We first seek xl2 and x22, the vectors at the heads of the two longest chains. All
generalized eigenvectors for A= 3 satisfy (A- 3I)%= 8. The solutions to this equa-
tion are of the form x=(ci c2 c3 c4 c5 QT. The vectors of rank 2 also satisfy

(A- 31) (J =&--c,j  ( i)+cc4-c3j  (/) # (g

We are looking at the true eigenvector at the end of the most general chain of
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length 2. We must select two different sets of constants in order to specify both xl2
and x22. Furthermore, we must specify these constants in such a way that the
eigenvectors xl and x2 (which are derived from xl2 and xz2,  respectively) are
independent. It is clear by inspection of the above equation that precisely two
independent eigenvectors are available. By choosing c2 = 1 and ct = c3 = c4 = c5 = 0,
we make

x12 = and xi=

By selecting c4 = 1 and cl = c2 = c3 = c5 = 0 we get

Of course, many other choices of xl2 and x22 would yield the same xl and x2.
Furthermore, other choices of xl and x2 would also have been appropriate. We now
seek x3, a third true eigenvector for A= 3 which is independent of xl and x2. The
eigenvectors for A = 3 satisfy (A- 31) = 8. From the matrix A- 31 we recognize that

Cl = c2 and c3 = c4, as well as c5 = c6 for all eigenvectors for x = 3. Letting cl = c2= c3
=c4=0  and c5=c6=  1, we obtain

an eigenvector independent of the other two. It is a simple matter to determine x4,
an eigenvector for A-2; we choose

Exercise 3. Continuing Example 3, let

Show that A= S-‘AS.
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Generalized Eigenvectors in Function Spaces

Our discussion of generalized eigenvectors has been directed primarily
toward matrices and, through matrices of transformations, toward any
linear operator on an n-dimensional vector space. However, the concepts
apply also to transformations on infinite-dimensional spaces. We have
already noted that for the operator D acting on the space &?‘(O, l), any
scalar X is an eigenvalue, and that exr is a corresponding eigenfunction.
Furthermore, there is no other eigenfunction for X which is independent
from —the geometric multiplicity of X is one.

We have not to this point explored the generalized nullspace for X. In
point of fact, powers of (D-AI) do annihilate additional functions. Specifi-
cally, (D-AI)’  annihilates the r-dimensional subspace of functions of the
form cleh’ + c,teh’ + c,t2ex’  + . 6 - + c,t r-‘eX’ The annihilation does not.
terminate as r increases; the index of annihilation is infinite. It is apparent
that the following functions constitute an infinite chain of generalized
eigenfunctions of D for the eigenvalue X:

e”, tehr, 12ht 1pe, F t3e”‘, . . . (4.83)
. .

Generally, differential operators are accompanied by boundary condi-
tions. The eigenvalues of a differential operator L (with its boundary
conditions) are the roots of the eigenvalue equation (4.40), det(B(A))=O.
As in (4.41), the eigenfunctions corresponding to the eigenvalue hi are
linear combinations of a set of fundamental solutions for L, where the
multipliers in the linear combination satisfy

The algebraic multiplicity of the eigenvalue hi is the multiplicity of & as a
root of the eigenvalue equation. The nullity of B(Xi) equals the number of
independent eigenfunctions of L for the single eigenvalue Ai; we call this
number the geometric multiplicity of 4. It can be shown that ki < mi, just as
we found for matrices (see Ince [4.10]). In the above example, where no
boundary conditions were applied to the operator D, these definitions do
not apply. However, it seems appropriate in that case to assume that
m,=oo  a n d  ki= 1 for each scalar &, since there is an infinite string of
generalized eigenfunctions associated with each Xi. See P&C 4.12d for a
differential operator (with boundary conditions) which possesses multiple
eigenvalues.
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The Minimal Polynomial
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We showed in (4.15) that if an n X n matrix A has distinct roots, its
characteristic polynomial in A is 8; that is, c(A) = (A -A$).  * . (A-&I)  = 8.
We are now in a position to extend this result to all square matrices. The
fact that wxl= %,CB... CB wP is proved in Theorem 3 of Appendix 3.
By definition (4.67), (A -hI)*  annihilates qKi. Furthermore, ~j is in-
variant under (A - &.I)$  if j # i. Therefore, the matrix

(A - x,1)“.  . - (A - $,I>”

annihilates the whole space 4m”” ‘. We call

the minimal polynomial for A. The minimal polynomial in A satisfies

m(A) k (A-X,1)“* * * (A-$,I)“=9 (4.84)

If r 4 4, + * * * + qP, then m(A) = A’+ alA’-  * + . . l + a,I, an rth-order
polynomial in A. In fact, m(A)  is the lowest-order polynomial in A which
annihilates the whole space. It is apparent that polynomials in A which
include higher powers of (A-&I)  also annihilate the space. For instance,
recalling that mi > qi, the characteristic polynomial in A satisfies

c(A)=(A-h,I)“‘*..  (A-~I)“=@ (4.85)

for any square matrix A. Equation (4.85) is the Cayley-Hamilton theorem.
Equations (4.84) and (4.85) find considerable use in computing. See, for
example, Krylov’s method (4.23) for finding the characteristic equation;
see also the computation of functions of matrices via (4.108).

Example 4. A Minimal PolynomiaL Let

A=

Then p = 1, hi= 1, and c(A)=@- 1)3.  Since

and (A-1)‘=8,  4i=2, and m(h)=@-  1)2.  It is apparent that c(A)=m(A)=e.
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4.5 Applications of Generalized Eigendata

The concept of the Jordan form of a matrix is useful partly because it is
mnemonic—it helps us remember and categorize the fundamental proper-
ties of the matrix (or the linear transformation which the matrix repre-
sents). The diagonal form of a diagonalizable matrix is merely a special
case of the Jordan form. Whether an operator is diagonalizable or not, a
complete eigenvalue analysis-obtaining eigenvalues and eigenvectors—is
a computationally expensive process. Thus computational efficiency alone
does not ordinarily justify the use of spectral decomposition (decomposi-
tion by means of eigenvectors) as a technique for solving an operator
equation. However, our reason for analyzing an operator is usually to gain
insight into the input-output relation which it describes. Spectral analysis
of a model does develop intuitive insight concerning this input-output
relation. In some instances a basis of eigenvectors is known a priori, and it
need not be computed (e.g., the symmetrical components of (4.28), the
Vandermond matrix of P&C 4.16, and the complex exponential functions
of Fourier series expansions). In these instances, we gain the insight of
spectral decomposition with little more effort than that involved in solu-
tion of the operator equation.

Nearly Equal Eigenvalues

True multiple eigenvalues rarely appear in physical systems. But nearly
equal eigenvalues are often accompanied by near singularity of the linear
operator and, therefore, by computational difficulty. This difficulty can
sometimes be avoided by equating the nearly equal eigenvalues and
computing generalized eigenvectors in the manner described earlier.

