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Hilbert Spaces

Our previous discussions have been concerned with algebra. The represen-
tation of systems (quantities and their interrelations) by abstract symbols
has forced us to distill out the most significant and fundamental properties
of these systems. We have been able to carry our exploration much deeper
for linear systems, in most cases decomposing the system models into sets
of uncoupled scalar equations.

Our attention now turns to the geometric notions of length and angle.
These concepts, which are fundamental to measurement and comparison
of vectors, complete the analogy between general vector spaces and the
physical three-dimensional space with which we are familiar. Then our
intuition concerning the size and shape of objects provides us with valu-
able insight. The definition of length gives rigorous meaning to our
previous heuristic discussions of an infinite sequence of vectors as a basis
for an infinite-dimensional space. Length is also one of the most widely
used optimization criteria. We explore this application of the concept of
length in Chapter 6. The definition of orthogonality (or angle) allows us to
carry even further our discussion of system decomposition. To this point,
determination of the coordinates of a vector relative to a particular basis
has required solution of a set of simultaneous equations. With orthogonal
bases, each coordinate can be obtained independently, a much simpler
process conceptually and, in some instances, computationally.

5.1 Inner Products

The dot product concept is familiar from analytic geometry. If x = ([r,@
and y = (qr,r/&  are two vectors from $k2,  the dot product between x
and y is defined by

(5.1)

The length 11 XII of the vector x is defined by

(5.2)
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238 Hilbert Spaces

The angle between the vectors x and y is defined in terms of the dot
product between the normalized vectors:

(5.3)

Example 1. The Dot Product in 3’. Let x = (1,1) and y = (2,0). Then  = 2,

11x11=  fi, llyll=2, and cos+= l/e (or +=45”)). Figure 5.1 is an arrow space
equivalent of this example.

Figure 5.1. Arrow vectors corresponding to Example 1.

It is apparent from Example 1 that (5.3) can be interpreted, in terms of
the natural correspondence to arrow space, as a definition of the dot
product (as a function of the angle between the vectors):

(5.4)

where [[xl1  cos+ is the length of the projection of x on y along the
perpendicular to y. The following properties of the dot product seem
fundamental:

1. Length is non-negative; that is,

with equality if and only if x = 8

2. The magnitude of C#B  (or cos+) is independent of the order of x and
y; that is,

x*y=y*x
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3. The length of cx equals ICI times the length of x, for any scalar c;
that is,

cx*cx=c2(x*x)

4. In order that (5.4) be consistent with the rules for addition of
vectors, the dot product must be distributive over addition (see Figure 5.2);
that is,

We now extend the dot product to arbitrary vector spaces with real or
complex scalars in a manner which preserves these four properties.

Definition. An inner product (or scalar product) on a real or complex
vector space 1/ is a scalar-valued function of the ordered pair of
vectors x and y such that:

1. (x,x> > 0, with equality if and only if x = 8
2. (x,y) = (y,x) (the bar denotes complex conjugation).
3. ~~~~~+~2~2~Y~=~~~~~~Y~+~2~~2~Y~

It follows that (y,c,x, + c2x2)  = Ci(y,x,) + ?2(y,x2).  We describe these pro-
perties by saying that an inner product must be (1) positive definite, (2)
hermitian symmetric, and (3) conjugate bilinear. Note that because of (2),
(x,x) is necessarily real, and the inequality (1) makes sense. If the scalars
are real, the complex conjugation bar is superfluous.

Figure 5.2. Dot products are distributive over addition.
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We define the norm (or length) of x by

Hilbert Spaces

llxll  g v?Lq (5.5)

When (x, y) is real, we can define the angle # between x and y by

A bY>
cosq = llxll

Practically
two cases:

speaking, we are interested in the angle + only in the following

(x, y> = 0 (x and y are said to be orthogonal) (5.6)

<X,Y>  = 2 llxll llyll (x and y are said to be collinear) (5.7)

Example 2. The Standard Inner Product for en and an. The standard inner
product for (I?” (and %’ ) is defined by

(5.8)

where & and vi are the elements of x and y, respectively. Of course, the complex
conjugate bar is superfluous for $Ln.  This inner product is simply the extension of
the dot product to complex spaces and n dimensions. Consider the vector ( i) in (?‘;

The complex conjugation in (5.8) is needed in order to keep lengths non-negative
for complex scalars.

Example 3. The Standard Inner Product for ?IRf x ’ and %Rnx’.  The standard
inner product for %I,:” * is defined by

(x,y) 4 y'x (5.9)

Again, if only real scalars are involved, the conjugate is unnecessary. For instance,
if x = (1 2 4)T and y = (-1 3 2)T in tX3xx, then, by (5.9),

Example 4. The Standard Inner Product for Function Spaces. The standard inner
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product for a function space such as 9’ (a, 6) or (?. (a, b) is defined by

<f,g) 2 /“red s(t) dt
a

(5.10)

for each f and g in the space. We usually deal only with real functions and ignore
the complex conjugation. Consider the function f(t) = 1 in (2 (0,l):

Any vector whose average value over the interval [0, l] is zero is orthogonal to f; for

s

1
then (f, g) = (l)g(t)dt  = 0. We easily verify, for the case of continuous functions

0
and real scalars, that (5.10) possesses the properties of an inner product; by the
properties of integrals:
(a) (f,f) = $ if*(t)dt  > 0, with equality if and only if f(t)=0  for all t in [a,b];

(b) S :WMW = S :&YWt
(4 s f: [Cl f* (9 + C2f2wl~w dt = ~1 S if ,OkW  dt + c2 S :f,W&)dt

Example 5.  The Standard Inner Product for a Space of Two-Dimensional Functions.
Let e*@) denote the space of functions which are twice continuously differentiable
over a two-dimensional region a. We define an inner product for (Z*(G) by

(f, id A J,fbk(p) dp (5.11)

where p = (s , t), an arbitrary point in 52.

An inner product assigns a real number (or norm) to each vector in the
space. The norm provides a simple means for comparing vectors in
applications. Example 1 of Section 3.4 is concerned with the state (or
position and velocity) of a motor shaft in the state space X2” ‘. In a
particular application we might require both the position and velocity to
approach given values, say, zero. As a simple measure of the nearness of
the state to the desired position (e), we use the norm corresponding to
(5.9):

where tr and t2 are the angular position and velocity of the motor shaft at
instant t. However, there is no inherent reason why position and velocity
should be equally important. We might be satisfied if the velocity stayed
large as long as the position of the shaft approached the target position
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5, = 0. In this case, some other measure of the performance of the system
-1

would be more appropriate. The following measure weights & more
heavily than t2.

This new measure is just the norm associated with the following weighted
inner product for %2x ’ :

where x = ([, t2)’ and y = (qt 71~)~.  We generally select that inner product
which is most appropriate to the purpose for which it is to be used.

Example 6. A Weighted Inner Product for Function Spaces. An inner product of
the following form is often appropriate for such spaces as 9 ( a , b) and &?(a,  b):

(5.12)

If the weight function is w(t)= 1, (5.12) reduces to the standard inner product
(5.10). The weight w(t)  = e’ might be used to emphasize the values of functions for
large t and deemphasize the values for t small or negative.

Example 7, A Weighted Inner Product for 3’. Let x = (ti, c2) and y = (r)i,~z) be
arbitrary vectors in CR*.  Define the inner product on %* by

(5.13)

We apply this inner product to the vectors x = (1,1) and y = (2,0), the same vectors
to which we previously applied the standard (or dot) inner product: (x, y) = 0,
lixll= 1, and llyll = 1. The same vectors which previously were displaced by 45°
(Figure 5.1) are, by definition (5.13), orthogonal and of unit length. We see that
(5.13) satisfies the properties required of an inner product:

1. By completing the square, we find

<x,x)= $G -t*)2+g  > 0

with equality if and only if & = t2= 0;
2. Since the coefficients for the cross-product terms are equal,

<X,Y> = (YJQ
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3. We rewrite (5.13) as

Then, by the linearity of matrix multiplication,

<VI + ~2x29  Y> = Y~Q(c,x, + ~2x2)

= clyTQxl  + c2yTQx2

=cIhY)+c*<x29Y)

The last two examples suggest that we have considerable freedom in
picking inner products. Length and orthogonality are, to a great extent,
what we define them to be. Only if we use standard inner products in $K3
do length and orthogonality correspond to physical length and 90° angles.
Surprisingly, the concept suggested by (5.4) still holds in Example 7:
I(x,y>I is the product of llyll and the norm of the projection of x on y along
the direction orthogonal [in the sense of (5.13)] to y. The sign of (x, y) is
positive if the projection of x on y is in the same direction as y ; if the
projection is in the opposite direction, the sign is negative.

Exercise 1. Let x = (0,1) and y = (1,0) in a2. Define the inner product in
q2 by (5.13). Show that the projection of x on y along the direction
orthogonal to y is the vector (-1,0). Verify that (x, y) is correctly
determined by the above rule which uses the projection of x on y.

An inner product space (or pre-Hilbert space) is a vector space on which
a particular inner product is defined. A real inner product space is called a
Euclidean space. A unitary space is an inner product space for which the
scalars are the complex numbers. We will often employ the symbols ‘?Rn
and Xnxl to represent the Euclidean spaces consisting of the real vector
spaces ‘Zion  and ‘%,nx  ’ together with the standard inner products (5.8) and
(5.9), respectively. Similarly, we use ?? (a, b), 6? (a, b), etc. to represent real
Euclidean function spaces which make use of the standard inner product
(5.10). Whereever we use a different (nonstandard) inner product, we
mention it explicitly.

Matrices of Inner Products

To this point, we have not used the concept of a basis in our discussion of
inner products. There is no particular basis inherent in any inner product
space, although we will find some bases more convenient than others. We
found in Chapter 2 that by picking a basis % for an n-dimensional space
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V we can represent vectors x in Ir by their coordinates [xl, in the
“standard” space $!Kn x ’ ; moreover, we can represent a linear operator T
on V by a matrix manipulation of [xl,, multiplication by [T]%,, . It seems
only natural that by means of the same basis we should be able to convert
the inner product operation to a matrix manipulation. We proceed by
means of an example.

Let x = (S,,&) and y = (r)i,qJ  be general vectors in the vector space Ck2.

Let (x, y) represent the inner product (5.13). We select % A & , the
standard basis for a2. Then using the bilinearity of the inner product,

On the surface, we appear to have returned to the defining equation (5.13),
but the meaning of the equation is now different; ti and qi now represent
coordinates [or multipliers of the vectors (1,0) and (0,1)] rather than
elements of the vectors x and y. We rewrite the last line of the equation as

We have converted the inner product operation to a matrix multiplication.
We call Q6 the matrix of the inner product relative to the basis & . In
similar fashion, any inner product on a finite-dimensional space can be
represented by a matrix.

Let % h {x1 , … , xn} be a basis for an inner product space V. Then

n n
X= c a,x, and  Y = C $xj

k-l j-1
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By the argument used for the special case above,

Cx, Y> = < C akxk,  If bjxj)
k j

(5.14)

We refer to QX as the matrix of the inner product ( l , .) relative to the
basis %. It is evident that

(5.15)

We can use (5.15) directly to generate the matrix of a given inner product
relative to a particular basis. The matrix (5.15) is also known as the Gram
matrix for the basis % ; the matrix consists in the inner products of all
pairs of vectors from the basis.

Exercise 2. Use (5.15) to generate the matrix of the inner product (5.13)
relative to the standard basis for 9L2.

From (5.14), (5.15), and the definition of an inner product we deduce
that a Gram matrix, or a matrix of an inner product, has certain special
properties which are related to the properties of inner products:

1. Since (Xk,Xj)=(Xj,Xk), Qx =0x’.

2 . The inner product is positive definite; denoting z A [xl%, we find
ZTQx  z > 0 for all z in m x ‘, with equality if and only if z = 8.

We describe these matrix properties by saying QX is (1) hermitian sym-
metric* and (2) positive definite. For a given basis, the set of all possible

*If Qc is
symmetric.

real, the complex conjugate is superfluous. Then, if QX=QaT,  we say Qa is
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inner products on an n-dimensional space V is equivalent to the set of
positive-definite, hermitian symmetric n x n matrices. This fact indicates
precisely how much freedom we have in picking inner products. In point of
fact, (5.14) can be used in defining an inner product for Ir. We will exploit
it in our discussion of orthogonal bases in the next section. A method for
determining whether or not a matrix is positive definite is described in
P&C 5.9.

Exercise 3. Any inner product on the real space ‘%VLnx  ’ is of the form

(x, y j k y’Qx for some symmetric positive-definite matrix Q. The
analogous definition for a real function space on the interval [a , b] is

Kg> b JbSbk(t.s)f(t)g(s)dFdi
a a

What properties must the kernel function k possess in order that this
equation define a valid inner product (see P&C 5.30)? Show that if
k(t,s) = cc)( t)8 (t - s), then the inner product reduces to (5.12).

5.2 Orthogonality

The thrust of this section is that orthogonal sets of vectors are not only
linearly independent, but also lead to independent computation of
coordinates. A set S of vectors is an orthogonal set if the vectors are
pairwise orthogonal. If, in addition, each vector in S has unit norm, the
set is called orthonormal. The two vectors of Example 1 (below) form an
orthonormal set relative to the inner product (5.13). The standard basis for
an is an orthonormal set relative to the standard inner product. Suppose

the set !XA{(x i,. . .,x,} is orthogonal. It follows that each vector in X is
orthogonal to (and linearly independent of) the space spanned by the other
vectors in the set; for example,

If ‘%,  is an orthogonal basis for an n-dimensional space ‘v, then for any
vector x in 71‘, x = 2: = ickxk and

(x, xk) = (c$l  + ’ ’ ’ + c,x,, x,)

= c,<xI,xk) + ’ ’ ’ + ck(xk,xk) + ’ ’ * + c,(x,,,x~)

= dxk, x,>
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Thus the kth coordinate of x relative to the orthogonal basis % is

(X,Xk)
Ck = -

(%Xk)
(5.16)

Each coordinate can be determined independently using (5.16). The set of
simultaneous equations which, in previous chapters, had to be solved in
order to find coordinates is not necessary in this case. Inherent in the
“orthogonalizing” inner product is the computational decoupling of the
coordinates. If, in fact, the vectors in 5% are orthonormal, the denominator
in (5.16) is 1, and

x= Ii (JWJX,
k=l

(5.17)

Equation (5.17) is known as a generalized Fourier series expansion (or
orthonormal expansion) of x relative to the orthonormal basis !X . The kth
coordinate, (x,x&, is called the kth Fourier coefficient of x relative to the
orthonormal basis ‘X. We will have little need to distinguish between
(5.17) and the orthogonal expansion which uses the coefficients (5.16). We
will also refer to the latter expansion as a Fourier series expansion, and to
(5.16) as a Fourier coefficient.

Example 1. Independent Computation of Fourier Coefficients. From Example 7

of the previous section we know that the vectors xl b (1,1) and x2 i (2,0) form a
basis for 9L2  which is orthonormal relative to the inner product (5.13). Let x = (2,1).
Then by (5.17) we know that

x=(2,1)=c,(1,1)+c2(2,0)

where cl = (x, xl> = ((2, l), (1,l)) = 1 and c2 = (x, x2) = ((2, I), (2,o))  = ;.

Gram-Schmidt Orthogonalization Procedure

The Gram-Schmidt procedure is  a technique for generating an
orthonormal basis. Suppose x1 and x2 are independent vectors in the space
CiL2 with the standard inner product (dot product). (See the arrow space
equivalent in Figure 5.3.) We will convert this pair of vectors to an
orthogonal pair of vectors which spans the same space. The vector x2

decomposes uniquely into a pair of components, one collinear with x1 and
the other orthogonal to x1. The collinear component is Ilx,ll  cos+ times the
unit vector in the direction of x1; using the expression (5.4) for the dot
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Figure 5.3. Gram-Schmidt orthogonalization in arrow space.

product, we convert this collinear vector to the form

Define zt AxI  and Then z2 is orthogonal to z1 ,
and {z1, z2 } is an orthogonal set which spans the same space as {x1, x2 }. We
can normalize these vectors to obtain an orthonormal set {y l,y2} which
also spans the same space: yl=zI/IIzlll,  and y2=z2/~~z2~~.

The procedure applied to the pair of vectors in C!k2 above can be used to
orthogonalize a finite number of vectors in any inner product space.
Suppose we wish to orthogonalize a set of vectors {x 1 , … , xn } from some
inner product space V. Assume we have already replaced x1 , … , xk by an
orthogonal set z1 , … , zk which spans the same space as x1 , … , xk (imagine
k = 1). Then xk + 1 decomposes uniquely into a pair of components, one in
the space spanned by {z1 , … , zk } and the other (zk +1) orthogonal to

z1 , … , zk. Thus zk +1 must satisfy

xk+l=(c$~+“’ +ckzk)+zk+l

Since the set {z1 , ... , zk + 1 } must be orthogonal, and therefore a basis for
the space it spans, the coefficients {c j} are determined by (5.16):

Therefore,

(5.18)
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Exercise 1. Verify that zk + 1 as given in (5.18) is orthogonal to zj for
j = l, ... , k. How do we know the “orthogonal” decomposition of xk+1 is
unique?

Starting with z1 = x1 and using (5.18) for k = 1, … , n-1, we generate an
orthogonal basis for the space spanned by {x1 , … , xn }. The procedure can
be applied to any finite set of vectors, independent or not; any dependen-
cies will be eliminated (P&C 5.14). Thus we can obtain an orthogonal
basis for a vector space by applying (5.18) to any set of vectors which
spans the space. The application of (5.18) is referred to as the Gram-
Schmidt orthogonalization procedure. It requires no additional effort to
normalize the vectors at each step, obtaining Yj = Zj/llZjll; then (5.18)
becomes

zk+l=xk+l - Ii CxIc+l,Yj)Yj (5.19)
j-l

Numerical accuracy and techniques for retaining accuracy in Gram-
Schmidt orthogonalization are discussed in Section 6.6.