Example 1. Nearly Equal Eigenvalues. In the introduction to Section 4.4 we
described a dynamic system with nearly equal poles: (D + 1) (D + 1 + E)f = 8 with
f(0)  = ai and f’(0) = (Ye. As we found in our earlier discussion, the near equality of
the poles causes computational difficulty which we remove by equating the poles.
But equating the nearly equal poles is equivalent to replacing the nearly dependent
set of solutions {e-‘,  e --(I++1 by the easily distinguishable pair of functions
{ e - ‘, te - ’ }. Since the poles are made identical (E = 0), the state-space representation
of the system becomes i= Ax, where

A= -‘:( -: 1
(4.86)

This system matrix is not diagonalizable. The pair of vectors x1 = (1 -l)T and
x12=(+ i)’ is a two-vector chain of generalized eigenvectors of A for the single



Sec. 4.5 Applications of Generalized Eigendata 199

eigenvalue X = -1. This pair of vectors is a basis for the state space. Therefore, the
matrix

(4.87)

is a modal matrix for the system. Note that S is well conditioned. There will be no
computational difficulty in inverting S. The nondiagonal spectral matrix for the
system is

(4.88)

Example 1 demonstrates the practical value of the concepts of genera-
lized eigenvectors and Jordan form. Even though these concepts are
important, the full generality of the Jordan form is seldom, if ever, needed.
We are unlikely to encounter, in practice, a generalized eigenspace more
complex than that characterized by the single two-vector chain of genera-
lized eigenvectors of Example 1. In Example 1, the system matrix A is
nondiagonalizable only for e = 0. We focused on this nondiagonalizable
case because it characterizes the situation for small e better than does the
true barely diagonalizable case. * It seems that diagonalizability is the rule
in models which represent nature, except at the boundary between certain
regions or at the limit of certain approximations. In Example 1, diagona-
lizability broke down completely only at the boundary between the two
regions defined by E > 0 and e < 0. Yet from a practical point of view the
boundary is a fuzzy, “small E” transition region.

Pease [4.12, p. 81] presents a spectral analysis of the transmission of
electrical signals through a 2-port system. His analysis illustrates the way
that nondiagonalizability characterizes the boundary between different
regions. The 2 X2 system matrix which describes the transmission of
signals through the 2-port network is diagonalizable for all sinusoidal
signals except signals at the upper or lower cutoff frequencies. At these two
frequencies the spectral analysis breaks down because of nondiagonaliza-
bility of the matrix of 2-port parameters. However, the analysis can be
salvaged by using generalized eigenvectors. Even for frequencies near the
cutoff frequencies, the spectral analysis is aided by the use of generalized
eigenvectors because of the near nondiagonalizability of the system matrix.

* Forsythe [4.6] explores other problems in which accuracy is improved by treating near
singularity as true singularity.
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Application of Jordan Form—Feedback Control

The most common model for a linear time-invariant dynamic system is the
state equation (3.67):

k(t)=Ax(t)+Bu(t), x(0) given (4.89)

where x(r) is the state (or condition) of the system at time t, and u(t) is the
control (or input) at time t; A and B are arbitrary a n d
matrices, respectively. In (3.79) we inverted the state equation, obtaining

x(t) = eAtx(0) + ~teA(‘-g)B~(s)di
0

(4.90)

where the state transition matrix (or matrix exponential) e*’  is defined as
the sum of an infinite series of matrices (3.72).

Equations (4.89) and (4.90) are generalizations of the simple first-order
linear constant-coefficient differential equation

i(t) = af(t) + h(t), f(0) given (4.91)

which has the solution

f(t) = eutf(0)  + Jt”(‘-‘)bu(s)ds
0

Another approach to the solution of (4.91) is through frequency domain
analysis.* Taking the Laplace transform of (4.91), we obtain

SF(~) -f(O) = aF(s) + NJ(s)

w = (&)w + (&Jw (4.92)

where the symbols F and U are the Laplace transforms of f and u,
respectively. The function is known as the transfer function of the
system (4.91). The pole of the transfer function (s= a) characterizes the
time response of the system. In fact, the transfer function is the Laplace
transform of the impulse response of the system, ear.

The relationships among the variables in a linear equation can be
represented pictorially by means of a signal flow graph. A signal flow

*For an introduction to frequency domain analysis, see Appendix 2. Refer also to Schwartz
and Friedland [4.16] or DeRusso, Roy, and Close [4.3].
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graph for (4.91) is shown in Figure 4.5. The variables in the system are
associated with nodes in the graph. The arrows indicate the flow of
information (or the relationships among the variables). The encircled
symbols contained in each arrow are multipliers. Thus the variable f(t) is
multiplied by a as it flows to the node labeled i(t). The symbol 1/s
represents an integration operation on the variable f (multiplication of the
Laplace transform of f by l/s yields the Laplace transform of f). Nodes
are treated as summing points for all incoming signals. Thus the node
labeled i(t) is a graphic representation of the differential equation (4.91).
The primary information about the system, the position of the pole, is
contained in the feedback path. The signal flow graph focuses attention on
the feedback nature of the system represented by the differential equation.

We can also obtain a transformed equation and a signal flow graph
corresponding to the vector state equation (4.89). Suppose the state
variables [or elements of x(t)] are denoted by fi(t), i= 1,. . .,n. Then we
define the Laplace transform of the vector x of (4.89) by

(4.93)

Exercise 1. Show that l? (Ax)  =A c(x) for any n X n matrix A.

Using definition (4.93) and Exercise 1, we take the Laplace transform of
(4.89):

sX(s)-x(O)=AX(s)+BU(s)

Solving for X(s), we obtain the following generalization of (4.92):

X(s)=(sI-A)-‘x(O)+(sI-A)-‘BU(s) (4.94)

The matrix (sI- A)-* is called the matrix transfer function for the system
represented by (4.89). The poles of the transfer function are those values of

Figure 4.5. Signal flow graph for (4.91).
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s for which (sI-A) is singular. Therefore, the poles of the system are the
eigenvalues of the system matrix A, a fact which we discovered for a
restricted class of system matrices in (4.51). Because of the formal similar-
ity between the results for the first-order system equation and for the
n-dimensional state equation, we suspect that

(4.95)

Equation (4.95) is easily verified by comparing (4.90) and (4.94). We can
think of the state transition matrix eAt as a matrix impulse response [see
(3.77)-(3.78)]. The vector signal flow graph is formally the same as that for
the scalar equation (Figure 4.6). However, individual nodes now represent
vector variables. Again, the feedback nature of the system is emphasized
by the flow graph model. The feedback path in Figure 4.6 contains all the
information peculiar to the particular system, although the poles of the
system are stated only implicitly as the eigenvalues of A. The graph would
be more specific if we were to use a separate node for each element of each
vector variable; however, the diagram would be much more complicated.
We draw such a detailed flow graph for a special case in Figure 4.8.

Figure 4.6. Vector signal flow graph for (4.89).

In order to obtain as much insight concerning the feedback nature of the
state equation as we did for the scalar case, we change to a coordinate
system which emphasizes the poles of the system. Let x = Sz, where S is an
invertible n x n matrix. Then z(t) describes the state of the system relative
to a new set of coordinates, and (4.89) becomes

i(t)=S-‘ASz(t)+S-‘Bu(t), z(0) = S- ‘x(0) given (4.96)

We choose S so that S- ‘AS = A, the spectral matrix (or Jordan form) of A.
Thus S consists in a basis for the state space composed of generalized
eigenvectors of A as in (4.76). The new signal flow graph is Figure 4.7.

In order to see that this new signal flow graph is particularly informa-
tive, we must examine the interconnections between the individual ele-
ments of z(t). We do so for a particular example.
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Figure 4.7. Signal flow graph for (4.96).

Example 2. A Specific Feedback System. Let the system and input matrices be

It is easily verified that the Jordan form of A is

and that this nearly decoupled spectral matrix can be obtained using

s=( / 8 d) s-q-g 8 A)

There is only one element u(t) in the input vector (B is 3 X 1). Letting fi and Vi
represent the elements of x and z, respectively, the flow graph corresponding to
Figure 4.7 can be given in detail (Figure 4.8). We will refer to the new variables
Vi(t) as the canonical state variables [as contrasted with the state variables fi(t)].

Figure 4.8. A detailed signal flow graph.
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In the flow graph of Figure 4.8 the vector system is viewed as a set of nearly
uncoupled scalar systems. The poles of the system (the eigenvalues of A) appear in
the main feedback paths in the graph. The only other feedback paths are those
corresponding to the off-diagonal l’s in A. It is these off-diagonal l’s that give rise
to nonexponential terms (te2’) in the response of the system. Specifically, if the
input function u is zero,

The extra term in v1 arises because the scalar system which determines v1 is driven

by v2.

It is evident that the Jordan form of a system matrix is a convenient
catalog of the information available concerning the system. The modal
matrix S describes the interconnections between the canonical variables
and the state variables. Suppose the above system is undriven [u(t) = 0] and
the initial values of the canonical variables are v,(O) =v,(O) = 0 and ~~(0)
= 1. Then vl(t)=v2(l)=0  and v3(t)= e .2t The corresponding output vector
x(t) is

x(t)=( i!!:$)=( Ij=e2*(a)

At each instant, the output vector is proportional to the third column of S,
one of the eigenvectors of A. Under these circumstances, we say only one
“mode of response” of the system has been excited. There is one mode of
response corresponding to each canonical variable; corresponding to the
variable vi(t) is the mode where x(t) is proportional to the i  column of S.

We call the system represented by (4.89) controllable if there is some
input u(t) that will drive the system [z(t) or x(t)] from one arbitrary state to
another arbitrary state in a finite amount of time. It should be apparent
from Example 2 that in order to be able to control all the canonical state
variables in the system, the input variables must be coupled to the inputs
of each chain in the flow graph, namely, if*(t) and ir3(t) in Figure 4.8. If in
the above example B = (0 1 0)T, u(t) is not coupled to (and has no
influence on) v3( t). On the other hand, if B = (1 0 0)T, the input is coupled
to all the canonical state variables; the system appears to be controllable.
However, the variables v,(t) and v3(t) respond identically to —they are
associated with identical poles. As a result, v2(t) and vj(t)  cannot be
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controlled independently. In point of fact, we cannot consider the single
input system of Example 2 fully controllable regardless of which input
matrix B we use. A system can be fully controlled only if we can influence
identical subsystems independently. In Example 2, the use of a pair of
inputs with the input matrix

yields a controllable system.
In physical systems we may not be able to measure the state variables

directly. Perhaps we can only measure variables { gi(t)}  which are related
to the state variables by

y(t)  = Cx(t)

where y(t) = (gi(t) = . . g,(t)’  and C is p x n. The matrix C would appear in
the flow graph of Figure 4.8 as a set of connections between the state
variables {fi(t)} and the output (or measurable) variables {gi(t)}.  Clearly,
we cannot fully determine the state of the system from the measurements
unless the output variables are coupled to the output of each chain;
namely, vi(t) and v3(t). Furthermore, in this specific example, measure-
ment of a single output variable gi(t)  is not sufficient to distinguish
between the variables v2( t) and v3(f),  because their behavior is identical. In
general, we call a system observable if by observing the output y(t) of the
undriven system for a finite interval of time, we get enough information to
determine the initial state x(O). See Brown [4.2] or Zadeh and Desoer [4.20]
for convenient tests for controllability and observability.

4.6 Functions of Matrices and Linear Operators

In previous examples we have encountered several functions of square
matrices; namely, Ak, eAr, and (~1 -A)- ‘. In later sections we encounter
additional matrix functions. The actual computation of such functions of
matrices is a problem of practical importance, especially in the analysis of
dynamic systems. In this section we develop a definition for functions of
matrices which applies in essentially all situations where we might expect
such functions to be meaningful. The definition applies to diagonalizable
and nondiagonalizable matrices, and also to the linear operators that these
matrices represent. (Functions of diagonalizable linear operators on infin-
ite-dimensional spaces are considered in Section 5.5.) Much of this section
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is devoted to the development of techniques for analyzing and evaluating
functions of matrices.

Two of the matrix functions mentioned above, Ak and ($1  -A)-‘,  are
defined in terms of ordinary matrix operations-addition, scalar multipli-
cation, and inversion. The third matrix function, e**,  represents the sum of
an infinite polynomial series in A, as defined in (3.72). This latter function
suggests an approach to the definition of general functions of the square
matrix A. Polynomial functions of matrices are clearly defined; they can
be evaluated by matrix multiplications and additions. Suppose the non-
polynomial function f can be expanded in the power series*

f(A)=  5 akXk
k-0

One reasonable way to define f (A) is by using the same power series in A,

f(A) a 5 a,Ak
k=O

(4.97)

Each term of the series can be evaluated using ordinary matrix operations.
Of course, the definition (4.97) is useful only if the series converges and we
can evaluate the sum of the series. We explore the question of convergence
of (4.97) shortly. The essential properties of A are displayed in its spectral
matrix A and its modal matrix S. Substituting A= SRS-’ into (4.97) we
find

about the origin. The matrix
or Laurent series expansion

*The power series used in (4.97) is a Taylor series expansion
function could have been defined in terms of a Taylor series
about some other point in the complex plane. See Wylie [4.18] a discussion of such power
series expansions.
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(We are able to take the similarity transformation outside the infinite sum
because matrix multiplication is a continuous operator; see Section 5.4.)
Thus if f(A) as given in (4.97) is well-defined, then evaluation of f(A)
reduces to evaluation of We again apply the power series definition
to determine If A is diagonalizable, then A is diagonal, and

(4.99)

On the other hand, if A is not diagonalizable, f(A)  differs from (4.99) only
as a result of the off-diagonal l’s in A. By the same logic, we can express
f(A)  as

(4.100)

where Jj is the ith Jordan block in A. Thus calculation of reduces to
the determination of
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We explore f (Ji) by means of an example. For a 4 x 4 Jordan block we
have

Observe that in each matrix the element which appears on the j th
“superdiagonal” is (l/j!) times the jth derivative (with respect to A) of the
element on the main diagonal. Thus, continuing the example,

f(J) = c akJk
k

Relying on the term-by-term differentiability of power series (Kaplan [4.11,
p. 353]), we take all derivatives outside the summations to obtain

(4.101)
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Corresponding to each Jordan block Ji of A (with eigenvalue Xi),  f(A)
contains a block which has f (Ai) on the main diagonal. The upper elements
in the block are filled with appropriately scaled derivatives off (evaluated
at Ai). The elements on the jth super-diagonal are

1 d’f(Ai>--
j! dAj

Surprisingly, f(A)  is not in Jordan form.

Example 1. Matrix Inversion as a Matrix Function. Suppose f(A) = 1 /A. If A is
an invertible n x n matrix, we use (4.98) and (4.99) to find

A-‘=SA--‘S-1

Suppose

Then S=S-‘=I,  and

It is clear that A- ’ does not exist if zero is an eigenvalue of A. The function l/A is
not defined at A = 0, and (4.99) cannot be evaluated.

Example 2. A Function of a Nondiagonalizable Matrix. As in Example 1, if
A=SAS-l,A-l=SA-lS-l. Suppose

Letting f(X)= l/A we find that f’(A)= - l/A* and f “(h)/2!  = 1/A3.  Thus, using
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(4.101) for each Jordan block,

An Alternative Definition

Although we have used (4.97) to define f(A), we have used (4.98) and
(4.100) to perform the actual evaluation of f(A). [Note that (4.99) is a
special case of (4.100).] It can be shown that our original definition of f(A),
(4.97), converges if and only if f is analytic in a circle of the complex plane
which contains all the eigenvalues of A.*  Yet (4.98) and (4.100), which we
derived from (4.97), provide a correct evaluation of f(A) in cases which do
not satisfy this criterion. For example,

ifA=(i -i) then A-‘= d -y
( 1

The function f(A) =h - ’ is not analytic at X = 0. No circle encloses the
points 2 and -2 while excluding the point 0, yet (4.98) and (4.99) provide
the correct inverse. It is apparent that (4.98)-(4.101) provide a more general
definition of f(A) than does (4.97).