Example 2. Gram-Schmidt Orthogonalization in a Function Space. Define

fk(t)  = t k in the space 9 (-1,1) with the standard inner product

We will apply the Gram-Schmidt procedure to the first few functions in the set
{f 0 , f1, f2 ,  …}. Using (5.18), with appropriate adjustments in notation, we let g0 (t)
= f 0 (t ) = 1 and

But (f,,g,,)= J’!,(t)(l)dt = 0. Therefore, g1 (t) = f1 (t) = t, and g1 is orthogonal to g0 .
Again using (5.18),

The inner products are
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Therefore, g2(t)= t2- f, and g2 is orthogonal to g1 and g0. We could continue, if we
wished, to generate additional vectors of the orthogonal set {g0 , g 1 , g2 ,  …}. The
functions {gk } are known as orthogonal polynomials. Rather than normalize these

orthogonal polynomials, we adjust their length as follows: define pk b gk/gk(l)  so
that pk (1)= 1. The functions {p 0 , p1 , p2 , . . . } so defined are known as the Legendre
polynomials. (These polynomials are useful for solving partial differential equations
in spherical coordinates.) Thus p0 (t) = go (t) = 1, pl(t) = g1 (t) = t, and p2 (t) = g2 (t)/
g 2(1) = (3 t 2-1)/2. A method of computing orthogonal polynomials which uses less
computation than the Gram-Schmidt procedure is described in P&C 5.16.

Orthogonal Projection

The orthogonal complement of a set S of vectors in a vector space ‘v is the
set s L of all vectors in ?r which are orthogonal to every vector in s . For
example, the orthogonal complement of the vector x1 of Figure 5.3 is the
subspace spanned by z2. On the other hand, the orthogonal complement of
span{z2 } is not the vector x1, but rather the space spanned by x1. An
orthogonal complement is always a subspace.

Example 3. An Orthogonal Complement in Suppose the set S in the
standard inner product space LZ (0,l) consists of the single function f1 (t ) = 1. Then
S L is the set of all functions whose average is zero; that is, those functions g for
which

(f,,g)= ~‘(1)&)dr=0

As part of our discussion of the decomposition of a vector space ?r into
a direct sum, II‘ = W1 Cl3 %,, we introduced the concept of a projection on
one of the subspaces along the other (Section 4.1). In the derivation of
(5.18) we again used this concept of projection. In particular, each time we
apply (5.18), we project a vector xk +1 onto the space spanned by
{ z1 ,… , zk } along a direction orthogonal to zl, … , zk (Figure 5.3). Suppose

we define G2IT  A span{z1 , . . . , zk }. Then any vector which is orthogonal to
zl ,…, zk is in G2LIL,  the orthogonal complement of W. The only vector
which is in both W and ‘?.l!l is the vector 8. Since the vector xk+1 of
(5.18) can be any vector in ?r, the derivation of (5.18) constitutes a proof
(for finite-dimensional V)* that

(5.20)

*The projection theorem (5.20) also applies to certain infinite-dimensional spaces. Specifi-
cally, it is valid for any (complete) subspace W of a Hilbert space Y. See Bachman and
Narici [5.2, p. 172]. These infinite-dimensional concepts (Hilbert space, subspace, and
completeness) are discussed in Section 5.3.
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That is, any vector in ‘v can be decomposed uniquely into a pair of
components, one in % and the other orthogonal to ‘% . The projection of
a vector x on a subspace % along %-‘-  is usually referred to as the
orthogonal projection of x on %. Equation (5.20), which guarantees the
existence of orthogonal projections, is sometimes known as the projection
theorem. This theorem is one of the keys to the solution of the least-square
optimization problems explored in Chapter 6.

It is apparent from (5.18) that the orthogonal projection X~ of an
arbitrary vector x in V onto the subspace ‘?IT spanned by the orthogonal
set { z l, ... , z k } is

(5.21)

We can also write (5.21) in terms of the normalized vectors {y1, . . . , yk } of
(5.19):

%Js = i bYj)Yj
j=l

(5.22)

Equation (5.22) expresses xGuc as a partial Fourier series expansion, an
“attempted” expansion of x in terms of an orthonormal basis for the
subspace on which x is projected. If x - Et= ,(x, yi)yj # 8, we know that the
orthonormal basis for % is not a basis for the whole space ‘v. It is
evident that an orthonormal set {yi} is a basis for a finite-dimensional
space ‘v if and only if there is no nonzero vector in V which is orthogonal
to { yi }. We can compute the orthogonal projection of x on % without
concerning ourselves with a basis for the orthogonal complement %I. We
can do so because a description of ‘%l is inherent in the inner product.
Clearly, Gram-Schmidt orthogonalization, orthogonal projection, and
Fourier series are closely related. Equation (5.22), or its equivalent, (5.21),
is a practical tool for computing orthogonal projections on finite-
dimensional subspaces.

Example 4. Computation of an Orthogonal Projection. Let %!Y  be that subspace
of the standard inner product space a3 which is spanned by {x1 ,x2 }, where
x1 = (1,0,1) and x2 = (0,1,1). We seek the orthogonal projection of x = (0,0,2) on
G2Lc.  We first use the Gram-Schmidt procedure to orthogonalize the set {x1 ,x2 };
then we apply (5.21). By (5.18), z1 = x1 = (1,0,1) and
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By (5.21),

Orthonormal Eigenvector Bases for Finite-Dimensional Spaces

In (4.13) we solved the operator equation TX = y by means of spectral
decomposition (or diagonalization). By representing the input vector y in
terms of its coordinates relative to a basis of eigenvectors, we converted
the operator equation into a set of uncoupled scalar equations, and
solution for the output x became simple. Of course, even when the
eigendata were known, a set of simultaneous equations was required in
order to decompose y. We now explore the solution of equations by means
of an orthonormal basis of eigenvectors. The orthonormality allows us to
determine independently each eigenvector component of the input; the
solution process is then completely decoupled.

Let T have eigendata {Xi}  and {z i}, and let {z 1 , . . . , zn } be a basis for the
space V on which T operates. (Then T must be diagonalizable.) Further-
more, suppose T is invertible; that is, Xj#O. We solve the operator
equation Tx = y as follows. The vectors x and y can be expanded as

and

The coordinates { c j} can be determined from y; the numbers { d j } are
coordinates of the unknown vector x. Inserting these eigenvector ex-
pansions into the operator equation, we obtain

o r

C (d,h, - Cj)Zj=  8

Since the vectors zj are independent, 4 = cj/hi,  and the solution to the
operator equation is

(5.23)
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Suppose the eigenvector basis {z1,  …  , zn } is orthonormal relative to the
inner product on V. Then the eigenvector expansion of y can be expressed
as the Fourier expansion

and the solution (5.23) becomes

(5.24)

Each component of (5.24) can be evaluated independently.
If T is not invertible, (5.24) requires division by a zero eigenvalue. The

eigenvectors for the zero eigenvalue form a basis for nullspace(T ). The
remaining eigenvectors are taken by T into range(T), and in fact form a
basis for range(T). To avoid division by zero in (5.24), we split the space:
y = nullspace(T) range( T ). The equation Tx = y has no solution unless y
is in range(T) (or cj  = 0 for i corresponding to a zero eigenvalue); since the
eigenvectors are assumed to be orthonormal, an equivalent statement is
that y must be orthogonal to nullspace(T ). Treating the eigenvectors
corresponding to zero eigenvalues separately, we replace the solution x in
(5.23)-(5.24) by

(5.25)

where x0 is an arbitrary vector in nullspace(T). The first portion of (5.25) is
a particular solution to the equation Tx = y. The second portion, x0, is the
homogeneous solution. The undetermined coefficients di in the sum which
constitutes x0 are indicative of the freedom in the solution owing to the
noninvertibility of T.

What fortunate circumstances will allow us to find an orthonormal basis
of eigenvectors? .The eigenvectors are properties of T; they cannot be
selected freely. Assume there are enough eigenvectors of T to form a basis
for the space. Were we to orthogonalize an eigenvector basis using the
Gram-Schmidt procedure, the resulting set of vectors would not be eigen-
vectors. However, we have considerable freedom in picking inner products.
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In point of fact, since the space is finite dimensional, we can select the
inner product to make any particular basis orthonormal.

The key to selection of inner products for finite-dimensional spaces is
(5.14), the representation of inner products of vectors in terms of their
coordinates. Let the basis % be {z 1 , … , zn }, the eigenvectors of T. We
select the matrix of the inner product, Qn, such that the basis vectors are
orthonormal. By (5,15), if % is to be orthonormal, QX satisfies

(5.26)

or QX = I. By (5.14), this matrix defines the following inner product on V:

(5.27)

The expression (5.27) of an inner product in terms of coordinates relative
to an orthonormal basis is called Parseval’s equation. A basis % is
orthonormal if and only if (5.27) is satisfied; that is, if and only if the inner
product between any two vectors equals the standard inner product (in
Xnx ‘) between their coordinates relative to % .

Example 5. Solution of an Equation by Orthonormal Eigenvector Expansion.
Suppose we define T: $I%‘-+ 9L2  by

[The same operator is used in the decomposition of Example 7, Section 4.1.] The
eigendata are At = 2, z1 = (1,0), A,=4,  and z2 = (3,2). The pair of eigenvectors,

‘5% i {z1 ,  z2 }, is a basis for ?R2. We define the inner product for %2 by (5.27):

(x9 Y> = [Yl&ln

To make this definition more explicit, we find the coordinates of x and y; let
y = alzl + a2 z2, or

y = hr/J = a1 (1,0) + a2 (3,2)

Solution (by row reduction) yields al = ql - 3v2/2  and a2= q2/2. Similarly, the
coordinates of x = (&,&) are c1 =[r - 3t2/2  and c2=t2/2.  Thus we can express the
inner product as
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Relative to this inner product, the basis % is orthonormal. We solve the equation
Tx=T(&,~~)=(~~,~~)=Y  using (5.24):

We have developed two basic approaches for analyzing a finite-
dimensional, invertible, diagonalizable, linear equation: (a) operator inver-
sion and (b) spectral decomposition (or eigenvector expansion). Both
methods give explicit descriptions of the input-output relationship of the
system for which the equation is a model. The spectral decomposition
yields a more detailed description; therefore, it provides more insight than
does inversion. If the eigenvector expansion is orthonormal, we also obtain
conceptual and computational independence of the individual terms in the
expansion.

What price do we pay for the insight obtained by each of these
approaches ? We take as a measure of computational expense the
approximate number of multiplications required to analyze an n X n matrix
equation:

1. Inversion of an n x n matrix A (or solution of Ax = y for an unspeci-
fied y) by use of Gaussian elimination requires 4n3/3 multiplications.
Actual multiplication of y by A-’ uses n2 multiplications for each specific

y .

2. Analysis by the nonorthogonal eigenvector expansion (5.23) starts
with computation of the eigendata. Determination of the characteristic
equation, computation of its roots, and solution for the eigenvectors is
considerably more expensive than matrix inversion (see Section 4.2). For
each specific y, determination of x requires n3/3 multiplications to calcu-
late the coordinates of y relative to the eigenvector basis. The number of
multiplications needed to sum up the eigenvector components of x is
relatively unimportant.

3. In order to express the solution x as the orthonormal eigenvector
expansion (5.24), we need to determine the inner product which makes the
basis of eigenvectors orthonormal. Determination of that inner product
requires the solution of a vector equation with an unspecified right-hand
side (see Example 5). Thus to fully define the expression (5.24), we need
4 n 3/3 multiplications in addition to the computation necessary to obtain
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the eigendata. It is evident from Example 5 that evaluation of a single
inner product in an n-dimensional space can require as few as n multiplica-
tions (if no cross-products terms appear and all coefficients are unity) and
as many as 2n2 multiplications (if all cross-product terms appear). There-
fore, for each specific y, computation of x requires between n2 and 2n3

multiplications to evaluate the inner products, and n2 + n multiplications to
perform the linear combination.

The value of orthonormal eigenvector expansion as a vehicle for analyz-
ing equations lies primarily in the insight provided by the complete
decomposition (5.24). We pay for this insight by determining the eigen-
data. For certain classes of problems we are fortunate in that the eigen-
data is known a priori (e.g., the symmetrical components of (4.27)-(4.28),
the Vandermond matrix of P&C 4.16, and the sinusoids or complex
exponentials of classical Fourier series). Then the technique is computa-
tionally competitive with inversion. We note in Section 5.5 that for
(infinite-dimensional) partial differential equations, eigenvector expansion
is a commonly used analysis technique.

Infinite OrthonormaI Expansions

We will find that most of the concepts we have discussed in this chapter
apply in infinite-dimensional spaces. A significant characteristic of an
infinite expansion of a vector (or function) is that the “first few” terms
usually dominate. If the infinite expansion is also orthonormal, then we
can not only approximate the vector by the first few terms of the expan-
sion, but we can also compute these first few terms, ignoring the remainder
-the individual terms of an orthonorrnal expansion are computationally
independent. Thus the value of orthonormal eigenvector expansion is
higher for infinite-dimensional systems than for finite-dimensional systems.
Furthermore, for certain classes of models, orthonormal eigendata is
standard-it is known a priori. (For example, all constant-coefficient linear
differential operators with periodic boundary conditions have an easily
determined set of orthogonal sine and cosine functions as eigenfunctions.)
For these models, orthonormal eigenvector expansion is a computationally
efficient analysis technique (P&C 5.35). In this section we examine briefly
a few familiar infinite orthonormal expansions which are useful in the
analysis of dynamic systems. A detailed general discussion of infinite
orthonormal eigenvector expansions forms the subject of Section 5.5.

We noted in Section 4.3 that models of linear dynamic systems (linear
differential operators with initial conditions) have no eigenfunctions be-
cause the boundary conditions all occur at one point in time. This fact
would seem to preclude the use of eigenfunction expansions in analyzing
dynamic systems. However, many practical dynamic systems, electric
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power systems for instance, are operated with periodic inputs. The output
of a linear time-invariant dynamic system with a periodic input quickly
approaches a steady-state form which is periodic with the same period as
the input. The steady-state form depends only on the periodic input and
not on the initial conditions. (Implicit in the term steady-state, however, is
a set of periodic boundary conditions—the values of the solution f and its
derivatives must be the same at the beginning and end of the period.) The
transition from the initial conditions to the steady-state solution is de-
scribed by a transient component of the solution. Suppose the system
model is a differential equation, denoted by Lf = u, with initial conditions
hi = Cyj. The steady-state solution f1 satisfies Lf1 = u (with periodic
boundary conditions). Define the transient solution f2 to be the solution of

Lf2 = 8 with pi(f 1+ f2) = (Yi (or Pi(f,)  = oli - &(f,)). Then f A f1 + f2 satisfies
both the differential equation and the initial conditions.

Example 6. Steady-State and Transient Solutions. The linear time-invariant
electrical circuit of Figure 5.4 is described by the differential equation

(5.28)

Suppose the applied voltage (or input) is the periodic function e(t) = E sin(ot + $Q).
We can easily verify that the steady-state solution to the differential equation is

Note that i1 does not satisfy the initial condition i1(0)=0 unless C#Q happens to
equal + However, it does satisfy the periodic boundary condition i,(2r/o)=i1(0).
The transient solution (the solution of the homogeneous differential equation) is of
the form

i2( t) = ce-CR/L)f

Figure 5.4. A linear time-invariant circuit.
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We pick the constant c such that i1(0) + i2(0) = 0:

Then i A i1 + i2 satisfies (5.28).

Exercise 2. Verify that i1 of Example 6 satisfies the differential equation
of (5.28), but not the initial condition. Hint:

acosfb+bsin$=&PZ7 sin ++tan-’
( ( 1)

f

Steady-state analysis of a dynamic system is analysis of the system with
periodic boundary conditions. A linear constant-coefficient differential
operator with periodic boundary conditions does have eigenfunctions;
namely, all sines, cosines, and complex exponentials which have the
correct period. In point of fact, the steady-state solution to (5.28) was easy
to determine only because the periodic input e(t ) was an eigenfunction of
the differential operator for periodic boundary conditions. The eigenvalue
corresponding to that eigenfunction is the input impedance Z of the R-L
circuit corresponding to the frequency o of the applied voltage:

Z= R+ioL--&L&F exp(itan-‘(  +))

where i=m.
It is well known that any “well-behaved” periodic function can be

expanded in an orthonormal series of sines and cosines—eigenfunctions of
linear constant-coefficient differential operators with periodic boundary
conditions. Suppose f is a periodic function of period p; then*

f(t) =ao+alcos~  +a,cos4ml+  * - *
P

+b,sin2?rr+bzsin4?Tt+...
P P

(5.29)

*This is the classical Fourier series expansion [5.5, p. 312].
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where

We can replace the sinusoidal functions of (5.29) by the normalized
functions

(5.30)

Relative to the inner product

(f,g> A j-‘f(t)g(t)dt
0

(5.31)

the functions (5.30) form an orthonormal set. (Since the functions are
periodic of period p, we concern ourselves only with values of the func-
tions over a single period.) Therefore, we can write (5.29) in the standard
form for a generalized Fourier series:

(5.32)

Exercise 3. Show that the set of functions (5.30) is orthonormal relative
to the standard inner product (5.31).

If f is any periodic function of period p, (5.32) is an orthonormal
expansion of f in terms of the eigenfunctions of any linear constant-
coefficient differential operator (assuming periodic boundary conditions of
the same period p). Furthermore, since the eigenfunctions are known a
priori, they need not be computed. Therefore, the Fourier series described
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by (5.29) or (5.32) is valuable in the steady-state analysis of linear time-
invariant dynamic systems (P&C 5.35).

A sine or cosine can be expressed as the sum of a pair of complex
exponentials with complex coefficients

Therefore, the Fourier series (5.29) can be rewritten in terms of the
functions

(5.33)

Assume the inner product

(5.34)

(We need the complex conjugation indicated in (5.34) because we are
considering the complex-valued functions gk .) Then

The set (5.33) is orthonormal, and we can express (5.29) as the exponential
Fourier series:

f= ii (f&k,
k==-ao
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or

(5.35)

The exponential series (5.35) is often used in place of (5.29). In some
respects it is a more convenient series for use in analyzing constant-
coefficient differential equations, because derivatives of exponentials are
still exponentials.