The definition (4.98)-(4.101) applies to all functions f and matrices A for
which f(Ji) can be evaluated for each Jordan block Ji. If A is diagonaliz-
able, this evaluation requires only that f be defined on the spectrum; that is,
that f be defined at all the eigenvalues of A. If A is not diagonalizable, the
evaluation of f(A) requires the existence of derivatives of at some of the
eigenvalues of A. Thus the definition of f(A) given in (4.98)-(4.101)
certainly applies to all f and A for which f is not only defined on the
spectrum of A but also analytic at those eigenvalues of A for which A is
defective (i.e., for which the corresponding Jordan blocks Ji are larger than
1 x 1). In every case where the definition (4.97) applies, the evaluation of

f(A) which results is identical to the evaluation provided by (4.98)-(4.101).
As illustrated in (4.101), the actual evaluation of f(A) leads to evaluation

of

f(hi),f’(hi),  . . .p fqi-  “@i)9 i = ” ’ * ’ ”

*Rinehart [4.14]. A function is said to be analytic at h, if it is differentiable
of a complex variable h) in a neighborhood of h, (see Wylie [4.18]).

(as a

(4.102)

function
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We refer to this set of evaluations as evaluation on the spectrum of A. It is
apparent that any two functions that have the same evaluation on the
spectrum lead to the same function of A.

Exercise 1. Compare f(A)  and g(A) for f(A)  4 4A- 8, g(X)  i A2 -4, and

Equations (4.98)-(4.101) provide a suitable definition of f(A) for most
choices of f and A. Rinehart [4.14] shows that with this definition of f(A)
and with single-valued functions g and h for which g(A) and h(A) exist,

If g or h is not single valued, then the matrix f(A) depends upon which
branches of g and h are used in the evaluation on the spectrum of A. From
these properties it follows that scalar functional identities extend to
matrices. For example, sin2(A) + cos’(A)  = I and elnA = A.

The Fundamental Formula for Matrices

Let A be a 3 X 3 diagonalizable matrix with only two distinct eigenvalues;
that is, c(A)  = (X - h1)2(h - XJ, and the eigenspace for X, is two-dimensional.
Suppose also that the function f is defined at h, and h,. Then we can
express f(A)  in the manner of Example 1:

(

f(x,)  O O

f(A)=  O f(h) O
0 0 f (x2) )

In order to express f(A)  in a manner that clearly separates the essential
properties of A from those off, we introduce the following notation. Let
Ei be a matrix which has a one wherever f(A)  has f (Ai), and zeros
elsewhere. (The second subscript, “0,” is used only to provide consistency
with the nondiagonalizable case introduced later.) Specifically,
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Then we can express by

f (n> =f &)Gl +f (A,)eo

S i n c e  f(A)=  S S-1 to obtain f(A) we simply perform the similarity
transformations EF, = SE$,S-  ’ to obtain

f(A) =f (w%+f (~,)%I

It is evident that we can express any well-defined function of the specific
matrix A  by means of this formula. Once we have the matrices E$,,
evaluation of requires only evaluation off on the spectrum of A. By a
derivation similar to that above, we can show that for any n x n diagonaliz-
able matrix A and any f defined on the spectrum of A, f(A) can be
expressed as

f(A>= 5 f(Ai)Ei (4.103)
i=l

where p is the number of distinct eigenvalues of A. We call (4.103) the
fundamental formula for f(A). The matrices E$ are called the constituent
matrices (or components) of A. (We drop the superscript A when confusion
seems unlikely.) Notice that (4.103) separates the contributions of and A.
In fact, (4.103) is a satisfactory definition of f(A), equivalent to (4.98-
(4.99).

The definition of the fundamental formula (4.103) can be extended to
nondiagonalizable matrices as well. Suppose f is analytic at hi and defined
at X2.  Then we can write for the matrix A of Example 2 as

In order to separate the essential properties of A from those off, we define
Eh, to be a matrix which has a one wherever has (1 /k!) f ‘k’(hi), k = 0,
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1, and 2, and zeros elsewhere. Thus
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Then we can express f(A)  by

f “(4)
f(A) =f (QEk +f’(h)E:: + 7% +f (~2%.

As in the diagonalizable case, we perform the similarity transformations
EC = SE$- ’ to obtain

f”(h)
f(A)  =f (w;o +f’(h)E;,  + TE;, +f @2Eo.

We can compute any well-defined function of the matrix A of Example 2
by means of this formula. By a derivation similar to that above, we can
show that for any n x n matrix A and any f which is defined on the
spectrum of A and analytic at eigenvalues where A is defective, f (A) can be
expressed as

(4.104)

where p is the number of distinct eigenvalues of A, and qi is the index of
annihilation for Xi [see (4.66) and (4.67)]. Equation (4.104) is the general
form of the fundamental formula for f (A). Again, we refer to the matrices
Ei as constituent matrices (or components) of A .*

*The constituent matrices are sometimes defined as Ei/j!.
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The fundamental formula can be used to generate a spectral decomposi-
tion of A. If we let f(x) = X in (4.104), we obtain

A= 5 (h,E;o+E;J (4.105)
i = 1

If A is diagonalizable, qi = 1 for each i, and (4.105) becomes

A = i Y&Et0
i = 1

It is apparent that in the diagonalizable case E$, describes the projection
onto the eigenspace associated with Ai. That is, if x = xi + . . . + xp, where xi
is the component of x in the eigenspace for Xi, then Xi =E$K and A acts
like Xi on xi. In the nondiagonalizable case, EFo  describes the projection
onto the generahzed eigenspace for hi. Furthermore, Ek acts like the
nilpotent operator (A-X,Qk  on the generalized eigenspace for Ai;  that is,
EA, = (A - h,IjkE;.

Exercise 2. Verify that the matrices Efo and EC0 of Example 2 satisfy the
properties (4.3) for projectors. Show also that EA, = (A - h,I)kE~o.

Functions of Linear Operators

The fundamental formula also serves to define functions of the underlying
operator represented by A. If T operates on an n-dimensional vector space
Ir, if Pi0 is the operator which projects onto (?gi (the generalized eigen-

space for &) along Zjzi Wj, and if Pik b (T - ~J.I)~P,,  then the fundamental
formula for f (T) is

(4.106)

If ‘% is a basis for ‘Ir and we define A k [T],,, then E$=[P,],,.  As a
result, (4.104) and (4.106) require that [f(T)],,  = f ([T],,). For diagona-
lizable T (T for which there exists a basis for Ir composed of eigenvectors
for T), (4.106) simplifies to f (“I’)  = XTp  if (Ai)Pio.  This simple result is
extended to certain infinite-dimensional operators in (5.90).
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Example 3. A Function of a Linear Operator. Consider D: T3-+93. We first find

the eigendata for D (as an operator on (Y3). The set 6% A {f,.(t)=  timl, i= 1, 2, 3) is
a basis for 9’. In Example 2 of Section 2.5 we found that

This matrix has only one eigenvalue, A, = 0; a basis of generalized eigenvectors for

PI,, is

xl=( it), x12=(  iJ x13=(  9

Thus

The generalized eigenfunctions of D corresponding to x1, x12, and xl3 are

l&(t) = 1, l!32(0 = t,
t2

g,&) = 2

Because the chain of generalized eigenvectors is of length 3, q1 = 3. Therefore, in
order to evaluate f(D), we must determine three operators: P,,, PI1, and Pi,. Since
the generalized eigenspace of D for Ai = 0 is the whole space 9’, the projector P,,
onto the generalized eigenspace for A, is P,,= I. We find the other two operators by

P,,=(D-A,I)P,,=DI=D

By (4.106), if f is analytic at A = 0,

f(D)=f(o)I+f’@)D+  2
f “60 DZ

Let f(A) = A. Then f(D) reduces to

D=(0)I+(l)D+(O)D2

which verifies the formula for f(D). Let f (A) = e’. Then

eD = eq + e% + le”D22

=I+D+  $D”
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Returning to A = [D],,  , we generate those functions of A which correspond to the
functions  D, and eD above. By inspection of A we find that

Using the similarity transformation Et = SE$-  r, we obtain

These constituents of A are [P,,],,, [PI ,Jss, and [P,&,,  respectively.  By

(4.104),

f(A)=f(O)I+f’(O)A+  PA2

If f(A) = A, we find

A=(0)I+(1)A+(O)A2

Let f @I = e’. Then

We easily verify that e* = [e*]%%  . These results are consistent with the definition
(3.72) of e**, because Ak=8 for k>2.

Computation of Functions of Matrices

We have already derived a method for computing f(A) which relies on a
complete eigenvalue analysis of A. We summarize the method.

Computation of f (A) by eigenvalue analysis of A (4.107)
1. Determine the Jordan form A, the modal matrix S, and S-’ such that

A=SAS-?
2. Determine Et by inspection of A.
3. Determine EC by the similarity transformation E$ = SE$-  ‘.
4. Evaluate f on the spectrum of A;
5. Determine f (A) from the fundamental formula, (4.103) or (4.104).
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Example 4. Computing eAr Using Complete Eigenvalue Analysis Let f(X) = eA*.
Let A be the matrix of Example 2, Section 4.5:

A =

Then f(A) = e** is the state transition matrix for that example. We found in that
example that

(1) A=(;...;.;.!), s=( / 8 I$ s-1=( -y 8 j)

Following the other steps outlined above,

(2) E%=($;;)7  Eh=(.~...$.~.)

(4) f (2) = e2?, f’(2) = te2’

(5) e*’ = e2’Eto  + te2’ E*1 1

(

e2r - te2’ te2’ 0
= - te2’ e2’ + te2’ 0

- te” te2’ e21 )

Determination of f (A) using complete eigenvalue analysis is lengthy and
computationally expensive. The eigenvalue analysis serves only to deter-
mine constituents of A. [Of course, it provides considerable insight into the
structure of the matrix A in addition to producing f (A)].  We can eliminate
most of this computation by employing the fundamental formula in
evaluating the constituents. If we substitute several different functions into
(4.103)-(4.104), we obtain several equations involving the constituents as
unknowns. By a judicious choice of functions, we can obtain equations
that allow us to determine each constituent independently. If the minimal
polynomial m(A) is evaluated on the spectrum, the evaluations are all zero.
If one factor is cancelled from m(A) and the resulting polynomial evaluated
on the spectrum, precisely one evaluation is nonzero; if we evaluate this
same polynomial in A, precisely one constituent will remain in the funda-
mental formula. By successively cancelling factors from m(A),  and evaluat-
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ing the resulting polynomials in A, we obtain the constituents in an
efficient manner.*

Computation of f (A) by evaluating factors of m(A) (4.108)
1. Find and factor m(X),  the minimal polynomial for A.
2. Cancel one factor from m(X).  Denote the resulting polynomial g,(X).

Evaluating g,(A)  will determine precisely one constituent matrix.
3.  Cancel an additional factor from m(X).  Let g,.(A) denote the

polynomial which results from cancelling i factors from m(X).  Evaluation
of gi(A) determines precisely one constituent matrix in terms of previously
determined constituents. This step is repeated until all the constituents I?;
are known.

4. Evaluate f on the spectrum of A.
5. Compute f (A) from the fundamental formula, (4.103) or (4.104).

Example 5. Computing eAt by Evaluating Factors of the Minimal Polynomial. Let
f @I= eh. Assume A is the matrix given in Example 4. We compute the state
transition matrix e** by the steps outlined above:

1. The characteristic polynomial for A is c(A) = det(XI-  A) = (h - 2)3.  The only
eigenvalue is X, = 2. By investigating the nullities of (A-2I) and (A -21)2, we find
that 4, = 2 and m(h) = (A - 2)2.  Thus

f(A) =f (2% +f’@)%

2. g,(X)  = (X - 2) and g;(A) = 1. Therefore,

g&A) h (A-21) = g1(2)%,  + g; (2)Ef,

= (O)J%+  Cl)%,

and ET, =A-21.
3. g2(h)  = 1 and g;(h) = 0. Then,

e(A) A I= g2(2)% + g;(2)%,

= (1% + (O)E?,

and Et,-, = I.
4. f (2) = e2’, and f’(2)  = te2’.

5. eAr = e2’I  + te2r (A - 21)

e2t- te2’ te2’

(

0
= - te2’ e2t+ te2’ 0

- te” te2’ 1e2’

*From Zadeh and Desoer [4.20].
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Evaluating factors of m(h) is probably the most efficient known method
for computing A suitable sequence of functions can also be obtained
by successively cancelling factors from the characteristic polynomial c(A),
thereby avoiding determination of the nullities of powers of (A- A,I). If
c(h) had been used in Example 5, we would have found that E& =8.

From our computation of f(A) by evaluating factors of the minimal
polynomial, we recognize that each of the constituents EC equals a
polynomial in A; the order of the polynomial is, in each case, less than that
of the minimal polynomial. Therefore, by the fundamental formula, f(A) is
also equal to a polynomial in A. Since powers of A, and thus polynomials
in A, commute with each other, functions of A commute with each other
also. See P&C 4.29 for properties of commuting matrices. Additional
techniques for computing f(A)  are given in P&C 4.25-4.27.

Application of Functions of Matrices—Modes of Oscillation

Figure 4.9 is an idealized one-dimensional representation of a piece of
spring-mounted equipment. The variables vr, v2, and u represent the
positions, relative to their respective references, of the two identical masses
(labeled m) and the frame which holds the equipment. The three springs
have identical spring constants k. We treat the position (or vibration) of
the frame as an independent variable; we seek the motions, v&t) and v2( t),
of the spring-mounted objects. The dynamic equations which describe
these motions are

m+,(t)  = -2kv,(t)+ kv,(t)+  ku(t)
(4.109)

mV,( t) = kv,( t) - 2kv2( t) + ku( t)

We could convert (4.109) to a four-dimensional first-order state equa-
tion. However, emboldened by the formal analogy which we found be-
tween the solution to the state equation and its scalar counterpart, we
develop a second-order vector equation which is equivalent to (4.109) and
which keeps explicit the second-order nature of the individual equations.

Figure 4.9. A model for spring-mounted equipment.
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Let x = (v, vJT. Then (4.109) becomes

Spectral Analysis of Linear Systems

5(t) +
2k/m +yx(t)=(  y)“(t)  (4.110)
-k/m 2k/m

The 2 X 2 matrix in (4.110) is known as the stiffness matrix for the system.
Equation (4.110) is a special case of the general vector equation

ji(t)+Ax(t)=Bu(t) (4.111)

where x(t) is n X 1, u(t) is m X 1, B is n X m, and A is an n X n diagonaliz-
able matrix with positive eigenvalues.* Equation (4.111) is a convenient
way to express many conservative systems; for example, a frictionless
mechanical system which contains n masses coupled by springs; or a
lossless electrical network containing interconnected inductors and ca-
pacitors. We solve (4.110) and (4.111) by analogy with the scalar case.

The scalar counterpart of (4.111) is

i(t)+df(t)=u(t) (4.112)

We found in P&C 3.6 that the inverse of (4.112), in terms of the initial
conditions f(0) and i(O),  is

m
f(t) = f(0) cos ot + - sin ot + I

f sino(t--s)

0 0
u(s)ds ( 4 . 1 1 3 )

0

The solution consists in an undamped oscillation of frequency o plus a
term affected by the input vibration u.