We have discussed the applicability of an infinite eigenfunction expan-
sion [the classical Fourier series in either of its forms, (5.29) or (5.35)] for
steady-state analysis of dynamic systems. Surprisingly, the approach we
have used for steady-state analysis can be applied to a dynamic system
even if the system is not operated in a periodic fashion; we merely treat the
system as if it were periodic with a single infinite period. We still seek a
function f1 which satisfies the differential equation with periodic boundary
conditions, then determine a “transient” solution f2 to the homogeneous
differential system such that f1 + f2 satisfies the initial conditions. Thus it
still makes sense to work with exponentials, the eigenfunctions of linear
constant-coefficient differential operators (ignoring the initial conditions).
We could derive the expansion (in exponentials) of a nonperiodic function
by changing variables and letting the period become large. However, we
merely state the well-known result, known as the Fourier integral
theorem* :

f(t)  = s O” F(s)e”“‘ds
-00

(5.36)

where

F(s)=/m f(t)e-l’wstdt
-00

The expansion (5.36) applies for any “well-behaved” function f for which
j_“,lf(t)ldt < cc. The coefficient function F is known as the Fourier integral
of f. The role of the discrete frequency variable k is taken over by the
continuous real frequency variable s. The sum in (5.35) becomes an

*Churchill [5.5, pp. 88-90].
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integral in (5.36). Let q(s, t) A exp(i2mt).  Then defining the inner product

by

Kg) A j-” f(t) g(t) dt
-09

we can express (5.36) as

f(t) = /-O”  (f, q(s, -)>n(s, t) ds
-co

(5.37)

(5.38)

It can be shown, by a limiting argument, that the infinite set {q(s, e), - 00
<s < cc} is an orthogonal set; however, Ilq(s,  .)[I is not finite. Parseval’s
theorem, a handy tool in connection with Fourier integrals, states that

(5.39)

where F and G are the Fourier integrals of f and g, respectively. This
equation is a direct extension of (5.27). In effect, the “frequency domain”
functions F and G constitute the coordinates of the “time domain”
functions f and g, respectively. Equations analogous to (5.39) can be
written for the expansions (5.29) and (5.35).

It is interesting that restricting our concern to periodic functions (or, in
effect, to the values of functions on the finite time interval [0,p ]) reduces
(5.36) to (5.35) and allows us to expand these functions in terms of a
countable basis (a basis whose members can be numbered using only
integer subscripts). Because of the duality exhibited in (5.36) and (5.39)
between the time variable t and the frequency variable s, it should come as
no surprise that restricting our interest  to functions with finite
“bandwidth” (functions whose transforms are nonzero only over a finite
frequency interval) again allows us to expand the functions in terms of a
countable basis. Limited bandwidth functions are fundamental to the
analysis of periodic sampling. If F(s) = 0 for IsI > w, we say that f is band
limited to w; or f has no frequency components as high as w. For such a
function it is well known that the set of samples (values) of f at the points
t = k /2w, k = 0, ±1, ±2,… contains all the information possessed by f. To
be more specific, the sampling theorem states

(5.40)

for any function f which is band limited to w [5.18].
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We define the functions {hk } by

The function h0 is plotted in Figure 5.5; hk is just h0 shifted by t = k/ 2w .

Exercise 4. Use (5.36), (5.39), and the inner product (5.37) to show that
(a ) {h k } is an orthonormal set, and (b ) = f( k /2w ). Hint: the Fourier
integral of hk is

As a result of Exercise 4, we can express the sampling theorem as a
generalized Fourier series:

f = iit (f,h,)h,
k=-co

(5.41)

The coefficients of any orthonormal expansion can be computed inde-
pendently. Thus the fact that the functions hk are orthonormal is signifi-
cant. Each coefficient in (5.41) can be obtained by physically sampling a
single point of the function f. It is common practice to sample functions in
order to process them digitally. The samples of a function are the
coordinates of that function relative to the orthonormal basis { hk }. The
processes commonly used for physical reconstruction of functions from
their samples are all, in some sense, approximations to the sum (5.41).

Extending Parseval’s equation (5.27) to the set { hk }, we find that inner
products of two band-limited functions can be computed in terms of the

Figure 5.5. The function h0 .
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samples of the functions:

(5.42)

If a function is both periodic and of finite bandwidth, then its Fourier
series expansion, (5.29) or (5.35), contains only a finite number of terms;
periodicity guarantees that discrete frequencies are sufficient to represent
the function, whereas limiting the bandwidth to less than w guarantees that
no (discrete) frequencies higher than w are required. Then, although (5.35)
and (5.40) express the same function in different coordinates, the first set
of coordinates is more efficient in the sense that it converges exactly in a
finite number of terms. All the function samples are required in order to
reconstruct the full function using (5.40). Yet (5.40) is dominated by its
first few terms; only a “few” samples are required to accurately reconstruct
the function over its first period. The remaining samples contain little
additional information.

Exercise 5. Let f(t) = sin2?rt, a function which is periodic and band
limited. (F(s) = 0 for Is] > 1). Sample f at t = 0, + b, + 4, k :, … (i.e., let
w = 2). Then, by (5.40),

The samples are zero for k = 0, ±2, ±4,. . . . Graphically combine the terms
for k = ±1, ±3, ±5, and compare the sum with f over the interval [0, 1].

5.3 Infinite-Dimensional Spaces

We developed the generalized Fourier series expansion (5.17) only for
finite-dimensional spaces; yet we immediately recognized its extension to
certain well-known infinite-dimensional examples, particularly (5.29). Our
goal, ultimately, is to determine how to find orthonormal bases of eigen-
functions for linear operators on infinite-dimensional spaces. A basis of
eigenfunctions permits decomposition of an infinite-dimensional operator
equation into a set of independent scalar equations, just as in the finite-
dimensional case (5.23). Orthogonality of the basis allows independent
computation of the coefficients in the expansion as in (5.24). We will find
this computational independence particularly valuable for infinite-
dimensional problems because the “first few” terms in an infinite
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orthonormal expansion dominate that expansion; we can ignore the re-
maining terms.

To this point, wherever we have introduced infinite expansions of
vectors, we have used well-known examples and avoided discussion of the
meaning of an infinite sum. Thus we interpret the Taylor series expansion

(5.43)

of an infinitely differentiable function f as the expansion of f in terms of
the “basis” {1, t, t2, … }. We consider the Fourier series expansion (5.29) as
the expansion of a periodic function on the “orthonormal basis”

Yet the definition of linear combination does not pinpoint the meaning of
2:”kmlckf, for an infinite set of functions {f k }. It seems natural and
desirable to assume that such an infinite sum implies pointwise conver-
gence of the partial sums. Certainly, the Taylor series (5.43) means that for
each t,

as k+ cc. However, it is well-known that the sequence of partial sums in
the Fourier series expansion (5.29) of a discontinuous function is not
pointwise convergent; the partial sums converge to the midpoints of any
discontinuities (P&C 5.18). In an engineering sense, we do not care to
which value the series converges at a discontinuity. The actual value of the
function is usually defined arbitrarily at that point anyway. We define
convergence of the partial sums in a way which ignores the value of the
Fourier series at the discontinuities.

Convergence in Norm

Define y,, A 2’k = ~c~x~, the nth partial sum of the series z p= ickxk. We can
assign meaning to the infinite sum only if the partial sums yn and ym

become more nearly alike in some sense as The natural defini-
tion of “likeness” in an inner product space is likeness in norm. That is, y n

and ym are alike if the norm 11 y, - y, 11 of their difference is small. An
infinite sequence {yn } from an inner product space ‘v is called a Cauchy
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sequence if l]y,, - y, ]I-+0  as n, m+ cc; or, rigorously, if for each E > 0 there
is an N such that n,m > N implies ]Jy, - y,(] < E. Intuitively, a Cauchy
sequence is a “convergent” sequence. By means of a Cauchy sequence we
can discuss the fact of convergence without explicit reference to the limit
vector. We say an infinite sequence {yn} from an inner product space V
converges in norm to the limit x if I]x - y, ]I +O as rz+ 00.

Exercise 1. Use the triangle inequality (P&C 5.4) to show that a
sequence from an inner product space Ir can converge in norm to a vector
x in V only if it is a Cauchy sequence.

Assume the partial sums of a series, y, b X$=  ickxk, form a Cauchy
sequence; by the infinite sum X2= i k k,c x we mean the vector x to which the
partial sums converge in norm, We call x the limit in norm of the sequence
{yn}. (Note that the limit of a Cauchy sequence need not be in V. The
mathematics literature usually does not consider a sequence convergent
unless the limit is in V.)

Let ‘v be some space of functions defined on [0,1] with the standard
function space inner product. One of the properties of inner products
guarantees that f = 8 if l]f]l  = 0. We have assumed previously that f = 8
meant f(t) = 0 for all t in [0,1]. Suppose, however, that f is the discon-
tinuous function shown in Figure 5.6. Observe that ]]fl] = 0, whereas f(t)#O
at t = 0, ½ or 1. Changing the value of a function at a few points does not
change its integral (or its norm). We are hard pressed to define any inner
product for a space containing functions like the one in Figure 5.6 unless
we ignore “slight” differences between functions.

We say f = g almost everywhere if f(t) = g(t) except at a finite number of
points.* For most practical purposes we can consider convergence in norm
to be pointwise convergence almost everywhere. (However, Bachman and

Figure 5.6. A nonzero function with zero norm.

*The definition of
number of points.

“almost everywhere” can be extended to except a countably infinite
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Narici [5.2, p. 173] demonstrate that a sequence of functions can be
convergent in norm, yet not converge at all in a pointwise sense.) Conver-
gence in norm is sometimes called convergence in the mean. Convergence
in norm is precisely the type of convergence which we need for discussion
of Fourier series like (5.29). If f is a periodic function with period p, the
Fourier series expansion (5.29) means

(5.44)

That is, the sequence of partial sums converges in norm to the periodic
function f. The convergence is pointwise almost everywhere-pointwise
except at discontinuities. It makes little practical difference how a function
is defined at a finite number of points. Therefore we usually do not
distinguish between functions which are equal almost everywhere. Of
course, our focus on the convergence in norm of a series of functions does
not preclude the possibility that the convergence is actually pointwise and,
in fact, uniform.

Infinite-Dimensional Bases

We need to extend the n-dimensional concept of a basis to infinite-
dimensional spaces. We naturally think in terms of extending a finite sum
to an infinite sum. An infinite set is said to be countable if its elements can
be numbered using only integer subscripts. We restrict ourselves to a
discussion of inner product spaces which have countable bases.*

Definition. Let ‘v be an infinite-dimensional inner product space. Let

5% A {x1, x2 ,…} be a countable set in ?‘“. Then % is said to be a basis for
V if every vector x in V can be expressed uniquely as a convergent
infinite series x=~~Sickxk; that is, if there is a unique set of coordinates
{c k} such that I]x-  xz= ickxk]]  can be made arbitrarily small by taking
enough terms in the expansion.

Example 1. Bases for 9 (a,b). We denote by 9 (a, b) the infinite-dimensional
space of all real polynomial functions defined on [a,b]. Since every polynomial is a
(finite) linear combination of functions from the linearly independent set

9; {tk, k = 0,1,2,…}, F is a basis for 9 (a, b). Observe that no norm is needed to
define a basis for this particular infinite-dimensional space because no infinite
sums are required. If we define an inner product on 9 (a, b), we can apply the

*A space which has a countable basis is said to be separable. Some
uncountable bases. See Bachman and Narici [5.2, p. 143] for an example.

spaces have only
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Gram-Schmidt procedure to the set 9, and generate a basis for 9 (a, b) consisting
of orthogonal polynomials. (See, for instance, the Legendre polynomials of Ex-
ample 2, Section 5.2.) Each vector in 9 (a,b)  is a finite linear combination of these
orthogonal polynomials. Each different inner product leads to a different ortho-
gonal basis. Of course, each such basis could also be normalized.

Any function that can be expanded in a Taylor series about the origin,
as in (5.43), can be represented uniquely by the simple polynomial basis of
Example 1. Many familiar functions (et, sin t, rational functions, etc.) can
be expanded in such a series. These functions are not in 9 (a, b), and true
infinite sums are required. Thus 3 appears to serve as a basis for spaces
larger than ‘Z?  (a , b). How do we tell whether or not ‘% is a basis for any
particular space Ir of functions? Of course, the coordinates of the function
cannot be unique without independence of the basis vectors. Our previous
concept of linear independence, which is based on addition and scalar
multiplication, applies only to finite-dimensional spaces. We say an infinite
set of vectors 5% is linearly independent if each finite subset of % is
linearly independent. The vectors in a basis % must also span V in the
sense that every x in ‘V must be representable. But, merely making % a
sufficiently large linearly independent set is not sufficient to guarantee that
% is a basis. The set % of Example 1 is an infinite linearly independent
set. Yet % is not a basis even for the “nice” space C?“( - 1,l) of infinitely
differentiable functions. For example, if  we define the function
f(t) A exp(-l/t2) to have the value f(0) = 0 at the origin, it is infinitely
differentiable; but it has the Taylor coefficients f(0) = f’(0) = f”(O)/2  = …
= 0. Thus an attempted Taylor series expansion of f converges to the
wrong (zero) function.

According to a famous theorem of Weierstrass [5.4], any function in
t?(a,b) can be represented arbitrarily closely in a pointwise sense (and in
norm) by a polynomial. Yet this fact does not imply that 9 is a basis for
C? (a,b). We must still determine whether or not every f in C? (a, b) is
representable by a unique convergent expansion of the form ~~=&tk.  In
general, even though {xk } is an infinite linearly independent set, there may
be no approximation Xi= ickxk that will approach a given vector x in norm
unless the coefficients {c k} are modified as n increases. (See Naylor and
Sell [5.17], pp. 315-316.) It is difficult to tell if a specific set is a basis
without displaying and examining the coordinates of a general vector in
the space. We will find that orthogonality of the vectors in a set eases
considerably the task of determining whether or not the set is a basis.

Orthogonal Bases for Infinite-Dimensional Spaces

Actual determination of the coordinates of a specific vector relative to an
arbitrary basis is not generally feasible in an infinite-dimensional space. It
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requires solving for the numbers ck in the vector equation x = XT- ickxk; in
effect, we must solve an infinite set of simultaneous equations. However, if
the basis !‘X is orthogonal (or orthonormal), the coordinates ck are the
Fourier coefficients, which can be computed independently. This fact is
one reason why we work almost exclusively with orthogonal (or

orthonormal) bases in infinite-dimensional spaces. If ‘2% A {xk} is a count-
able orthogonal basis for an inner product space Y, the Fourier series
expansion of a vector x in ‘v can be developed by an extension of the
process used to obtain the finite-dimensional expansion (5.16)-(5.17). Let
x j be one of the first n vectors in the infinite dimensional basis 3,. Let ci

be the ith coordinate of x relative to 3,. The Cauchy-Schwartz inequality*
shows that

The right side of this expression approaches zero as n+oc.  Therefore, for
each j < n,

as n+oo.  Since the quantity approaching zero is independent of n, it must
equal zero, and

Thus the Fourier series expansion of x is

(5.45)

(5.46)

Of course, if the basis is orthonormal, the kth coefficient in (5.46) is just
ck = cx, xk)*

By an argument similar to the one above, we show that the coefficients
{c k} in an orthogonal expansion are unique. Suppose x = zF= id&k is a

*P&C 5.4.
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second expansion of x. Then by the triangle inequality,*

as n-+m. Then if x j is one of the vectors x1, …, xn, we again employ the
Cauchy-Schwartz inequality to find that as n+ 00

It follows that dj = cj, and the coordinates of x with respect to an ortho-
gonal basis are unique.

Thus the only question of concern, if % is an orthogonal set, is whether
or not 5% is a large enough set to allow expansion of all vectors x in V. If
there is a vector x in V for which there is not a convergent expansion,
then

is nonzero. Furthermore, z is orthogonal to each vector xj in 5% , and could
be added to !X to make it more nearly complete (more nearly a basis).

Definition.  We say an orthogonal set is complete in the inner product space
V if there is no nonzero vector in V which is orthogonal to every vector
in 5%.

It follows from the discussion above that an orthogonal set ‘5% is a basis
for v if and only if it is complete in V. Any orthogonal set in a separable
space ?r can be extended (by adding vectors) until it is complete in V. A
practical technique for testing an orthogonal set {xk} to see if it is a basis
consists in showing that the only vector orthogonal to each vector xk is the
zero vector 8. If ‘% is an orthogonal basis for Ir, then only for x = 8 is it
true that all the Fourier coefficients (x,~) are equal to zero. Thus this test

*P&C 5.4.
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for completeness of the orthogonal set !?C is equivalent to a test for validity
of the Fourier expansion (5.46) for each x in V.

Example 2. Orthogonal bases for t?(a,b).  The Weierstrass approximation
theorem [5.4] guarantees that any continuous function can be approximated
arbitrarily closely in norm by a polynomial. We noted earlier that this fact is

insufficient to guarantee that the set 9 b {t k , k = 0,1,2,…} is a basis for C? (a,b).

On the other hand, suppose that 8 2 { pk} is a basis for C? (a, b) consisting in real
polynomials pk which are orthogonal relative to some inner product. (We could
obtain 9 from %7 by the Gram-Schmidt procedure as in Example 2 of Section 5.2.)
We now show that 8 is also a basis—an orthogonal basis—for C? (a,b).  Let f be a
real continuous function on [a,b]. Assume (f,p&= 0 for all polynomials pk in @ .
We show that f must be the zero vector. By the Weierstrass theorem, for each e > 0
there is a polynomial p, such that llf - pC(12  < C. Furthermore, since B is a basis for
C? (a, b), p, = Cz= tckpk for some finite number N. Then

Since jlfl]‘+ jlp,112 < E for an arbitrarily small number l  , llfl] = 0, and the function f
must be the zero vector. Thus the orthogonal set 9 is complete in 6? (a, b), and all
orthogonal polynomial bases for ‘Z? (a,b)  are bases for e (a,b)  as well.