Comparing (4.111) and (4.112), we recognize that x is the vector analog
of f, and A plays the same role as o2. Therefore, we expect the solution to
(4.111) to be

x(t) = cos( CT t)x(O) + (VX )- ’ sin( VA t)*(O)

+
I0

I(m)-‘sin[  a (t-s)]Bu(s)ds (4.114)

By a we mean any matrix whose square equals A. As with the scalar

square root, a is not unique. The fundamental formula (4.103) indicates

that fi depends on the square roots of the eigenvalues of A. We use in

*The matrix A is symmetric and positive definite. Such a matrix necessarily has positive real
eigenvalues. See P&C 5.9 and 5.28.
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(4.114) the principal square root of A—the one involving positive square
roots of the eigenvalues (P&C 4.28). Recall from the discussion following
Example 5 that functions of A commute with each other; the order of

multiplication of (a )- ’ and sin(fi t) is arbitrary.
Equation (4.114) can be derived by finding a matrix Green’s function

and matrix boundary kernel for (4.111) (P&C 4.32). Or it can be verified
by showing that it is a solution to the differential equation (4.111).

Exercise 3. Verify (4.114) by substituting x(t)  into (4.111). Hint:

5 f (At) =Af(At) (P&C 4.30)

d r
dtas g(t,s)dr=

s
‘a g(t,s)ds+g(t,t)

a at

We now evaluate the solution (4.114) for the specific case (4.110) using
the techniques derived for determining functions of matrices.

Exercise 4. Show that the eigendata for the 2 X2 stiffness matrix A of
(4.110) are

Al=;, h2=3 x1=($ x2=( 3

Exercise 5. Show that for A of (4.110),

fw=f(x,(:  [)+f(E)( -; -I)

It follows from Exercise 5 that

i

COSdiqYl  t + cost t cost t -cost t

cosvx t =
2 2

cost t-cod%pY t cosvzpi t +cos~ mt
2 2

1

sindklm  t + sind3k/m  t sinvk/m  t sin- t

(VT)-lsinVK  t=
2Vz7G 2lhz7G 2lh7G - 2vTi7G

sinvk/m t sinVm t- sinV* t + sin- t

2Vi7.G 2v%7% 2V7+ 2vG77l

(a)-‘sin[fi  (t-s)]B= w sinl/w (t-s)( :)
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These three matrices can be substituted into (4.114) to obtain x(t)  explicitly
as a complicated function of the input data u(t),  x(O),  and x(0).

Even though the general form of x(t) is complicated, we can provide a
simple physical interpretation of the eigendata of the stiffness matrix of
(4.110). Let x(0) =x1,  k(O)  = 8, and u(t)  =O. Then recalling that A and
have the same eigenvectors,

x(t) A ( ~~~;;)=cosvx  t( ~)=cos~ t( ;)

The first eigenvector initial condition excites a sinusoidal oscillation of

frequency vw = 6 . In this first mode of oscillation, both masses
move together-the center spring is not stressed. The system acts like a
single mass with a spring-mass ratio of 2k/2m = k/m=h,.  A second
mode of oscillation can be excited by the conditions x(0)=x2,  i(0) = 8,
u(t)=O;

x(t) A ( ;~~~;)=cosm(  ~~)=cos~t(  -;)

The second eigenvector initial condition excites a sinusoidal oscillation of

frequency d- = 6 . In this mode of oscillation, the masses move
in opposite directions-the midpoint of the center spring does not move.
The system acts like a pair of mirror images, each with a spring-mass ratio
of (k + 2k)m = 3 k/m =X2.  Thus the eigenvectors and eigenvalues of A are
natural modes of oscillation and squares of natural frequencies of oscilla-
tion, respectively.

The initial conditions f(0)  =x1 or k(O)  =x2 also excite the above two
natural modes of oscillation. We note that for this particular example Bu(t)
is of the form of x1. The motion excited by the input vibration u(t) can
only be proportional to x1. Whether or not the motion is a sinusoidal
oscillation is determined by the form of u(t).

4.7 Problems and Comments

4.1 Let %,=span{(l,O,  1)) and %2=span{(l,0,0),  (O,l,O)}  in a3.
(a) Show that an arbitrary vector x in C&3 can be decomposed

into a unique pair of components xi and x2 from 62$,  and ‘?ll‘,,
respectively.

(b) Let P, be the projector onto %i along qK,, and P, the
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projector onto O2Ip, along qti,. Let & be the standard basis for
S3. Find [P,],, and [ P21xX.

4.2 Let the linear operator T defined by TX A Ax operate on the space
9lLnx ‘. Let the subspaces ‘?$, and G2ui,  of 9Kn x ’ be composed of
vectors of the form

and

respectively. Determine the form of A if
(a) zl(i, is invariant under T.
(b) w2 is invariant under T.
(c) Both %, and G’Iui, are invariant under T.
Hint: investigate an example where m = 1, n = 3.

4.3 The Cartesian product is useful for building up complicated vector
spaces from simple ones. The direct sum, on the other hand, is
useful for subdividing complicated vector spaces into smaller sub-
spaces.

*(a) Define Ta . s2-+ tit2 by T, (51, t-2) 4 (51-  5&.
Let %, = {(1,0), (0,l)}. Find [T,]%  K .

Define T,: %‘-+C%’  by T,(t3)  g (p,J,
Let %, = ((1)).  Find [TblXbXb.

(b) If we do not distinguish between (([t,t2), (t3)) and (c1,t2,t3),
t h e n  $k3= $h2X  3’. D e f i n e  T: cR3+ a3 by T((t,,&),

(t3)) ’ (Ta (513  t2;>,  Tb (53)).  Let 9C = { CC1  7 O)9 Co>)9  (Co9 I), (O)),
((QO), (1))). F ind  [Lax. What is the relationship between

[T15X5X~  [Tal%a 5X0 [TblX, fXb?
(c) Let %, = S2 x {(0)} and “w; = {(0,0)} x 3’. Then Ck3 = ‘?6, CI3

%,. Appropriate bases for %‘,  and q$, are %, = {((1,0), (0)),
((0,1), (0))) and X2= {((0,0), (1))). Define T,: qti,-+%!K,  by

T1(51,52,0)  A (51-5‘2,t1,0). Define T2: qg2+qK2  by T2NJ,&)

A (0,0, -&).  Find [T,],,  XxI  and [T2]% %. What is the re-
lationship between [T],,,  [T,],,  %,, and [T2]% a?
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(d) In general, if V = %, @. . . G3 ?l$, with each subspace ‘?tii
invariant under T, then { qtii } decomposes T into {Ti: G2uii
+zir;.}. Let Xi be a basis for Wi. Then % ={ Xi,..., ‘?$.,}  is
a basis for Ir. If Ir is finite-dimensional, then

with zeros everywhere except in the blocks on the diagonal.
Show that the transformation T: Gjt3--+  s3 defined by

T(t,, 52, ‘t3)  ’ (& + t2, 25, + t2 - t3,t1 + t3) is decomposed by 96,
and “w;, where ‘?Ki consists in vectors of the form ([,,t2,  ti +
t2) and %, consists in vectors of the form (,$i,ti,<i).  Note that
there is no Cartesian product which corresponds to this in-
variant direct-sum decomposition in the same manner as (b)
corresponds to (c).