Harmuth [5.13] describes an interesting orthogonal basis for C! (a,b)—the set of
Walsh functions. These functions, which take on only the values 1 and -1, are
extremely useful in digital signal processing; only additions and subtractions are
needed to compute the Fourier coefficients.

The classical Fourier series expansion (5.29) for periodic functions applies to
functions f in the standard inner product space C?(a, b); we merely repeat the
values of f on [a,b] periodically outside of [a,b] with period p = b - a. If we denote
the set of sinusoidal functions (5.30) by X, then the orthonormal set X is
complete in C? (a,b ); it is an orthonormal basis for C? (a,b) .

Exercise 2. The Fourier series expansion (5.29) of a periodic function f
contains only sine terms if f is an odd function and only cosine terms if f is
an even function. Show that in addition to the sine-cosine expansion
mentioned in Example 2, a function in C?(O,b) can be expanded in two
additional series of period p = 2b, one involving only sines (the Fourier sine
series), the other involving only cosines (the Fourier cosine series).

If {xk } is an orthonormal basis for v, the set of Fourier coefficients (or
coordinates) {(x, xk)} is equivalent to the vector x itself, and operations on
x can be carried out in terms of operations on the Fourier coefficients. For
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instance, we can compute inner products by means of Parseval’s equation:

bY)= / iit (x,x,>x,, 2 (&x,)x,\
\k=I j-1

= 5 (X,Xk)(Y,  x,)
k-1

(5 .47)

(Because we are concerned primarily with real spaces, we usually drop the
complex conjugate.) If y = x, (5.47) becomes Parseval's identity:

llxl12=  2 I(x,x,>12
k-l

(5.48)

Equation (5.48) is also a special case of the Pythagorean theorem.
Furthermore, it is the limiting case (equality) of Bessel’s inequality (P&C
5.4). In point of fact, Bessel’s inequality becomes the identity (5.48) for
each x in ?I’-  if and only if the orthonormal set {xk} is a basis for v.

Of course, not all bases for infinite-dimensional spaces are orthogonal
bases. Naylor and Sell [5.17, p. 317] describe one set of conditions which
guarantees that a nonorthogonal countable set is a basis. However, rarely
do we encounter in practical analysis the use of a nonorthogonal basis for
an infinite-dimensional space.

In a finite-dimensional space we can pick an inner product to
orthonormalize any basis; specifically, we pick the inner product defined
by Parseval’s equation (5.27). The infinite-dimensional equivalent (5.47) is
less useful for this purpose because the unknown inner product is needed
to find the coordinates in the equation. In an infinite-dimensional space,
the choice of inner’ product still determines the orthonormality of a set of
vectors; but the norm associated with the inner product also determines
whether the vectors of an orthonormal set are complete in the space. Given
a basis for an inner product space, what changes can we make in the inner
product (in order to orthonormalize the basis) and still have a basis? For
spaces of functions defined on a finite interval, a positive reweighting of
the inner product does not destroy convergence. For example, if {f k} is a
basis for C?(a,b)  with the standard function space inner product, then for
any f in (?(a,  b) (with unique coordinates {ck } relative to {f k}) and any
e >O there is a number N such that Jb,lf(t)-Xi=  1C,f,(t)12dt  < e for n > N.
Suppose we define a new inner product for the same space of continuous
functions:

(5.49)
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where o(t) is bounded and positive for t in [a,b]. Then, using the same
basis {fk } and the same coefficients {c k},

where M is a positive bound on cc)(t).  Since E is arbitrarily small, Me is also
arbitrarily small. Thus for large enough n the partial sum is still arbitrarily
close to f in the new norm. We represent by e(o; a,b ) the space of
continuous functions with the inner product (5.49). It is evident that the
choice of o affects the definition of orthogonality, but does not affect the
convergence or nonconvergence of sequences of vectors. Of course, the
weighted inner product (5.49) does not represent all possible inner pro-
ducts on the function space C? (a, 6); it does not allow for “cross products”
analogous to those in (5.13). Yet it is general enough to allow us to
orthogonalize many useful bases.

Example 3. Orthogonalizing a Basis by Weighting the Inner Product The shaft
position C/B of an armature-controlled motor as a function of armature voltage u is
described by

(J&(t) 4 !3$ + ep -u(t)

The eigenfunctions of L with the boundary conditions +(O) =+(b) = 0 are given by
(4.38):

We pick the weight o in the inner product (5.49) so that the set {f k } is orthogonal:

for m # k. The functions {sin(lrkt/b)} form a well-known orthogonal basis for
(Z (0, b ) using the standard function space inner product, as we noted in Example 2.
Therefore, the weight o(t) = e’ makes the functions {f k} orthogonal with respect to
the weighted inner product. (The choice o(t) = 2e’/  b  would make the set
orthonormal. However, it is more convenient to normalize the eigenfunctions,
multiplying each by w ).
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We now demonstrate that the eigenfunctions {fk } are a basis [complete in
6? (0, b )] by showing that the only function orthogonal to all functions in the set is
the zero function. Suppose (f, f,), = 0 for all k. Then

Since { sin( vrkt  / b)} is an orthogonal basis with respect to the standard function
space inner product, and since the Fourier coefficients of feti2 relative to this basis
are all zero, fefi2 = 8 and f = 8. Therefore, {f k} is an orthogonal basis for the space
6? ( e t; 0 , b). This orthogonal basis of eigenfunctions is used in Example 4, Section
5.5 to diagonalize and solve the differential equation described above.

Hilbert Spaces

From Example 2 it is evident that a single infinite set can be a basis for
several different infinite-dimensional spaces. Suppose {x k } is an
orthonormal basis for an infinite-dimensional inner product space v.
Presumably there are vectors x, not in V, which can be expanded uniquely
in terms of {xk} (assuming we extend the inner product space operations
to the additional vectors). What is the largest, most inclusive space for
which {xk} is a basis? We refer to the largest space X of vectors which
can be represented in the form of x = XT=,  ckxk as the space spanned (or
generated) by the basis {xk}. (Because {x k} is orthonormal, the coefficients
in the expansion of x are necessarily unique.) We show that X is precisely
the space of vectors x which are square-summable combinations of the
basis vectors; that is, x such that x = X2=  i ckxk with Xr= i 1 ck12  < 00.

Suppose a vector x in X can be expressed as x =ZT. i ckxk,  where {xk }
is an orthonormal basis for the inner product space ‘v. Define

y, f X23.,  ckxk. Then {yn , n = 1,2, …} is a Cauchy sequence which
approaches x, and jly, - yn(l+O as m, n+cc. If we assume n > m and use
the orthonormality of {x~},  we find (Iyn-ym(12= I~~~-,c,x,-~~,,c,x,~~~
= 11X:=,+ 1c~~k(12=X~=m+  i Ic,J’. Therefore, Xi,n,+,  (ck12-+0  as m, n--+00.
It follows that Cz=,+ i Ick12-+0 as m-co; in other words, for each l > 0
there is a positive number M such that m > M implies Xr-,,,+, 1 ck12 < e.
Pick a value of E, and let m be a finite number greater than M. Then

Consequently, ZZ ?a i I ck I’ < cc, and x can be expanded on the basis {xk }
only if x is a square-summable combination of the basis vectors. Con-
versely, square summability of the coefficients {c k} implies that Ily, - y, (1’



Sec. 5.3 Infinite-Dimensional Spaces 275

-+O  as m, n+co, and the sequence {y n} is a Cauchy (convergent) sequence.
Thus any square-summable combination of {x k } must converge to some
vector x in the space which we have denoted X.

It is apparent that X may be more complete than ‘V. If we were to
associate a single inner product space with the basis {xk }, the natural
choice would be the largest space for which {xk } is a basis, the space x . If
V# X, then ‘V and X differ only in their “limit vectors.” Suppose x
satisfies x = ET=, ckxk, and again denote the nth partial sum by yn
Z-pk- i ckxk.  The sequence of partial sums {yn } is a Cauchy sequence with
limit x. Thus each x in X is the limit of a Cauchy sequence in V. In point
of fact, X differs from V only in that X contains the limits of more
Cauchy sequences from Ir than does li‘.

Example 4. A Cauchy Sequence in (? (0,l)  with no Limit in e(O, 1). The func-
tions { f k } of Figure 5.7 form a Cauchy sequence in e(O, 1) with the standard
function space inner product (5.16); that is,

s
‘(t(t)-fJt))‘dt+O as n,m+w

0

The limit in norm of the sequence {f k } is the discontinuous function

f(t)= 1, t<f

0, t>+

which is not in L? (0,1). The limit vector f is a member of a space which is larger
and more complete than e(O, 1). Yet f can be expanded uniquely in the sine-
cosine basis (5.30) for e(O, 1).

Definition. Let S be set in an inner product space ?r. A vector x in ‘V is
called a point of closure of S if for each E > 0 there is a vector y in S such

Figure 5.7. A Cauchy sequence in i? (0,l).
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that 11x-  yll < E; that is, x can be approximated arbitrarily closely in norm
by vectors y in S . The closure of S , denoted 5, consists in S together
with all its points of closure. If $5 contains all its points of closure, it is said
to be closed. A set S, in S is said to be dense in S if S is the closure of
S,; that is, if every vector in S can be approximated arbitrarily closely in
norm by a vector in S 1.

Definition. An inner product space X is said to be complete if every
Cauchy (convergent) sequence from X converges in norm to a limit in X .
A complete inner product space is called a Hilbert space.

The terms closed and complete, as applied to inner product spaces, are
essentially equivalent concepts. The inner product space V discussed
above is not complete, whereas the “enlarged” space X is complete; x is
a Hilbert space. The space ‘v is dense in X; that is, X is only a slight
enlargement of V. We can complete any inner product space by extending
its definition to include all of its limit vectors. Of course, the definitions of
addition, scalar multiplication, and inner product must be extended to
these additional limit vectors [5.11, p. 17].

Example 5. Finite-Dimensional Hilbert Spaces. Every finite-dimensional inner
product space is complete [5.23, p. 143]. For instance, we cannot conceive of an
infinite sequence of real n-tuples converging to anything but another real n-tuple;
the ith components of a sequence of n-tuples constitute a sequence of real numbers,
and the real numbers are complete.

Example 6. The Hilbert Space 1,. We denote by li the space of square-summable

sequences of complex numbers with the inner product (x, y) A IX?=,  &qkjk,  where 5;,
and Q are the kth elements of x and y, respectively. (A square-summable sequence
is a sequence for which llx112=200k= 1 l&l2 < oo .) We use the symbol l2 to represent
the space of real square-summable sequences; then the complex conjugate in the
inner product is superfluous. Both the real l2 and the complex 1; are complete [5.23,
p. 48]. The standard basis {Ed},  where ej = (0, . . . , 0, li, 0, . . . ), is an orthonormal basis
for both the real and complex cases.

Example 7. The Hilbert Space C,(a,b). Let C$ (a,b ) be the space of complex
square-integrable* functions defined on the finite interval [a,b] with the inner

product (f,g) A $if(t)g(t)dt. (A square-integrable function is one for which
llfJ12=  Jf: If(t)l”dt is finite.) The symbol $(a,b) is used to represent the space of
real square-integrable functions; then the complex conjugate is unnecessary. We
usually concern ourselves only with the real space. Both the real E,(a,b) and the
complex g (a,b) are complete [5.2, p. 115]. The space k?,(a,b)  contains no delta
functions. However, it does contain certain discontinuous functions, for example,

*The integral used in this definition is the Lebesgue integral. For all practical purposes, we
can consider Lebesgue integration to be the same as the usual Riemann integration. Where
the Riemann integral exists, the two integrals are equal. See Royden [5.21].
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step functions. (Recall from the definition of equality in norm that we ignore
isolated discontinuities. As a practical matter, we seldom encounter a function with
more than a few discontinuities in a finite interval.) We can think of C,(a,b)  as
essentially a space of functions which are piecewise continuous, but perhaps

unbounded, in the finite interval [a,b]. Any set 9 A {pk } of orthogonal poly-
nomials which forms a basis for CP (a,b ) is a basis for both the real and complex
E*(a,b).  An orthonormal basis for both the real and complex !Z,(a, 6) is the set of
sinusoids (5.30), with p = b - a. Another orthonormal basis for the complex C$ (a, 6)
is the set of complex exponentials (5.33) with p = b - a.

Example 8. The Hilbert Space C,(w;  u, 6). Let C2(w;  a , b) represent the set of all
-square-integrable functions with the inner product (5.49). That is, h(w;  

contains those functions that have finite norm under the inner product (5.49).
From the discussion associated with (5.49) it is apparent that lZZ(w; a,b) differs
from e2(a, b) only in the inner product. Both spaces contain precisely the same
functions, and completeness of h(w; a,b ) follows from the completeness of
Ma, b).

A Hilbert space possesses many subsets that are themselves inner
product spaces (using the same inner product). These subsets may or may
not be complete. If a subset is a complete inner product space, it is itself a
Hilbert space, and we refer to it as a subspace. If a subset is a vector space,
but is not necessarily complete, it is properly termed a linear manifold.
Since all finite-dimensional vector spaces are complete, all finite-
dimensional linear manifolds of Cz(a,  b) are subspaces. However,

and the space of piecewise-continuous func-
tions on [a , b] are (incomplete) linear manifolds of F2(a,  b). Each of these
spaces is dense in &(a, b), and thus is nearly equal to &(a, b).

We note that if X is a Hilbert space and S is any set in X, then the
orthogonal complement S L must be a subspace. For if {xn } is a Cauchy
sequence in SL with limit x in X, then (x,, y) = 0 for each y in S ; it
follows that

and the limit vector x is also orthogonal to S . [In order to take the limit
outside the inner product, we have relied on the continuity of inner
products. See (5.56).]

Example 9. An Infinite-Dimensional (Complete) Subspace of &(a,b).  Let ‘?lS be
the (one-dimensional) subspace of constant functions in C,(a, b). By the previous
paragraph, the orthogonal complement %I is complete. But w1 consists in those
functions f in f&(a,  6) which satisfy = 0 for all constants c. Thus the
functions in %(a,  b) whose average value is zero form a complete subspace of
!Qa, b). This subspace is itself a Hilbert space.
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Why do we care whether or not a vector space is complete? One reason
is that we wish to extend finite-dimensional concepts to infinite-
dimensional cases. Some of these concepts extend only for a Hilbert space,
the natural generalization of a finite-dimensional space. (Recall that finite-
dimensional spaces are Hilbert spaces.) The only concept we have dis-
cussed thus far which applies only for Hilbert spaces is the projection
theorem (5.20), V = % 63 %I. The proof of (5.20) depends on the fact
that repeated application of the Gram-Schmidt procedure can generate no
more than n orthogonal vectors in an n-dimensional space. The theorem is
valid in an infinite-dimensional space V if and only if ‘V is a Hilbert
space and % is a (complete) subspace of [5.2, p. 172]; of course, %l is
always complete.

Fortunately, the question of completeness of an inner product space is
seldom of practical concern, since we can complete any inner product
space by extending its definition. Suppose a linear transformation T has its
domain and range in a separable Hilbert space X (a Hilbert space with a
countable basis). Then if domain(T) is dense in X, we refer to T as a
linear operator on the Hilbert space X . For instance, the completion of the
space (?“(a,  b) of real, infinitely differentiable functions on [a,b] is just
f&(a,b) of Example 7. We apply a differential operator L to any space of
“sufficiently differentiable” functions and still refer to L as a differential
operator on e2(a,  b).

In our examination of finite-dimensional vector spaces we used the
process of taking coordinates to equate every n-dimensional space to the
matrix space w x ‘. We now equate inner product spaces, both finite and
infinite-dimensional. Two inner product spaces, V with inner product
( , )y and % with inner product ( , )w, are isomorphic (or equivalent)
if there is an invertible linear transformation T: ?/+qti which preserves
inner products; that is, for which (x,Y)~ = (Tx,Ty), for all x and y in
V. The process of taking coordinates relative to any orthonormal basis is
just such a transformation.

Example 10. Coordinates for Real n-Dimensional Inner Product Spaces. For n-
dimensional spaces, we take 91Lnx 1 with its standard inner product as our space of
coordinates. Let Ir be any real n-dimensional inner product space; let !X be an
orthonormal basis for ?r, Define T: ‘Y+  9Rn x ’ as the invertible linear transforma-
tion which assigns to each vector x in ‘v its set of Fourier coefficients (or
coordinates) in 9L’ x ’ :

TX A ((x,xJy * * * <Jv%JY)‘=  b&x

Since % is orthonormal, Parseval’s equation (5.27) is satisfied:
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This is the standard inner product in the real space ‘3Lnx  ‘. Clearly, each real
n -dimensional inner product space (a Hilbert space) is equivalent to 9Rnx  ’ with its
standard inner product. (By inserting a complex conjugate in the inner product, we
can show that every complex n-dimensional inner product space is equivalent to
9R z x ‘, the space of complex n x 1 matrices with its standard inner product.)