4.4 Find the eigenvalues and eigenvectors of the following matrices:

4.5 Let A be an n X n matrix. Denote the characteristic polynomial for
A by c(A)=X”+b,h”-l+~~~ + b,. The trace of a matrix is defined
as the sum of its diagonal elements, an easily computed quantity.
An iterative method based on the trace function has been proposed
for computing the coefficients { bi} in the characteristic polynomial
[4.3, p. 296]. The iteration is:

b,= - Trace(A)

b,= - i [ b, Trace(A)  + Trace(

b3=-f [ b, Trace(A)  + b, Trace(A2) + Trace(A3)]

bn+ [b,,-  1 Trace(A)  + - - . + b i Trace(A”  - ‘) + Trace(  A”) ]

(a) How many multiplications are required to compute the
characteristic polynomial by means of this trace iteration?
Compare the iteration with Krylov’s method.
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(b) Compute the characteristic polynomial by Krylov’s method
and by the trace iteration for the matrix

A=

*4.6 Let A be an n X n matrix with eigenvalues X,, . . . ,Xn. Then
(a) Det(A)=A,.h,.  . . . $,

(b) Trace(A) A alI +a,,+ + * * + %l =A, +A,+ * * * +A,
(c) If A is triangular (i.e, if all elements to one side of the main

diagonal are zero), then the diagonal elements of A are
A, = hi.

4.7 Three men are playing ball. Every two seconds the one who has the
ball tosses it to one of the others, with the probabilities shown in the
diagram. Let p,(i) be the probability that the ball is held by the i th
player (or is in the ith state) after the nth toss. Let pii be the
probability with which player j throws the ball to player i. The
theory of conditional probability requires that

pJi)=  5 pgpn-,(j) f o r  i=1,2,3
j=l

Let x, i (p,(l) p,(2) p,(3))=.  We call x, a state probability vector.
Let Q denote the set of all possible 3 x 1 state probability vectors.
The elements of each vector in Q are non-negative and sum to one.
Note that Q is a subset of wx i, rather than a subspace. The game
is an example of a Markov process. The future state probability
vectors depend only on the present state, and not on the past
history.
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(a) A matrix whose columns are members of Q is called a transition
probability matrix. Find the transition probability matrix A
such that x, = Ax,- i. Note that x, = A’$,; we refer to A” as the
n -step transition probability matrix.

(b) Determine the eigenvalues and eigenvectors of A. What do
they tell us about the game? (Hint: X = 1 is an eigenvalue.)

(c) Find the spectral matrix A and the modal matrix S such that
A = SAS-  ‘. Show that every transition probability matrix has
A = 1 as an eigenvalue.

(d) In the game described previously, the state probability vector
x, becomes independent of the initial state as n becomes large.
Find the form of the limiting state probability vector. (Hint:
find limn+mA” using the substitution A=SAS-I.)  We note that
the eigenvalues of every transition probability matrix satisfy
A, < 1 [4.4, p. 4291.

(e) A transition probability matrix wherein the elements of each
row also sum to one is called a stochastic matrix. What is the
limiting state probability vector, limn+a,~,,  if the transition
probabilities in the above game are modified to yield a
stochastic matrix?

4.8 Let

Find a matrix S for which S- ‘AS is a diagonal matrix.

4.9 Find a nondiagonal matrix A which has as its diagonal form the
matrix

What are eigenvectors of A?

4.10 We wish to compute the eigendata of the matrix

Assume that numerical computations have produced the following
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approximations to the eigenvalues: X,%0.99 and h2x - 1.01. Use
the inverse iteration method to compute more accurate eigenvalues
and corresponding eigenvectors. Start the iterations with the initial
vector z. =(I - 1)‘.

4.11 The Jacobi method for determining the eigenvalues and eigenvec-
tors of a symmetric matrix A consists in performing a sequence of
similarity transformations which reduce the off-diagonal elements
of A to zero. In order to avoid a sequence of matrix inversions, we
perform the similarity transformations with orthogonal matrices
(matrices for which S-’ = ST). Thus we let A, = STAS,  and A,
=SLA,-,S,  for k=2, 3 ,.... The eigenvalues of a matrix are not
changed by similarity transformations. Consequently, the resulting
diagonal matrix must be the spectral matrix (with the eigenvalues
of A on its diagonal); that is,

lim A,=
k+ca

k”“, (S,S,- - - S,)=A(S,S2-  . - Sk)  =A
+

Furthermore, the matrix S = lim,,,(S,S,. . . Sk) must be a modal
matrix for A (with the eigenvectors of A as its columns). Let
au = (Ak- l)q. It is shown in [4.13] that ati and aji can be driven to
zero simultaneously by a similarity transformation which uses the
orthogonal matrix Sk which differs from the identity matrix only in
the following elements:

where a!= -au,  /3=(aij-aji)/2,  and y=(a2+/3 )2 ‘i2.  (Multiplica-
tion by the matrix Sk can be interpreted as a rotation of the axes
of the i and j coordinates through an angle +.) In the Jacobi
method we pick an Sk of the above form which drives the largest
pair of off-diagonal elements of A,- i to zero. Although later
transformations will usually make these elements nonzero again,
the sum of the squares of the off-diagonal elements is reduced at
each iteration.
(a) Use the Jacobi method to compute (to slide rule accuracy) the

eigenvalues and eigenvectors of the matrix
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(b) Calculate the eigenvalues of A by solving the characteristic
polynomial. Determine the corresponding eigenvectors. Com-
pare the results with (a).

4.12 Let L be the differential operator defined by Lf 4 f”. Assume L
acts on the subspace of functions in e2(0,~)  which satisfy the
boundary conditions PI(f) = p2(f) = 0. Find all the eigenvalues and
corresponding eigenfunctions of L for each of the following defini-
tions of the boundary conditions:

(4 P,(f)  = f(O), Pz(f) = fbTT)
(b) Pltf)=fto)+ft~), P2(f) = r(0) - fy 72)
w Pl(f> = f(O)  + w>7 P2(f)  = f’(0)  - 2f’(  77)
(4 P’(f)  = f(O) - W? P2(f)  = f’(O)  - fw

4.13 Find the eigenvalues and eigenfunctions associated with the
differential system f” - cf=u, f(O)=f’(l)=O.  Hint: ln(- l)=i(~+
2kr), k=O, t 1, +2 ,.... For what values of the constant c is the
system invertible?

4.14 Let V be a space of functions f whose values f(n)  are defined only
for integer values of n. Define the forward difference operator A on

?f by

(Af)(n) 4 f(n+ 1)-f(n)

(This operator can be used to approximate the differential operator
D.) Find the eigenvalues and eigenfunctions of A.

4.15 Define V2f(s,  t) A (a ‘f/ 3s’) + (a ‘f/ at2) in the rectangular region
0 < s < a and 0 Q t < b. Let f satisfy the boundary conditions

$(O,t)=  $(a,t)=  $(s,O)=  z(s,b)=O

Show that the partial differential operator V2 and the given
boundary conditions have the eigendata

for k,m=0,1,2  ,....
* 4   Let A be the companion matrix for an n th order constant-..16

coefficient differential operator. Denote the eigenvalues of A by
x h1,“” n’
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(a) Show that the vector Zi =( 1 hi A,! l l * Ain  - l)T is an eigen-
vector of A for the eigenvalue 4. Show further that there is
only one independent eigenvector for each distinct eigenvalue.

@I Show that the Vandermond matrix

is a modal matrix for A if and only if the eigenvalues of A are
all distinct.

*4.17 The power method: the inverse of the differential operator L= D2
with the boundary conditions f(0) =f(l)=O  is the integral operator
T defined by

(Tu)(t)= l’(t- l)su(s)ds+ ft(s- l)u(s)ds
0 t

The functions f,(t) = sinnrt,  n = 1,2,. . . , are eigenfunctions for both
the differential and integral operators. We can find the dominant
eigenvalue and the corresponding eigenfunction of T by the power
method. We just compute the sequence of functions uk = T’u,,, for
some initial function ue, until uk is a sufficiently good approxima-
tion to the dominant eigenfunction.
(a) Let u,,(t) = 1, and compute ui and u2.
(b) Compare ut and u2 with the true dominant eigenfunction. Use

the iterates {II,}  to determine an approximation to the
dominant eigenvalue.