Example 11. Coordinates for Real Separable Infinite-Dimensional Hilbert Spaces.
The logic of Example 10 applies to all separable Hilbert spaces (Hilbert spaces
which have countable bases). For separable infinite-dimensional spaces, we take 1,
with its standard inner product as our space of coordinates. A separable space has
a countable basis. Any such basis can be orthonormalized by the Gram-Schmidt
procedure. Suppose !!X = {xk } is an orthonormal basis for a real separable Hilbert
space X. We define T: X+Z, as the process of assigning Fourier coefficients
relative to this basis :

TX b ~x,~~c,<x~x~)~c,  . ..)=bdn (5.50)

From our discussion of the space spanned by an orthonormal basis, we know that
the coordinates (Fourier coefficients) of vectors in X consist in the square-
summable sequences which constitute Z,. Since Fourier expansions exist and are
unique for each x in 3c, T is invertible. Because the set {xk } is orthonormal,
Parseval’s equation (5.47) applies:

This is the standard inner product between the coordinates of x and y (in /,).
Therefore, every real separable infinite-dimensional Hilbert space is equivalent to
the real space Z, with its standard inner product. Thus the somewhat mysterious
space lQa, b) is, in essence, no more complicated than Z2. In Example 11 of Section
5.4 we introduce IQQ), an inner product space of square-integrable functions
defined on a finite two-dimensional domain a; lZ,(Q) is also equivalent to Z,. (By
inserting a complex conjugate in each inner product, we find that every complex
separable infinite-dimensional Hilbert space is equivalent to the complex space 1;
with its standard inner product.)

5.4 Adjoint Transformations

In the preceding section we developed separable Hilbert spaces as natural
generalizations of n-dimensional inner product spaces. We know that we
can generate a countable orthonormal basis for any such space. In (5.25)
we diagonalized and computationally decoupled an operator equation in
an n-dimensional space by means of an orthonormal basis of eigenvectors.
We have also discussed the applicability of orthonormal eigenvectors to an
infinite-dimensional example, the steady-state analysis of a dynamic sys-
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tem. Can we diagonalize a general linear operator on an infinite-
dimensional space, a differential operator, for instance? We can if there is
a countable orthonormal basis for the infinite-dimensional space which is
composed of eigenvectors of the operator. In Example 3, Section 5.3 we
orthogonalized a set of eigenfunctions by careful choice of the inner
product. We would like to be able to make general statements which
clearly characterize the existence of an orthonormal basis of eigenvectors
for a given operator on a given infinite-dimensional space. Given a set of
eigenvectors for an operator T on a given vector space ?r, for what inner
products are the eigenvectors an orthogonal (or orthonormal) basis? For
what operators T on a given inner product space ‘V do there exist
orthonormal bases of eigenvectors? In sum, under what conditions can we
diagonalize an operator equation by means of an orthonormal basis? The
answers to these questions are to a great extent answered in the concept of
“self-adjointness.” We introduce the adjoint transformation in this section,
and return to a discussion of orthonormal bases of eigenvectors for solving
operator equations in Section 5.5.

We observed in Chapter 1 that we can interpret a matrix multiplication
Ax either as a linear combination of the columns of A or as a set of
standard inner products of x with the rows of A. Furthermore, we know
that the number of independent rows of A equals the number of indepen-
dent columns. Since the rows and columns of A possess much common
information, we would be surprised if multiplication by the transposed
matrix AT did not describe a transformation closely related to multiplica-
tion by A. Let T: %2x ‘-+ %3x ’ be defined by

We define the “transpose” transformation TT: ‘?%3x ‘+ %2x ’ by

TTyAATy=(;  ; ;)y

The range and nullspace of T are important indicators of its structure.
of theThey display the nonsolvability and nonuniqueness of solutions

equation Tx = y. Observe that

range(T) = span , nullspace(T ) = span

range(T T) = span nullspace(T T) = span
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Range(T) and nullspace(T ) are, of course, in different spaces. However,
range(T ) and nullspace(T T) are in the same space; in fact,

9.,3x  ’ =  r a n g e (T) nullspace(T T)

Similarly,

Gsrc2x  ’ =  r a n g e (T T) nullspace(T)

Furthermore, these direct sums are orthogonal relative to the standard
inner products for the two spaces. It is evident, at least for this example,
that T and TT together characterize the transformation T more explicitly
than does T alone.

We extend the transpose concept to general linear transformations. We
find that the orthogonal decomposition illustrated above still applies.
Recall that orthogonal decomposition is closely related to Fourier series
expansion and, therefore, to orthonormal bases. The generalization of TT,
together with T itself, characterizes the existence or nonexistence of
orthonormal bases of eigenvectors.

Bounded Linear Transformations

The generalization of the transpose matrix exists only for transformations
which satisfy certain restrictions. We now define the concepts which we
use to express these restrictions.

Definition. Let T be a (possibly nonlinear) transformation from an inner
product space ?‘- into an inner product space ‘?6. Then T is bounded if
there is a positive number a such that

IIWl~ 6 4lxll Y for all x in Ir (5.51)

We define the norm of T by*

IlTil 2 inf{ a: IITxlJ w Q allxll  y for all x in v} (5.52)

We can think of lITI as the tightest bound for T. It follows that

IITXII w Q IITII llxll  Y (5.53)

*The term "inf” means infimum or greatest lower bound. If the bound is actually reached, the
infimum is just the minimum. The term “sup” means supremum or least upper bound; if the
bound is attained, the supremum is the maximum.
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If T is linear, (5.52) can be expressed as

IlTll =inf
i

II WI w
ct:ll~lly Gcx

1

=inf{lx:JITxll,  < LY,  IIxllv=l}

= SUPII,IIv=  I{ IIWI 9lf >

Hilbert Spaces

(5.54)

Example 1. A Norm is a Bounded Functional. Define T: Ir+%  by Tx b llxllV.
Then IITx/I~ = lTxl= IlxllV. Clearly, the number 1 is a bound for T and llTl1 = 1.

Example 2. Matrix Transformations are Bounded. Define T: 9Rzx  l+ 9R~”  ’ by

Tx 4 Ax, where A is a (possibly complex) m x n matrix. Assuming standard inner
products, llTxl12  = JlAx112 =-T-Tx A Ax. Then, by (5.54), IlTl12=maxxTxI  iXTATAx.  It can
be shown that lITI = a , where &,, is the largest eigenvalue of the matrix A’A
(see P&C 5.29). We call K the spectral radius of A and denote it by a(A). We
also refer to a(A) as the norm of A, denoted [[All. Thus

IITII  = llAll= b(A) = a

It is apparent that the bound a is attained for x equal to a normalized
eigenvector of xTA corresponding to the eigenvalue A,. The fact that matrix
transformations are bounded implies that all transformations on finite-dimensional
spaces are bounded.

If A is square, it makes sense to speak of the eigenvalues of A itself. If A is also
real and symmetric, its spectral radius is just the largest eigenvalue of A. That this
statement is not true for every square matrix is demonstrated by the matrix

for which the largest eigenvalue is A= 1, but for which llAll = a(A)= fi . The
bound [IA11 is attained for x = (1 1)T.

Example 3. Integral Operators are Bounded Define the linear operator T on
C,(a,b)  by (Tf)(t)= Jik(t,s)f(s)ris,  where the kernel k satisfies 12 1: k2(t,s)drdt
< cc. Such a kernel is called a Hilbert-Schmidt kernel and T is known as a
Hilbert-Schmidt integral operator. If k is bounded for t and s in [a , b], for instance,
then T is Hilbert-Schmidt. Many operators are of this type; for example, the
inverses of most differential operators defined on a finite interval. We apply the
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Cauchy-Schwartz inequality (P&C 5.4) to find

Therefore, by (5.54),

(5.55)

and T is bounded. Under what conditions is the bound (5.55) actually the norm of
T ? The Cauchy-Schwartz inequality becomes an equality if and only if the two
arguments k(t,s) and f(s) are dependent functions of s. Therefore, if there is an f in
C2(a, b) such that k(t,s) = g(t)f(s), then the bound which we have exhibited is
actually llTl1.  For many integral operators, IIT is equal to the magnitude of the
largest eigenvalue of T (P&C 5.29).

Example 4. Differential Operators are not Bounded Differential operators are
among the most useful transformations, yet they are seldom bounded. For instance,
let D operate on C2(0, 1). Let {fk } be the sequence of functions shown in Figure
5.8a. In the & norm, llf11j2=  l$‘dt = f and JJf,ll’= SAdt= 1. Therefore, the
functions in the sequence satisfy

Ilf,l12=  i < llf/cl12<  1 = llfall12

Yet we recognize from Figure 5.8b that

There is no number (Y which “bounds” D for all f in lZ2(0, 1). In the limit as k-w,
an equivalent statement is that the derivative of a discontinuous function contains
a delta function, but delta functions are not square integrable; they are not in
MO, 0.

Definition. A (possibly nonlinear) transformation T: y--+ ‘?6 is said to be
continuous at x0 if for each E > 0 there is a 6 > 0 such that
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Figure 5.8. Differentiation of a sequence of functions.

That is, T is continuous at x0 if making 11x - x,,ll y small will guarantee that
IlTx -Tqllw is small. If T is continuous for each x in ?‘-, we just say T is
continuous.

The nonlinear transformation Tx A llxllV, for example, is continuous.

Suppose T is continuous and x0 = lim,,, xn in II. If xn approaches x0 ,
then Txn approaches Tx0; in other words,

&I& (TX,,)  = TX, = T( ;;l x,,) (5.56)

We will find this fact useful in the decoupling of equations on infinite-
dimensional spaces. It is easy to show that a linear transformation is
continuous if and only if it is bounded. Thus the linear transformations of
Examples 2 and 3 are continuous transformations. It is apparent that
bounded (or continuous) linear transformations are “well behaved.” The
linear differential operators of Example 4 are not continuous and are
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“poorly behaved.” It is for bounded (continuous) linear transformations
that we will show most of the useful results of this chapter. It is usually
difficult, if not impossible, to extend these concepts to unbounded linear
transformations in a rigorous manner. Yet the concepts will be shown, by
example, to extend in certain instances.

Completely Continuous Transformations

We now introduce briefly the concept of “complete continuity” of a linear
transformation in order to specify conditions which guarantee the exis-
tence of a countable basis of eigenvectors.

Definition. A set S in an inner product space Ir is said to be bounded if
there is a constant M such that llxlj < M for all x in 5 . A set S is compact
if each infinite sequence of vectors from $ contains a subsequence that
converges to a vector of S . Every compact set is closed and bounded. In
finite-dimensional spaces the converse is also true: a set is compact if and
only if it is closed and bounded, and every bounded set is closed [5.22, p.
185].

It is easy to see that a linear transformation T: ‘v+% is bounded
(continuous) if and only if it maps bounded sets in ‘V into bounded sets in
?6. A stronger restriction on T, which guarantees the countability of the
eigenvalues and eigenvectors of T, is that of complete continuity.

Definition. A linear transformation
bounded sets into compact sets.

T is completely continuous if it maps

A completely continuous transformation is continuous, but the converse
is not necessarily true. On an infinite-dimensional space, even the (con-
tinuous) identity operator is not completely continuous. Any bounded
linear transformation whose range is finite-dimensional is completely con-
tinuous; thus any operator on a finite-dimensional space is completely
continuous. The Hilbert-Schmidt integral operators of Example 3 are also
completely continuous. Suppose T and U are completely continuous
transformations mapping 1/ into % ; then the linear combination aT + bU
is completely continuous. If T and U are linear operators on V, one of
which is bounded and the other completely continuous, then TU and UT
are completely continuous. If Tk is the kth member of a sequence of
completely continuous linear transformations mapping Ir into %, then
the limit operator T defined by

k”“, llTk-Tll =0
-3

is completely continuous. If a completely continuous transformation T is
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defined on a infinite-dimensional space, then T-1, if it exists, is un-
bounded. Detailed discussions of completely continuous transformations
can be found in Bachman and Narici [5.2] and Stakgold [5.22]. We content
ourselves with this brief introduction; however, we make occasional re-
ference to the consequences of complete continuity.

Bounded Linear Functionals

The key theorem in the development of a generalization of the transpose
matrix is the Riesz-Frechet theorem. This theorem relates inner products
and “bounded linear functionals.” As indicated in Section 2.3, a functional
is a scalar-valued transformation. Suppose ‘V is an inner product space.

The transformation B: V-+e defined by Bx A (x,Y)~ for a fixed vector y
in V is a linear functional. (Recall that an inner product is linear on the
left.) By the Cauchy-Schwartz inequality (P&C 5.4), ]]Bx]le  = I(x,~)~]

< IIYllvlla-v and l]yl]V  is a bound for the linear functional B. Further-
more, the bound is attained with the normalized vector x = y/]]yl] y, and
thus l]Bl]  = I]y]lV.  Each different y in ‘v specifies a different bounded (or
continuous) linear functional. If ‘Ir is a Hilbert space, we can say more—
any bounded linear functional on Ir can be represented by an inner
product.

Riesz-Fréchet Theorem. Corresponding to any bounded linear functional
B on a Hilbert space X there is a unique vector y in X such that

Bx=(x,~)~ for all x in x (5.57)

Furthermore, l]B]] = l]yllx.

Proof. If B is the zero functional, it is obvious that y = 0. Assume B is not
the zero functional, and let ‘?!ti = nullspace(B ). (% consists of all x in ‘X
for which Bx = (x, y> = 0. Thus the vector y which we seek spans %I.) Let
y0 be a unit vector in %‘-, and x any vector in X . The vector (Bx)y0 -
(By0 )x is in % (verified by substitution into Bx = 0).* Therefore,

((Bx)y, - (By& Y,-,>  = (Bx) - (BY& Yo) = o

or Bx = (x, (By,)y,,).  The vector y = (By,)y,  in ‘?6*  represents B as required
by (5.57). To see that y is uniquely determined by B, we assume both y and
z will do. Then (x, y) = (x,z> or (x, y -z) = 0 for all x in X including

*Since range(B ) is one-dimensional, Bx and By0 are scalars; they can be used as scalar
multipliers.
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x = y - z. It follows that y - z = 8 or z = y. We showed that llBll= llyll y in
the discussion prior to the theorem.

Example 5. Bounded Linear Functionals on %T x1* Any linear functional B on
the standard inner product space 9lLz x ’ is bounded and representable as Bx =~TX
for some y in 9X$”  ‘. That is, a linear functional acting on n X 1 matrices is
necessarily the taking of a specific linear combination of the n elements of the
matrices. Furthermore, llBll= jlyll= m = u(y), the spectral radius of the n x 1
matrix y.

Example 6. Bounded Linear Functionals on &(a,b).  The most general bounded

linear functional B on the standard Hilbert space E,(a, b) is Bu A 1 i u(t)g( t)dt for
some specific g in Cz(a, b), and llBll= [ $ z Ig(t)12dt]‘/2.  For example, the response f
of a single-input linear time-invariant dynamic system with zero initial conditions is
the convolution of the system input u with the impulse response g* :

f(t)=loru(s)g(t-S)ds

For the interval 0 < t < b, this function can be written

f(t) = jobu(s)k,(s) ds = (u, k,)

where

k,(s)=g(t-s)  s< t

=o s>t

Thus for each instant t, f(t) is a bounded linear functional on C,(O,  6). The function
in C,(O,b) that represents the linear functional is kt. Treated as a function of t and
s, kt(s) is the Green’s function for the dynamic system (see Chapter 3). A crude
measure of the effect of the linear functional is the norm of the functional,

Ilk~ll=[S~g2(t-s)~l”2.

Example 7. Function Evaluation, an Unbounded Linear Functional. Define B:

C2(a, b)+% by Bf b f(t0), where t0 is in [a , b]. This linear functional, evaluation at
t0, is not bounded. For if fk is a pulse of height k and width 1/k2, centered at t0,
then llfkll= 1, but IlBf,II=k+co. It is well known that f(te)= $tf(t)i!S(t-to)&,
where 6 (t - t0 ) is a Dirac delta function centered at t0 .† Thus in a sense the
Riesz-Fréchet theorem extends to at least this unbounded linear functional. How-
ever, 8 (t - t0 ) does not have a finite norm and therefore is not in !Z$(a,  b).

*See Appendix 2 for a discussion of convolution and impulse response.
† See Appendix 2 for an introduction to the properties of delta functions.
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The Adjoint

Let T: V+ % be a bounded linear transformation between Hilbert spaces
Ir and %. We now introduce the adjoint transformation T*, a generaliza-
tion of the transposed matrix multiplication with which we introduced this
section. The vector Tx is in %!. Since an inner product is a bounded linear

functional of its left argument, Ux A (Tx,z)% is a bounded linear func-
tional of the variable x in V. In fact, by means of the Cauchy-Schwartz
inequality (P&C 5.4) and the inequality (5.53), we can exhibit a bound:

IlUxll  w = Iww>, I g IlWGzlr  Il4lw < IITII ll4lvll4l~

or IlUll < lITIt llzll QJ - The Riesz-Fréchet theorem (5.57) guarantees that
there exists a unique vector y in ‘V which represents this bounded linear
functional U in the sense that

Ux= (TJw),  = (x,Y)~

It is evident from this equation that y in V and z in w are related. We
define this relation to be the adjoint transformation, y = T*z.

Definition. The adjoint transformation T* is defined by

<TX,  z>w = (x, T*z)~ (5.58)

for all x in V and z in %.
The existence of T* is guaranteed by the bounded linear nature of T and

the completeness of V. Uniqueness and linearity of T* are easily verified.
Furthermore, T* is bounded; we recognize that

IIT*zll  Y = IIYII Y = IlUll G IITII llzll GUT

By (5.54),

Since (5.58) is symmetric in T and T*, reversing the roles of T and T*
shows that lITI < llT*ll.  Thus

IlTll = IF* II (5.59)

An explicit description of T* can be obtained from the defining equation
(5.58) and a description of T. The basic technique for obtaining the
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description of T* is to write (Tx,z), and manipulate it into the form of
(~,T*z)~; in effect, we work operations off of x and onto z.

Example 8. The Adjoint of a Matrix Transformation. Let V = ERf” ’ and W

= Gsrcc”x1, each with its standard inner product. Define T: ‘v+% by Tx b Ax,
where A is an m X n matrix. Then

(TX,  z> q,r = (AT z> q~

= I’h

=(Az)=x

= (x,it=~)~ = (x, T*z),

Clearly,

T*z = AZ (5.60)

Of course, if A is real (or if Y and % are real) the conjugate is superfluous. It is
apparent that the transposed matrix example with which we introduced Section 5.4
is just a special case of the general adjoint concept. If the inner products are not
standard, multiplication by the conjugated transposed matrix is not the adjoint
(P&C 5.19).