4.18 (a) Determine an ordered basis of generalized eigenvectors for
the matrix

Hint: det(A - h1) = (4 -x>5 (2 -A).
(b) Determine the Jordan canonical form of A [relative to the

basis found in (a)].
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(c) Determine the “change of coordinates” matrix S which would
be used in a similarity transformation on A in order to obtain
the Jordan form found in (b). (Obtain only the obvious
matrix, not its inverse.)

4.19 Find a matrix S such that S- ‘BS is in Jordan form, for

Hint: c(h) = (2 - h)3(3 - h).
4.20 The minimal polynomial m(X)  and the characteristic polynomial

c(h) are useful for reducing effort in matrix computations. Assume
f(A) is a polynomial in the n x n matrix A, and f(A) includes
powers of A higher than n. We divide f(X) by m(X) to determine a
quotient g(A)  and a remainder r(h); that is, f(A)=g(A)  m(A)+  r(A).
If we replace h by A, and use the fact that m(A) = 8, we observe
that f(A) = r(A). The remainder r(A)  is of lower degree (in A) than
m(A), regardless of the degree of f(A). Consequently, r(A) is easier
to compute than is f(A). The same procedure can be carried out
using the more easily determined characteristic polynomial rather
than the minimal polynomial. Use this “remainder” method to
compute the matrix A5 for

4.21 Assume f is analytic at the eigenvalues of the matrix A. Find the
component matrices of A and express f(A) as a linear combination
of these components for:

(a) A=(: a i) (b) A=(: b 9)
4.22 The gamma function IQ) is defined for all positive values of the

scalar p. If p is a positive integer, r(p)  = (p - l)! Find r(A), where
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4.23 Let

A (A - c)2, X>C

and

(a) Find f (A).
(b) Consider various values of c. Is the resulting matrix what you

would expect?

4.24 If A is invertible, the inverse can be computed by evaluating f(A)

for!(A) A l/X. By modifying f, we can compute a “pseudoinverse”
for a matrix which has zero eigenvalues. We merely change the
definition of f to

=* 0, A=0

(See P&C 6.22 for an interpretation of this “pseudoinverse.“)
(a) Find the inverse of the matrix A of P&C 4.21 a by evaluating

f(A)*
(b) Find the “pseudoinverse” of the following matrix by evaluat-

ing t(B):

4.25 The constituent matrices of a square matrix A can be determined
by partial fraction expansion of the resolvant matrix, (sI- A)- ’ (the
resolvant matrix is the Laplace transform of eAt).  Let
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(a) Determine the resolvant matrix (s1 -A)-’  by inverting (sI-
4

(b) Perform a partial fraction expansion of (sI- A)-‘;  that is,
perform a partial fraction expansion of each term of (sI-
A)-‘,  and arrange the expansion into a sum of terms with
multipliers which are constant 3 x 3 matrices.

(c) Let f(A) 4 l/(s -X); then f(A) = (sI- A).- ’ Express the
fundamental formula for f(A) in terms of {E$}, the con-
stituent matrices for A. (The form of the fundamental formula
is determined by the minimal polynomial for A.) Determine
the constituent matrices by comparing the fundamental for-
mula for f(A) with the partial fraction expansion obtained in
uo-

(d) Use the fundamental formula and the constituent matrices to
evaluate A5.

4.26 Let f be a scalar-valued function of a scalar variable. Assume f is
defined on the spectrum of the n X n matrix A. Then f(A) can be
expressed as a polynomial in A of lower degree than the minimal
polynomial for A. That is, if r is the degree of the minimal
polynomial, then f(A) = a,$+ a,A + - - - + a,- ,A’- ‘. The
coefficients {ai} can be determined by evaluating the correspond-
ing scalar equation, f(A)= a,+ a,A+  0 - - + a,- ,h’- ‘, on the
spectrum of A; the resulting equations are always solvable.
(a) Find the minimal polynomial for the matrix

(b) For the matrix A introduced in (a), evaluate the matrix

function f(A) A A5 by the technique described above.

4.27 Let the n x n matrix A be diagonalizable. Then, the fundamental
formula is f(A) = IX:= ,f(A,)E&  where p is the number of distinct
eigenvalues. The constituent matrix E$ is the projector on the
eigenspace for & along the sum of the other eigenspaces. It can be
expressed as

%=II(qj#i
(Ei^,  acts like I on the eigenspace for 4 and like 9 on the eigenspace
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for Xj.) The scalar equivalent of the fundamental formula,

f@)=  f: f@ilII( 2)
l=l j#j

is known as the Lagrange interpolation formula for the data points

x a-l”‘?
(a) Let

Find the constituent matrices E$ by evaluating the poly-
nomial expressions given above.

(b) Use the fundamental formula to evaluate the matrix exponen-
tial, e**,  for the matrix A given in (a).

4.28 Use the fundamental formula to find four square roots of the
matrix

*4.29 (a) Commuting matrices: if A and B commute (i.e., AB = BA), then

(A+B)“= 2 ( :)A.-,,~, n=0,1,2  ,...
k=()

where

That is, the binomial theorem is satisfied.
(b) The algebra of matrices is essentially the same as the algebra

of scalars if the matrices commute with each other. Therefore,
a functional relation which holds for scalars also holds for
commuting matrices if the required matrix functions are de-
fined. For example, eA+B  = eAeB, cos(A + B) = cos A cos B -

the binominal theorem is satisfied; etc.
(c) If A and B are diagonalizable, then they are commutable if

and only if they are diagonalizable by the same similarity
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transformation (i.e., if and only if they have the same eigen-
vectors).

4.30 Use the fundamental formula to show that (d/dt)f(At)=  Af(At)
for any square matrix A and any function f which is analytic on the
spectrum of A.

4.31 Let f”+W+5f=u, f(O)=f’(O)=O.
(a) Express the differential system in state-space form.
(b) Diagonalize the state equation found in (a).
(c) Draw a signal flow diagram which relates the original state

variables, the canonical state variables, and the input.
(d) Find the state transition matrix and invert the state equation.

4.32 Let x + Ax = Bu, where x(t) is n X 1, u(t) is m X 1, B is n X m, and A is
n x n with positive eigenvalues. Assume x(0)  and x(0)  are known.
(a) Use the power series method of Frobenius to show that the

complementary function for this vector differential equation is

F,(t)=cos(fi  t)C,+(fi)-‘sin(fi t)c,

where Co and C, are arbitrary n X n matrices.
(b) The inverse of the differential equation is of the form

x(t)= l”K(t,s)Bu(s)&+R,(t)x(O)+R,(t)%(O)

Show that the Green’s function K(t,s) and boundary kernel
Rj( t) satisfy:

d2>K(t,s)+AK(t,s)=S(t-s)I

K(Q) = -$K(O,s)=e

$R,(t)+AR,(r)=e, j= 1,2

R,(O) = I, k,(O)  = 8

R2(0) = 8, k,(O) = I
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(c) Show that

235

K(u) =e, t<s

=(a)-‘sin(CG  (t-s)), t>s

R,(t)=cosfi  t

R2(t)=(a)-‘sin(fi  t)

4.33 In optimal control problems we often need to solve a pair of
simultaneous state equations. Suppose the equations are i= Ax-
BB’X and A = - ATX,  where

A=(: -:) a n d B=(y)

(a) Write the pair of equations as a single state equation y = Qy,

where y g
( )5t.

(b) Find the eigenvalues and-constituent matrices of Q.
(c) Find the solution y to the state equation as a function of y(0).
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