Example 9. The Adjoint of an Integral Operator.  Let ‘v = W = F.$ (a,b). Define

T by (‘R)(t) h J 2 k(t,s)f(s)dr,  where k is a Hilbert-Schmidt kernel; by Example 3,
T is bounded. Then

Therefore,

@‘*g)(t)  4 Jbk(s,g(s)ds
a

(5.61)
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Whereas T requires integration with respect to the first variable in the kernel k, T*
requires integration with respect to the second variable. The kernel k(s, t) is the
analogue of the conjugated transposed matrix of Example 8. Once again, if the
spaces are real, the conjugations are superfluous.

Exercise 1. Let V = % = &(w; a , b ), for which the inner product is
(5.49). Assume the scalars are real. Define T: V+% by

(Tf)(t)  2 jbk(t,s)f(s)ds
a

where k is a Hilbert-Schmidt kernel. Show that

(5.62)

Adjoints of Differential Operators

Only for a bounded linear transformation on a Hilbert space does the
preceding discussion guarantee the existence of an adjoint transformation
which satisfies (5.58) and (5.59). In point of fact, if T is not bounded, it
makes no sense to speak of lITI/. Yet among the most useful transforma-
tions are the linear differential operators, which are unbounded. Thus if
the adjoint concept is useful, we have reason to attempt to apply the
concept to differential operators. We shall see that differential operators
do have adjoints.

Consider the simple differential operator D defined by ( Df)( t ) g f’(t)
acting on functions defined over the interval [a,b]. Assume the standard
function space inner product for both the domain and range of definition.
Nothing prevents us from using the approach of Examples 8 and 9 to try to
generate an adjoint for D. The natural technique for working differentia-
tions off of one argument and onto another is integration by parts:

(Df,g)= j-br’(t)g(t)dt
a

= f(tk(t>lb, - Jbf(r)gYt)d~
a

(5.63)

It seems logical to define D* by (D*g )(t)  A -g’(t)  =  (-Dg)(t ). However,
this definition does not quite agree with the defining equation (5.58) unless
the boundary term, f(b) g (b) - f (a) g( ) ,a is zero. We must not lose sight of
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the fact that differential operators usually have associated boundary condi-
tions. Suppose the boundary condition associated with D is f (a ) - f( b) = 0.
Then in order that the boundary term of (5.63) be zero, we must have
f(b)[g (b) - g (a)] = 0, or g (b) - g (a) = 0.

It should be apparent that for any ordinary linear differential operator L
with a set of accompanying homogeneous boundary conditions we can use
integration by parts to generate an adjoint differential operator L* with
accompanying adjoint homogeneous boundary conditions. The operators
L and L* satisfy the defining equation, (5.58), for all f and g in &(a,b)
which satisfy the respective boundary conditions. [Of course, we have
given up on (5.59).] If we were to change the homogeneous boundary
conditions associated with L, we would obtain a different set of adjoint
boundary conditions, but the same adjoint differential operator L*. We
refer to the adjoint differential operator L* as the formal adjoint of L. The
formal adjoint is independent of boundary conditions. The definition of an
operator always includes a definition of its domain. We use the homo-
geneous boundary conditions associated with L to restrict the domain of L.
The adjoint boundary conditions, which arise naturally out of the integra-
tion by parts, determine the restrictions on the domain of the formal
adjoint L* in order that it be a true adjoint of L [in the sense that it obeys
(5.58)]. Thus the formal adjoint of D is D* = -D. If the boundary
condition associated with D is an initial condition, f(a) = 0, then by (5.63)
the adjoint boundary condition is a final condition which requires that
g(b) = 0 for each g in the domain of D*.

If we wished, we could further restrict the domains of L and L* to
include only differentiable functions, thereby eliminating delta functions
and their derivatives from range(L) and range(L*). However, formal use of
integration by parts works for delta functions. Therefore, as a practical
matter, we do not concern ourselves with this restriction.

Example 10. The Adjoint of Dn . Let the nth derivative operator Dn act on a space
of real functions defined over [a,b]. Assuming the standard inner product,
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(The intermediate terms are indicated only to show the pattern which the terms
follow. Some of the terms shown are extraneous if n = 1 or 2.) The formal adjoint of
D n is clearly (-l)n D n. The adjoint boundary conditions depend upon the
boundary conditions associated with Dn. A specific set of boundary conditions
does not determine a unique set of adjoint boundary conditions. However, the
domain defined by the adjoint boundary conditions is unique.

Exercise 2. Show that the formal adjoint of the differential operator
L&D”+qD”-‘+... + a,1 acting on a space of functions with the stan-

dard inner product is L* ~(-l)“D”+(-l)“-‘a,D”-‘+***  +a,$

Example 11. The Adjoint of a Partial Differential Operator. Let e,(8)  be the
space of real functions which are defined on a two-dimensional region Q and which
have finite norm under the inner product

(f, g} A /,f(P)dP) dP (5.64)

where p = (s , t ), an arbitrary point in !k We define the Laplacian operator V2 on

f%) by

for (s,t) in 52

For this problem, the symmetric form of Green’s theorem is the equivalent of
integration by parts; it states

(5.65)

where r represents the boundary of the region St, and the subscript n indicates the
derivative in a direction normal to r and directed out of 8.* Using this theorem,
we find

Clearly, the formal adjoint of V2 is just V2 itself.
Not all boundary conditions are appropriate for a partial differential operator.

For the Laplacian operator, one appropriate homogeneous boundary condition is
af (p) + bf n (p ) = 0 on the boundary. The adjoint boundary condition is selected such

*See Wylie [5.24, p. 575].
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that the boundary integral in Green’s theorem is zero. It is sufficient to make the
integrand zero for each p on I’:

Thus the adjoint boundary condition is  a g (p ) + bg n(p ) = 0 on r, the same as the
original boundary condition associated with V2.

Properties of Adjoints

Taking adjoints is similar to conjugation of complex numbers. Let ‘V,  a,
and G% be Hilbert spaces, and I the identity operator on ‘T. Suppose T
and U are bounded linear transformations from ‘v into qK, and S is a
bounded linear transformation from 3’ into %. Then it is easy to show:

(a) I* = I
(b) (T*)* = T

(c) (aT+bU)*=i?T*+&U* (5.66)

(d) (ST )* = T*S*

(e) If T has a bounded inverse, T* is invertible and (T*) -1 = (T - 1)*

In fact, property (e ) of (5.66) may be valid even if T-l is not bounded. For
example, let us define T on E2(0,  1) to be the bounded integral operator

(Tf)(t) b /‘f(s)&
0

Then T-l is the unbounded differential operator Lf A Df with the homo-
geneous boundary condition f(0) = 0. By (5.61) we know that T* differs
from T only in an interchange of the roles of t and s in the kernel function.
In this instance the kernel function for T is

k(t,s)=  1, s<t

=0, s>t

Therefore,
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On the other hand, it follows from (5.63) that (T - 1)*, the adjoint of

Lf 4 Df with its homogeneous boundary condition f(0) = 0, is L*g b -Dg
with the adjoint boundary condition g(1) = 0. But this differential system is
also (T*)-1, which we verify by acting on it with T* to get the identity
operator:

or T*(T*)-1g = g.
One of the most valuable characteristics of the adjoint transformation is

that it generates orthogonal decompositions of the domain and range of
definition of T. These decompositions are central to all forms of least-
square optimization, to many iterative techniques for optimizing
functionals, and to iterative techniques for solving nonlinear equations
(Chapters 6-8).

Orthogonal Decomposition Theorem. If ?r and q$ are Hilbert spaces,
and T: ?r+% is a bounded linear transformation, then

‘V = nullspace 6 range(T*)

%J =nullspace(T*)  63 range(T)
(5.67)

The symbol 6 implies that these direct sums are orthogonal; the null-
spaces and ranges are orthogonal complements. Theorem (5.67) is il-
lustrated abstractly in Figure 5.9. The bars over range(T) and range(T*)
indicate the completion (or closure) of these linear manifolds. We have
already seen this orthogonal decomposition demonstrated in the matrix
example that introduced Section 5.4.

By the projection theorem, V= G% 6 %-‘- for any subspace G2L of a
Hi lbe r t  space  ‘v. Therefore ,  i f  we  can  show tha t  nullspace(
[range(T*)]l,  it follows that [nullspace(T  = [range(T*)  * = range(T*)  ,
and the first orthogonal decomposition of the theorem is proved. Let y be
an arbitrary vector in ti ; then T*y = z is an arbitrary vector in range(T*) .
The orthogonal complement of range(T*) consists in all vectors x that are
orthogonal to all z in range(T* ); that is, all x such that

0 = (x, z), = (x, T*y)v  = (TX, Y&

for all y in ??l!. Therefore, TX = 0, the vectors x constitute the nullspace of
T, and nullspace(T ) = [range(T*)]l.  The proof of the second orthogonal
decomposition is parallel to that above.
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Figure 5.9. Orthogonal direct-sum decomposition described by T*.

Since an orthogonal complement is always a (complete) subspace, we
can see that the nullspace of any bounded linear transformation will be
complete. On the other hand, the range need not be complete. For

instance, let T on E2(0,  1) be defined by (Tf)(t) A /hf(s)ds.  Then since
C,(O, 1) contains no delta functions, range(T ) contains only continuous
functions; but the space of continuous functions [and thus, range(T )] is not
complete under the C,(O,  1) norm. We usually assume range(T ) and
range(T*) are complete, or ignore the difference between the ranges and
their closures.

Although we have proved the orthogonal decomposition theorem (5.67)
only for bounded linear transformations, it holds for many unbounded
linear transformations as well. We use the theorem wherever the adjoint
operator is defined. In particular, we apply the theorem to differential
operators, even though they are not bounded.

Example 12. Orthogonal Decomposition for a Partial Differential Operator. De-
fine V2 on Q&I) as in Example 11. Let the boundary condition be f n ( p ) = 0 on the
boundary r. Then, by Example 11, the adjoint operator and adjoint boundary
conditions are identical to the original operator and boundary conditions. The
nullspace of V2 with the boundary condition fn = 8 is the set of functions which are
constant over $22; that is, only if f( p) = c for p in G do we have (V%)(p) = 0 for p in Q
and fn (p) = 0 for p on I?. By the orthogonal decomposition theorem, we expect
range(V2) to be the orthogonal complement of nullspace(V2). Therefore, if we wish
to solve Vq= u with fn = 8 on the boundary, we must be sure u is orthogonal to
nullspace(V2),  or



296 Hilbert Spaces

This result can be given a physical interpretation. If u(p ) is the rate at which heat is
introduced at the point p [with units of (heat)/(time)(area)], then the steady-state
temperature distribution satisfies Poisson’s equation V2f = u. The boundary condi-
tion fn(p) = 0 says no heat is leaving !2 at the point p on the boundary. The
orthogonal decomposition shows that we cannot find a steady-state temperature
distribution such that no heat leaves the region unless the total heat generated per
unit time, lo u@)dp,  is zero.

It is apparent from Example 12 that the orthogonal decomposition does
apply to at least some unbounded linear transformations. It often provides
a useful way of checking whether or not a differential equation is solvable.
If range(T) is closed, the operator equation Tx = y is solvable if and only if
y is orthogonal to nullspace(T*). This nullspace is often easier to explore
than is range(T ); if T* = T, as in Example 12, we find nullspace( T*) by
solving the homogeneous equation Tx = 8. If the boundary condition in
Example 12 were f (p) = 0 on the boundary r, the nullspace of V2 would be
empty. Then the orthogonal decomposition theorem would show that the
operator was invertible.

If an operator T is not invertible, then the equation Tx = y may have no
solution or it may have many. The orthogonal decomposition theorem
finds considerable use in solving such equations uniquely in a least square
sense (Chapter 6). In point of fact, the decomposition pervades essentially
all least-square optimization.

Let T be a bounded linear operator on a Hilbert space X. Suppose T
has eigenvalues and eigenvectors. We discovered in Section 4.3 that if T- l

exists, the eigendata for T and T- l are related; T and T -1 have identical
eigenvectors and inverse eigenvalues. Given the close relationship between
T and T*, we also expect the eigendata for T to provide some information
about the eigendata for T*. Let xi be an eigenvector for T corresponding
to the eigenvalue Xi. Then, for any y in Ir,

O”xi,  Y> = <‘iXi, y> = (Xi, &y) = (Xi, T*y)

Thus (xi, (T* - &I)y) = 0 or range( T * -&I) is orthogonal to xi. Con-
sequently, range( T* -&I) does not fill X, and nullspace(T* -&.I)  must be
nonempty. In the finite-dimensional case we express this fact as

nullity(T* -&I)  = dim x - rank(T* - &I)

We see that if hi is an eigenvalue for T, xi is an eigenvalue for T*.
We will show that the eigenvectors of T and T* are related as well.

Suppose Xi and xi are eigenvectors of T corresponding to the eigenvalues Ai
and 3, respectively; let yi and yj be the corresponding eigenvectors of T*.
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Then

O= (TXi, yj) - (xi, T*yi)

= (& - Aj)(xi,  Yj> (5.68)

Clearly, if & and Aj are different eigenvalues of T, the eigenvectors xi and yj

(of T and T*, respectively) are orthogonal.
As a general rule, we expect T to be diagonalizable. That is, there is

usually a countable (and perhaps orthonormal) basis for X composed of
eigenvectors for T. Nondiagonalizability is the exception. (Of course, in
infinite-dimensional spaces we sometimes find there are no eigenvectors;
any dynamic system with initial conditions is an example.) Suppose T is
diagonalizable; let {&} be the eigenvalues of T and { xi} a corresponding
set of eigenvectors, a basis for X . Then the numbers {&} are the
eigenvalues of T*; we denote the corresponding eigenvectors of T* by {yi } .
The eigenvectors y i can be chosen such that

(5.69)

For those eigenspaces of T which are one-dimensional, (5.69) requires only
normalization of the one available eigenvector y i so that (xi, yi) = 1. If T
has several independent eigenvectors, say, xi,. . . , xm for a single eigenvalue
4, then the eigenvalue & for T* also has m independent eigenvectors,

y1 , . . . , ym, which we choose by solving m2 independent linear equations in
m2 unknowns, (x,, yj) = ski, for k, j = 1,. . . ,m. The eigenvectors {y i} of T*,
chosen to satisfy (5.69), form a basis for X which we say is biorthogonal to
the basis {xi}. We call {yi} the reciprocal basis (P&C 5.31).

Since the eigenvectors of T, {xi }, have been assumed to form a basis for
X , we can express any x in X in the form x = E:k c,x,. Then for any
vector yi in the reciprocal basis,

CxPYi)= 2 ck(xk9 yi> = 2 ck6ki=  ci
k k

where we have used the continuity of the inner product to take the infinite
sum outside the inner product. Therefore any x in X has the representa-
tion

x= c <x,Y,)x,
k

(5.70)

The “biorthogonal” eigenvector expansion (5.70) is very much like an
orthonormal eigenvector expansion. It can be used to diagonalize the
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operator equation, Tx = y. Furthermore, because of the biorthogonal na-
ture of the reciprocal bases, the coefficients are computationally indepen-
dent. Given a basis of eigenvectors {x i}, it is evident that finding the
reciprocal eigenvector basis {yi} is an alternative to finding the inner
product which orthonormalizes {xi}. *

Exercise 3. Show that every x in X also has a biorthogonal expansion in
the eigenvectors of T* :

x= x (x,x,)Y,
k

(5.71)

5.5 Spectral Decomposition in Infinite-Dimensional Spaces

Because differential equations appear so frequently as models for real
phenomena, we have a keen interest in the analysis of such equations.
Motivated by the insight that comes from the decoupling of finite-
dimensional equations, we seek to perform a similar decoupling of equa-
tions involving infinite-dimensional spaces. Suppose T is a linear trans-
formation on an infinite-dimensional Hilbert space X. In order to dia-
gonalize (or decouple) the equation Tx = y, we search for a basis for X
composed of eigenvectors of T. Because the space is infinite dimensional,
we naturally want to work only with an orthonormal basis; we will find
that orthonormality of the eigenvectors requires that T be self-adjoint
( T* = T). Furthermore, we wish the orthonormal eigenvectors of T to be
countable and complete in X in order that we can expand any vector in
II‘ as a unique, infinite sum of eigenvectors. If T has a countable,
orthonormal set of eigenvectors {xk } which is a basis for x , then we can
express any vector x in X uniquely as a Fourier series expansion in the
eigenvectors:

x= 2 (x,x,)x,
k=l

(5.72)

Equivalent to the statement that any vector x in X can be expanded
uniquely as in (5.72) is the following orthogonal direct-sum decomposition
of X into one-dimensional eigenspaces:

X = span(x1) 6 span(x2) 6 * * * (5.73)

If we sum those subspaces which are associated with identical eigenvalues,

*See Lamarsh [5.15, p. 549] for a practical function space example.
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we can rewrite (5.73) as

X = 5 6 nullspace(T  - +I)
j-l

(5.74)

where the set {xi} consists of the distinct eigenvalues of T (which are not
necessarily numbered in correspondence to the eigenvectors {x k }). Equa-
tion (5.74) is known as the spectral theorem. We will use (5.72) and its
equivalents (5.73) and (5.74), to analyze (diagonalize or decouple) operator
equations in infinite-dimensional spaces; in particular, differential equa-
tions.

Orthonormal Eigenvectors

Assume the bounded linear operator T on the Hilbert space X is dia-
gonalizable; that is, X has a countable basis of eigenvectors of T. A
logical place to begin exploration of orthonormal eigenvector bases for x
is (5.69)-(5.70). It is clear that if T* =  T, the eigenvalues and eigenvectors
of T and T* are identical. Then the eigenvalues Xi are real, the eigenvectors
corresponding to different eigenvalues are orthogonal, and the eigenvectors
x i can be selected so that they form a countable orthonormal basis. A
linear operator for which T* = T is said to be self-adjoint. Self-adjointness
is the key to orthonormality of eigenvectors. If the eigenvalues are real,
self-adjointness of T is, in fact, necessary in order that there exist eigen-
vectors of T which form an orthonormal basis for X. For if T is

diagonalizable and % A {xi} is an orthonormal eigenvector basis, then
[T],, is a (possibly infinite) diagonal matrix;

But for any orthonormal basis, [T*]  = [TIT (P&C 5.27). Therefore,
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and orthonormal eigenvectors for T are also orthonormal eigenvectors for
T*. It follows that if the eigenvalues (4) are real, T* = T. In sum, if the
linear operator T is diagonalizable (a basis of eigenvectors exists) and the
eigenvalues of T are real, then there exists an orthonormal basis for the
Hilbert space X consisting in eigenvectors of T if and only if T is self-
adjoint.

Exercise 1. Show that if T is diagonalizable (and the eigenvalues are not
necessarily real) there is an orthonormal basis for X consisting in eigen-
vectors of T if and only if TT* = T*T. A linear operator such that
TT* = T*T is said to be a normal operator. Show that a normal operator
which has real eigenvalues is self-adjoint.

In Section 5.2 we determined how to pick an inner product to
orthonormalize a basis for a finite-dimensional space. The result, (5.27),
was applied in Example 5 of that section to make the eigenvectors of a
particular diagonalizable transformation orthonormal. Since the inner pro-
duct was chosen to orthonormalize the eigenvector basis, it must also have
made the operator self-adjoint. To see that this is the case, we find the
adjoint of the operator T of Example 5, Section 5.2 relative to the
orthonormalizing inner product. The operator T on s2 was defined by

The orthonormalizing inner product was

Let x A (5&J and y L (r1&. Then

Since (TX,  y) is real and symmetric in x and y,

Hence T is self-adjoint. In general, if we can pick an inner product to
make a linear operator self-adjoint, we automatically guarantee that we
can find an orthonormal basis consisting of eigenvectors of that operator
(P&C 5.32).
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Self-Adjoint Linear Operators on Real Function Spaces

Most models of physical systems have real eigenvalues. For these models,
orthonormal bases of eigenvectors require self-adjointness of the model. It
is because of the usefulness of orthonormal bases of eigenvectors for
infinite-dimensional spaces that there is so much emphasis in the literature
of physics and mathematics on self-adjoint differential and integral opera-
tors.

Let (Tu)(t) A jtk( ~,s)u(s)&  define an integral operator on a real func-
tion space. The adjoint of T relative to the standard inner product is given
by (5.61). If the integral operator is to be self-adjoint, it is apparent that
the kernel of the integral operator must be symmetric:

k(t,s) = k(s,t) (5.75)

Suppose Tu = f. We can interpret k(t,s) as a measure of the influence of
the value, u(s), of the “input” function at point s on the value, f( t ), of the
“output” function at point t. Self-adjointness, (5.75), implies that the
source point and observation point can be interchanged. That is, if
u(s) = 6 (t1 -s) then f(tJ=J,bk(t2,s)S(tl-s)&=  k(t,,t,); interchanging the
source and observation points, we find, f( t1) = /,b k( t,,s)6 (tz - s)ds
= k(t1 ,t2) = k(t2 ,t1) = f(t2). This interchangeability of source and observa-
tion points is called reciprocity. Any system which can be described by an
integral operator that is self-adjoint in the standard inner product exhibits
reciprocity.

Example 1. A Self-Adjoint Integral Operator. The differential equation -D2f
= u with f(0) = f(b)= 0 describes the steady-state temperature distribution f along
the length of an insulated bar of length b. The input function u represents the rate
of heat generation, perhaps from induction heating, as a function of position within
the bar. The temperature is fixed at the bar ends. We inverted this differential
equation in Chapter 3. The Green’s function (the kernel of the inverse operator), as
given in (3.14), is

for 0 < s < b. By (5.61), the adjoint Green’s function is

(b-s)t=-
b ’

t<s<b
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for 0 < t Q b. Clearly, k(t,s) = k(s,t), and the integral operator is self-adjoint.
well known that steady-state heat flow problems exhibit reciprocity.

It is

Suppose we use the weighted inner product (f,g) = J,b o(s)f(s)g(s)ds
rather than the standard inner product. Then, by (5.62), in order that the
integral operator T be self-adjoint we must have

(5.76)

We will employ (5.76) when we discuss techniques for picking inner
products for function spaces.

The adjoint of a differential system (L with its boundary conditions)
consists in the formal adjoint L* with the adjoint boundary conditions (or
adjoint domain). Recall that the formal adjoint is independent of
boundary conditions. If L* = L, we say L is formally self-adjoint. We say
the differential system (L with its boundary conditions) is self-adjoint if L is
formally self-adjoint and the adjoint boundary conditions are identical to the
boundary conditions for L.† Exercise 2 of Section 5.4 shows that for the
standard inner product the differential operators that are formally self-
adjoint are those that contain only even derivatives. In the next example
we explore various boundary conditions for the simplest differential
operator which is formally self-adjoint with respect to the standard inner
product.

Example 2. Self-Adjoint  Boundary Conditions for -D*. The operator L = -D2 is
formally self-adjoint. From Example 10 of Section 5.4, using the standard inner
product, we find that

C-D%g)=(f,  -DZs>-f’(t)g(t)lba+f(f)g’(t)l~

= (f, -I&) + W&‘(b)  - f(ak’(a)  - f’(b)g(b) + f’(a)g(a)

Suppose the boundary conditions associated with L are f ( a ) = f (b) = 0. Then the
adjoint boundary conditions are g(a) = g(b ) = 0, and L = -D2 is self-adjoint. This
result is consistent with Example 1, wherein we showed the self-adjointness of the
integral operator which is the inverse of this differential system (for the case where
a = 0). On the other hand, let the boundary conditions associated with L be the
initial conditions f(a)  = f’(a) = 0. Then the adjoint boundary conditions are the final
conditions g(b) = g’(b)  = 0, and L is not self-adjoint. We found in Chapter 3 that the
Green’s function k(t,s) for an initial condition problem is always zero for s > t.
Thus the integral operator which is the inverse of this initial condition problem is

†The adjoint boundary conditions are not necessarily unique, but the domain which they
define is unique. To be precise, for self-adjointness we require the domain of L* to be
identical to the domain of L.
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not self-adjoint either. Furthermore, we found in Section 4.1 that initial condition
problems have no eigenvalues, much less orthonormal eigenfunctions.

Exercise 2. Let L = -D2. Verify the following adjoint boundary condi-
tions. Assume c1 # c2 .

Boundary Conditions on L Boundary Conditions on L*

f(a) + elf’(a) = f(b)  + c,f’(b)  = 0
(separated conditions)

g(a) + w’(a) = g(b) + c,g’(b)  =  0

f(a) + c,f(b) = f’(a)  + c2f’(b) = 0
(mixed conditions)

g(a)+ -+b)=g’(a)+  +YbW

f(a) - f(b) = f’(a)  - f+(b)  = 0
(periodic conditions)

g@l - g(b) = g’(a) - g’(b)  = 0

No boundary conditions g(a) = g(b) = g’(a) = g’(b)  = 0

Example 2 and Exercise 2 demonstrate a few general conclusions that
can be drawn concerning self-adjointness of second-order differential
operators, assuming the differential operator is formally self-adjoint:

1. Separated end-point conditions (wherein each boundary condition
involves only one point of [a,b]) always yield a self-adjoint operator.

2. Mixed end-point conditions (wherein more than one point of [a,b]
can be involved in each boundary condition) seldom yield a self-adjoint
operator.

3. Periodic boundary conditions (wherein the conditions at a equal the
conditions at b) always yield a self-adjoint operator.

4. Initial conditions always lead to final adjoint boundary conditions.
Thus dynamic initial condition problems are never self-adjoint.

We speak loosely of self-adjoint boundary conditions when we mean
boundary conditions that lead to a self-adjoint operator.

Example 3. A Self-Adjoint Partial Differential Operator. In Example 11 of Sec-
tion 5.4 we obtained the adjoint of the operator V2 as it acted on the space of
two-dimensional functions C,(S2) with its standard inner product (5.64). We found
that V2 is formally self-adjoint. Furthermore, the boundary condition af(p ) + bfn(p)
= 0 for p on the boundary I’ is also self-adjoint. (This boundary condition is an
extension of the separated endpoint conditions illustrated above.) The inverse of
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the equation V 2f = u together with the above boundary condition is of the form

f(P) = /, k (P9 qMd4

Since the differential system is self adjoint, we expect the Green’s function k
(which defines the inverse system) to be symmetric in p and q. Consequently the
inverse equation will exhibit reciprocity. Since the differential operator (and its
inverse) is self adjoint, there exists an orthonormal basis for e,(SZ) consisting of
eigenfunctions of V* which satisfy the above homogeneous boundary condition on
r. We use these eigenfunctions later (Example 6) to derive the Green’s function
and solve the partial differential equation.

Exercise 3. Let I? be the boundary of the rectangle 0 Q s Q a, 0 < t < b in
the (s,t) plane. The eigenfunctions corresponding to Example 3 are given
in (4.63) for the boundary condition f (p ) = 0 on I?. Show that these
eigenfunctions are orthogonal with respect to the standard inner product
for lZ2(Q).

Choosing Inner Products to Orthonormalize Eigenfunctions

Suppose T is a diagonalizable operator which acts on E2(a,  b). Then there
is a basis for G(a,b) consisting in eigenfunctions for T. The discussion
associated with (5.49) showed that we can modify the inner product with a
bounded positive weight function w without changing the convergence of
sequences of vectors; therefore, the eigenfunctions of T are also a basis for
!I$(u;a,b). Although the weighted inner product (5.49) does not represent
all possible inner products on the function space, in some circumstances
we would expect to be able to make an eigenvector basis orthonormal (or
at least orthogonal) by choice of the weight function. A given eigenvector
basis can be orthogonal only if T is self-adjoint with respect to the
weighted inner product. (Of course, we cannot make T self-adjoint unless
the eigenvalues are real.)

In Example 3 of Section 5.3 we orthogonalized the eigenfunctions,
fk (t) = e +/‘sin(rkt/ b), of the differential operator D2 + D with the
boundary conditions f(0) = f(b ) = 0 by choosing the weight function o(t)
= e t. Since the eigenfunction basis can be orthogonal only if the operator
is self-adjoint, we could as well pick o to assure self-adjointness. The
adjoint of D2 + D is determined by

((D2+D)f,g), 4 jbw(f”+f’)gdt
0

= bf[wg”+(2w’-w)g’+(o”-w’)g]dl
J

&f+g’f-w’gf+wgf)~;

b (f, (D2 + D)*g),  + boundary terms
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In order that the operator be formally self-adjoint, it must satisfy

(f, (D2 + D)*g),  = Jbwf(g”  + g’)dt
0

We choose o so that the integrands in the above two expressions for
(f, CD2  + W*g) are identical; that is, so 20’ - ti= o and a” -0’  = 8. The
common solutions to these two differential equations are the multiples of
o(t) =  et, the same weight function found earlier. Note that there is no
additional freedom in the choice of w with which to produce self-
adjointness of the boundary conditions; the self-adjointness of the
boundary conditions can be investigated after c3 is determined.

Exercise 4. The Green’s function for the differential operator D 2 + D
with the boundary conditions f(0) = f(b) = 0 is the function k(t,s) of (3.42).
Use the self-adjointness condition (5.76) to show again that o(t) = e t .

We will demonstrate that every “nice” second-order differential operator
is formally self-adjoint with respect to some weight function o. As a
consequence, since so many physical systems are representable by second-
order differential equations, we can use orthonormal bases of eigenfunc-
tions in analyzing an appreciable fraction of the differential equations
which appear in practice. Suppose the differential operator L is defined for
functions f which are twice continuously differentiable on [a,b] by

(Lf)(  t) A go(t)f”(t)  + gl(Y’~9  + 92WfW (5.77)

Assume gi ( t ) is continuous and g0( t ) < 0 in the interval. We define the new
variables p, q, and w by

p (t) A exp
s

t glw & P(t)
-

a go69 ’
O(f) A - -

go(t)  ’
q (t) A g2(t) (5.78)

From (5.78) it follows that g,/g,=p’/p.  (Furthermore, p’, 4, and o are
continuous; p and o are bounded and positive.) Then the general second-
order differential operator (5.77) can be expressed as

Lf=,(f”.  Zf’)+g,f

= -: f”+
( 1

$f’ +qf

= - ; (pf’)’ + qf (5.79)
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The operator (5.79) is commonly referred to as a regular Sturm-Liouville
operator.* We now show via the form (5.79) that the general second-order
differential operator L is formally self-adjoint with respect to the positive
weight function c3 given in (5.78):

(5.80)

If the boundary conditions are also self-adjoint, we expect to find an
orthonormal set of eigenfunctions for L. In point of fact, this orthonormal
set of eigenfunctions is complete in h(o; a,b), and we can diagonalize
equations which involve the general second-order differential operator
(5.77). See Birkhoff and Rota [5.3].

*

We experimented previously with the differential operator L = D2 + D
and boundary conditions f(0) = f(b) = 0, finding that self-adjointness of the
operator and orthogonality of the eigenfunctions both require the weight
function w(t) = et. We now treat this operator by means of our general
result, (5.80). In order that g0 (t ) be negative as required for (5.77), we work

with -LA - D2- D (which has the same eigenfunctions as does L). By
the substitution (5.78) we find p(t ) = et and, once again, o(t)= et.

The eigenfunctions of a differential operator L satisfy the equation:
Lf - Xf = 8. An equivalent equation for the second-order differential
operator L of (5.79) is

- o(Lf - hf) = (pf’)’ + (X0 - i)f = 8 (5.81)

* If the interval [a,b] were infinite, if p or w were equal to zero at some point, or if q were
discontinuous, (5.79) would be a singular Sturm-Liouville operator. See Birkhoff and Rota
[5.3] for examples.
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where 4 A oq. Equation (5.81) is known as a regular Sturm-Liouville
equation. For certain boundary conditions on f, L will have eigendata. If
the boundary conditions are self-adjoint with weight w, the eigenfunctions
can be chosen so they are orthonormal with weight w. We can obtain the
eigendata from (5.81) and the boundary conditions. We call (5.81) together
with self-adjoint boundary conditions a regular Sturm-Liouville system.

Decoupling of Equations By Means of Eigenvector Expansion

We wish to analyze the linear equation Tx = y, wherein x and y are
members of a separable infinite-dimensional Hilbert space X. We have
found that we can have orthonormal eigenvectors of T only if T is
self-adjoint. It can be shown that complete continuity of T is sufficient
(but not necessary) to guarantee that the eigenvalues and eigenvectors of T
are countable. Furthermore, complete continuity together with self-
adjointness guarantees that eigendata exist and, that the eigenvectors are
complete in X .* We assume T is self-adjoint and completely continuous;
then the spectral theorem (5.74) applies, and T is diagonalizable by means
of an orthonormal eigenvector basis {xk }. The vectors x and y can be
expanded using (5.72):

y= 5 ckxk and x= 5 dkxk
k=l

(5.82)

where ck = (y, xk), and can be computed using the known vector y; dk is
the kth Fourier coefficient of the unknown solution vector x. We substitute
the expansions (5.82) into the equation Tx = y to find

e=y--TX= 5 C&--T
k-l

k=l k=l

= c @k-hkdk)xk

where we have relied on the continuity of T and (5.56) to take T inside the
infinite sum. Then using the orthonormality of the basis {x k }, we find

O= lb-Txl12=  11 @k -hkdk)xkii2=

* See Bachman and Narici [5.2, Chapter 24] and Stakgold [5.22, Chapter 3].
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Since each term in the sum is non-negative,
T is invertible (i.e., has no zero eigenvalues),

O” bxk)
X= c

k=l

Ck=Akdk,k=  1,2,…. Then, if

(5.83)

Equation (5.83) is an explicit expression of the solution x to the equation
Tx = y in terms of the eigendata for T. The fact that T is assumed to act on
a Hilbert space is not really a restriction. Were X an incomplete inner
product space, it could be completed and the definition of T extended to
the complete space. Furthermore, we are not significantly hampered by the
boundedness (or complete continuity) used in the derivation of (5.83).
Suppose, for example, that T represents a self-adjoint differential operator
with its boundary conditions (an unbounded operator). If the boundary
conditions are appropriate, T is invertible and T-l is typically bounded
(and perhaps completely continuous). We simply replace Tx = y by T- 1y
=  x, and repeat the above argument to find again that dk = ck/hk and
(5.83) is valid.

Example 4. Analysis of a Differential System by Eigenfunction Expansion. The
shaft position +(t) of a dc motor (with prescribed initial and final shaft positions) is
related to the armature voltage u of the motor by the following differential
equation and boundary conditions:

L&j++“, +(O)=+(b)=0

The Green’s function (3.42) for this system is bounded. Therefore, the inverse
operator is Hilbert-Schmidt and, consequently, completely continuous. Further-
more, the differential system is self-adjoint relative to the weight function w(t) = et,
as noted in Exercise 4. The eigenvalues and eigenfunctions for this differential
system are given by (4.37) and (4.38):

&=-f-($r, f~(t)=~e-‘/2Qin(~),  k-1,2,...

We determined in Example 3 of Section 5.3 that these eigenfunctions are
orthogonal relative to the weight function which makes the differential system
self-adjoint. (We have added the multiplier m in order to make the functions
orthonormal.) We also showed in that example that these eigenfunctions form a
basis for (? (e’; 0, b). [Of course, it is also a basis for the completion of that space,
!Z,(e *; 0, b).j We now use (5.83) to express the solution to the differential system as
an expansion in the eigenfunctions of the system; + takes the role of x , y becomes
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u, and xk becomes fk :

(5.84)

The solution to this differential system was obtained by inversion in Section 3.3.
Following (3.42) we used the inverse to determine the solution for the input
u(t ) = 1:

+(t)= t- -j$ (1 -e-‘)

For this same input, u(t)= 1, (5.84) becomes

In Figure 5.10, we compare the exact solution with the first two terms of the
eigenfunction expansion for b = VT..  It is apparent from the figure that for all
practical purposes the first few terms of the series determine the solution.

Example 5. Using the eigenfunctions of Example 4, compute the first two
terms of the eigenfunction expansion of the input u ( t ) = 1 with b = ?T.
(Hint: multiply each curve of Figure 5.10 by the appropriate eigenvalue.)
Note that the convergence of this series is considerably slower than the
convergence of the output function c/(t). Furthermore, the series does not
converge at the endpoints; convergence in the e2 norm does not imply
convergence everywhere.

0.25

0

-0.25

-0.5

-0.75

-1.0

-1.25

Figure 5.10. Convergence of (5.84) for u(t) = 1 and b = T.
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Suppose that T is self-adjoint and completely continuous, but is not
invertible. Then the equation Tx = y has no solution unless y is in range( T ) .
Furthermore, if the equation has a solution, we can add to it any vector in
nullspace to obtain another solution. Formal application of (5.83)
would require division by a zero eigenvalue. To resolve this difficulty, we
decompose the equation. By the orthogonal decomposition theorem (5.67)
and the self-adjointness of T, V = nullspace(T ) range(T ). Those eigen-
vectors in the orthonormal basis which are associated with the zero
eigenvalue form an orthonormal basis for nullspace(T). The remaining
eigenvectors form an orthonormal basis for range(T ). Moreover, the action
of T on range(T) is one-to-one (the zero eigenvalues have been removed).
We use (5.83) to obtain a particular solution to the equation Tx = y by
summing over only the nonzero eigenvalues; the resulting solution lies in
range(T). Assuming y is in range(T), the general solution to the equation
Tx = y, for a self-adjoint completely continuous transformation T, is ex-
pressed in terms of the eigendata for T by

X= c
(Yyxk)x +x

Ak k o
(5.85)

nonzero
Ak

where x0 is an arbitrary vector in nullspace(T ). As with (5.83), (5.85) may
be valid even though T is not completely continuous. This fact is il-
lustrated by the unbounded differential operator of Example 5. Rather
than dwell further on conditions wherein (5.85) is valid, we adopt the
(possibly risky) course of assuming its validity whenever the equation is
useful.

In principle, in order to determine whether or not Tx = y has solutions,
we must solve explicitly for range(T) and see whether or not y is in
range(T ). Finding range(T) directly can be difficult for, say, a differential
operator. It is simpler to apply the orthogonal decomposition which was
introduced in the previous paragraph. If T is self-adjoint and range(T ) is
closed,

Ir = nullspace(T ) & range( T )

We solve Tx = 8 for the vectors in nullspace(T). Then, rather than expli-
citly determine the vectors in range(T), we simply check to see whether or
not y is orthogonal to all vectors in nullspace(T); y will be orthogonal to
nullspace( T ) if and only if it lies in range(T). Although the range of a
differential operator is not closed, this orthogonality test for existence of a
solution is used most often for differential equations. See Friedman [5.8,
Chapter 3].



Sec. 5.5 Spectral Decomposition in Infinite-Dimensional Spaces 311

Example 5. Analysis by Eigenfunction Expansion—a Noninvertible Case. Let T

represent the differential operator L b D2 with the homogeneous boundary condi-
tions f( 1) - f(O)=f’(  1) -f’(O) = 0. The operator T is self-adjoint with respect to the
standard function space inner product. However, T is degenerate; the differential
system

f” = u, f(l) =m, f’(l)=f’(O)

has solutions only for a restricted set of functions u. Nullspace consists in the
solutions to the completely homogeneous system,

f”(t)=O, f(l) =m rl(l)=tl(O)

Thus nullspace consists in the “constant functions,” f0 (t ) = c. By the discussion
above, u can be in range(T) only if u is orthogonal (with respect to the standard
inner product) to nullspace(T). Therefore, in order that the differential system have
a solution, u must satisfy

(u,fJ= jo’u(s)ch=O

for all constants c; that is, $tu(s)ds  = 0. The constant functions are eigenfunctions
of T for the eigenvalue A, = 0. The nonzero eigenvalues and the corresponding
eigenfunctions can be determined by the techniques of Section 4.3; they are

Ak = - (2rk)*, f,(t) = fi cos2vrkt, gk( t) = fi sin 2rkt

for k = 1,2,.... Note that there are two eigenfunctions, fk and gk, for each
eigenvalue. The orthogonality of the eigenfunctions for different eigenvalues fol-
lows from the self-adjointness of T. Each pair of eigenfunctions has been selected
such that it forms an orthogonal pair. The whole set of eigenfunctions is essentially
(5.30), the basis for the classical Fourier series; the constant function is missing
since it is not in range(T). If 1, u(s)ds  = 0, the solution to the differential system
can be expressed by the eigenfunction expansion (5.85):
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The arbitrary constant c expresses the freedom (or nonuniqueness) in the solution.
As in Example 4. comparison of the exact solution with the sum of the first few
terms of the series for a specific u demonstrates that convergence of the series is
rapid.

We found earlier that the general second-order differential operator
(5.77) is formally self-adjoint with respect to the weight function o of
(5.78). If the boundary conditions are also self-adjoint, the second-order
differential operator (or regular Sturm-Liouville operator) has eigendata;
these eigendata are determined by (5.81) together with the boundary
conditions. It can be shown that the solutions (eigenfunctions) of any
regular Sturm-Liouville system are complete; they form a countable basis,
orthonormal with respect to weight o, for the space E,(a,b).*  As exempli-
fied by Example 4, it can also be shown that any regular Sturm-Liouville
system has an infinite sequence of real eigenvalues h, < h, < X, < * * . . (If
the differential operator is invertible, its inverse is a Hilbert-Schmidt
operator; that is, the inverse is completely continuous.) Furthermore, the
eigenfunctions for a regular Sturm-Liouville system are similar to the
sinusoidal functions in that the eigenfunctions for the n th eigenvalue have
n zero crossings in the interval [a,b]. Sturm-Liouville problems are typi-
cally steady state (or standing-wave) problems. Examples of physical
systems modeled by regular Sturm-Liouville operators and self-adjoint
boundary conditions are vibrating strings, beams, and membranes. Steady-
state heat flow in one dimension is another example. Less typical is the
motor control problem introduced in (3.40) and solved by eigenfunction
expansion in Example 4. In this problem, the standing-wave nature arises
because conditions are placed on the future position of the motor shaft.

It follows from Parseval’s identity (5.48) that the Fourier coefficients of
a vector x relative to a countably infinite orthonormal basis {x k } must
approach zero: (x,x,)+0  as k-co.  It is evident from Examples 4 and 5
that the convergence of eigenvector expansions of solutions is accounted
for only in part by this property of the Fourier coefficients. In general,
Fourier coefficients converge at least as fast as l/k. However, in these
second-order examples a stronger influence on the convergence of the
solutions is exerted by the eigenvalues, with l/X, converging approxi-
mately at 1/k2. The “output expansion” (or solution) consists in a modifi-
cation of the eigenfunction expansion of the input, wherein high-order
eigenfunction components (or normal modes) of the input are attenuated
more than are the low-order components. In analogy to a dynamic system
with initial conditions, we can think of the systems of Examples 4 and 5 as
“low-pass” systems; the systems emphasize (or pass) the low-order eigen-
functions.

*See Birkhoff and Rota [5.3].
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Example 6. Solution of a Partial Differential Equation by Eigenfunction Expansion.
The following partial differential equation is a model for problems in electrostatics
or heat flow:

Vf=u

Let the two-dimensional region Q of the (s,t) plane on which f and u are defined be
the rectangle 0 < s Q a, 0 Q t Q b. Let f(s,t) = 0 on the boundary I of this rectangle.
In Example 11 of Section 5.4, we determined that V* is formally self-adjoint with
respect to the standard inner product (5.64). Furthermore the boundary condition
is also self-adjoint. Thus we expect to find a basis for &,(SQ  consisting in
orthonormal eigenfunctions of the differential system. The eigendata for the system
are given in (4.62) and (4.63); we express the eigenfunctions in normalized form:

Ln=  -( 7)2-( 7)2= - -$n*a’+m*b*)

fmn(s,  0 = --&sin(~)sin(~)

It can be shown that these eigenfunctions are complete in fZ2(Q)  [5.22, p. 1931. By
(5.83), the solution to the differential system, expressed as an eigenfunction
expansion, is

fh 0

We have no closed form solution with which to compare this result. Rather,
techniques for finding Green’s functions for partial differential operators are
usually based upon eigenfunction expansions similar to the one used here. See
(5.86).

Further Spectral Concepts

We have developed two different approaches to the solution of an invert-
ible differential system, the inverse (3.35) and the eigenfunction expansion
(5.83). We would be surprised if the two techniques were not closely
related. Let the differential operator L act on a space of functions defined
on [a,b ]. Suppose L together with homogeneous boundary conditions has
eigendata {hk,fk}. Further assume that the eigenfunctions form a basis for
the function space which is orthonormal with respect to the standard inner
product. We wish to explore the equation Lf = u together with the
boundary conditions. The solution f can be expressed in terms of the
Green’s function k(t,s) as f(t)=I,bk(t,s)u(s)&.  As discussed in Chapter 3,
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the Green’s function is the solution corresponding to the input u ( t ) =
Using (5.83) we express this solution in terms of the eigendata:

(5.86)

Equation (5.86) is known as the bilinear expansion of the Green’s function
for L in terms of the eigenfunctions of L. The Green’s function for the
Laplacian operator is in fact derivable from Example 6 using an extension
of (5.86) to a space of two-dimensional functions.

Exercise 6. Find the bilinear expansion of the Green’s function for
Example 4 and compare the first term to the exact Green’s function as
expressed in (3.42).

The spectral theorem (5.74) can be used to define functions of linear
operators analogous to the functions of matrix operators discussed in
Section 4.6. Assume the linear operator T in the Hilbert space Y is
self-adjoint and completely continuous. Then, applying T to the expansion
(5.72) of a general vector x in terms of an orthonormal set { xk } of
eigenvectors for T, we find

‘I-X= g &(x,xk)xk
k-1

(5.87)

where we have used the continuity of T in order to take T inside the
infinite sum. By combining all terms of (5.87) which are associated with
identical eigenvalues, we reexpress (5.87) as

T= E XjPj
j = 1

(5.88)

where P j is the orthogonal projector onto nullspace Thus the
effect of Pj on a general vector x in V can be expressed in terms of the
orthonormal eigenvectors of T:

q x = x (x,x,)x, (5.89)
k
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where the summation is over all values of k which correspond to the
eigenvalue xi. Equation (5.88) is the spectral decomposition of T; it can be
interpreted as a diagonalization of T. If f is a real continuous function
which is defined at the eigenvalues of T, it can be shown that a suitable
definition of a function of a transformation is provided by the fundamental
formula for f (T):

f(T)= 5 f(‘j)” (5.90)
j-1

Although we have defined (5.90) only for a self-adjoint, completely con-
tinuous T, the definition can be extended to any bounded normal linear
transformation.* Furthermore, as we know from our examples, it can
apply to unbounded differential operators. Equation (5.83), for instance, is

essentially an expression of x = f (T)y for the function f(t) 9 t -l. We
applied (5.83) to an unbounded differential operator in Example 4.

Throughout our examination of infinite-dimensional operator equations,
we have restricted ourselves to operators for which there is a countable
orthonormal set of eigenvectors which form a basis for the space. Self-
adjoint, completely continuous transformations are of this type. We have
restricted ourselves to these transformations in order to work with only the
simplest infinite-dimensional extensions of matrix equations. More general-
ity comes only with considerably increased abstraction. Let T be a linear
operator on an inner product space Y. The eigenvalues and eigenvectors
of T are determined by the equation Tx =Xx, or alternatively, by the
resolvant operator, (I’ - AI)- ’ ; the eigenvalues of T are those values of A for
which the latter inverse does not exist. However the nonexistence of the
inverse is only one of the ways in which the resolvant operator can be
“irregular.” Detailed discussions of the resolvant operator and general
spectral concepts can be found in Bachman and Narici [5.2], Stakgold
[5.22], Friedman [5.8], and Naylor and Sell [5.17].

Matched Filter Design–An Application of Spectral Decomposition

We wish to recognize the presence or absence of a signal u ( t ) of known
shape (e.g., a radar return). Our measurement of the signal is corrupted by

stationary noise n(t) whose autocorrelation function, R(t,s) b E[n(t) n(s)]
= R( t - s ), is known. Because n(t ) is stationary, R is symmetric in t and s,
and depends only on the time difference t - s ; R is also finite and positive.
We filter the noisy measurement in order to improve our estimate of the
presence or absence of the signal (see Figure 5.11). We select the impulse

* Bachman and Narici [5.2].
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Figure 5.11. A linear filter.

response h(t) of the linear filter in such a way that the signal-to-noise ratio
of the output, ug(b)/E[&b)], is maximized at some time t = b units after
measurement begins. [A circuit can then be synthesized which has the
impulse response h(t).] The output signal and noise at time t = b are,
respectively,*

y,(b)=  kbh(s)u(b-s)dr

q,(b)=i’h(s)n(b-s)ds

Then

E[d(b)] =Elbh(s)n(b-s)dr/bh(t)n(b-  t)dt
0 0

=
Jl

’ ‘h(s)h(t)R  (s- t)dtds
0 0

We use the concepts of P&C 5.30 and Exercise 3, Section 5.1 to interpret

E[&$b)]  as the square of a norm. Define T by (l%)(s) A l,bh(t)R  (s- t)dt.
Then, since R is positive and symmetric in its variables, T is self-adjoint,
completely continuous (Hilbert-Schmidt), and positive definite; T is di-
agonalizable by means of an orthonormal basis of eigenfunctions {f k }, and
the eigenvalues {&} of T are positive (P&C 5.28). Therefore, the square

roots  { fi } exist, and a unique self-adjoint positive-definite operator
fl is defined by (5.90). Thus

E[ G(b)]  = ~bh(ww) ds

= (h, n)

* See Appendix 2 for a discussion of convolution and impulse response.
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Let ur denote the “reverse” of the signal shape u; that is, ur (s) i u( b - s).
Then u0 (b) = (h,u,). Since the eigenvalues { 6 } of fl are all positive,
fi is invertible and range( ) is the whole function space, C2(0, b).
Therefore, we can assume ur is in range (fi ); that is, ur = fl g for some
function g. Then

u;(b)= I(h,U,))2= I+, fl g>12=  I<fl h,g>12

As a consequence, the signal-to-noise ratio satisfies

4(b) = I(fl h)12
E[ 4(b)] II fi hII2

( llgl12

The latter relationship is the Cauchy-Schwartz inequality (P&C 5.4);
equality holds if fl h = cg for any constant c, or Th = cm g = cur. We
must solve this integral equation for h. It is apparent that h depends only
on the shape of the signal u, but not its magnitude. We can express the
solution to the equation in terms of eigendata for T by means of (5.83):

h=cx 7 k
O” +,,fk> f

k-l k

Suppose the noise is “white”; that is, the autocorrelation function is the
limiting case R(s - t) = N6 (s - t), where N is the noise power and 6 (s - t)
is the Dirac delta function. The integral equation becomes

(Th)(s)=N~bh(t)~(s-t)dt=Nh(s)=cur(s)
0

or h(s) is any multiple of ur (s ) = u(b - s). The optimum impulse response
for this case has the form of the signal running backward in time from the
fixed time t = b. A filter with this characteristic is called a matched filter.
We can also use the eigenfunction expansion to determine this solution:
The eigendata are determined by

(l-b)(s) = Nh(s) =Ah(s)

The only eigenvalue is h= N. Every function is an eigenfunction. Letting
{fk } be any orthonormal basis for the space, the eigenfunction expansion
becomes
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The eigenfunction expansion is just a Fourier series expansion of ur .
Although we easily solved for this matched filter, solution of an integral
equation and determination of the eigendata of an integral operator are
usually difficult problems.

5.6 Problems and Comments

5.1 Let A be a real symmetric 2x2 matrix with positive eigenvalues.
(a) Show that the curve described by the quadratic equation

(x, Ax) = xTAx  = 1 is an ellipse in the x plane. Determine the
relationship between the ellipse and the eigendata for A.
(Hint: a symmetric matrix has orthogonal eigenvectors.
Therefore it can be diagonalized by means of the transforma-
tion A = STAS.)

(b) Find the eigendata and sketch the ellipse for

5.2 Show that the following definition satisfies the rules for an inner
product on 9%‘:

5.3 Let Y and W be inner product spaces over the same scalar field
with inner products denoted by ( ,  )y and ( ,  >%, respec-
tively. Let u and v be in V; let w and z be in ‘?K.
(a) Show that the following is an inner product on the Cartesian

product space ‘v X % : ((u, w), (v, z)) 2 (u, v), + (w, z),
(b) Let x and y denote vectors in C2(0,  1) X &?‘(O,  1). Express the

elements of x and y as 2 x 1 matrices rather than as 2-tuples.
(Then for each t in [0,1], x(t) and y(t) are in the state space,

9R2” ‘.) Show that the inner product (x, y) A Jo’ y’(t)x( t) dt i s
essentially a special case of the inner product defined in (a).

*5.4 The following useful equalities and inequalities apply to the vectors
in any inner product space Ir:
(a) Pythagorean theorem: if (x, y) = 0, then

llx+Yl12= llxl12+ llYl12

(b) Bessel’s inequality: if {xi} is an orthonormal set in ‘v, then

llxl12  ’ C ICx9 xi>l2
i
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(c) Parseval’s identity: equality occurs in (b) if and only if {x i } is
a basis for Ir;

(d) Cauchy-Schwartz inequality: I(x,y>I Q llxllI]yll,  with equality if
and only if x and y are collinear;

(e) Triangle inequality:  Ilx+ yII Q llxll+ Ilyll.
5.5 Equip the vector space CR2 with the inner product

where 5i and 77i  are the components of x and y, respectively.
(a) Find the matrix QG of the inner product relative to the

standard basis for C!R2;
(b) Find the matrix QX of the inner product relative to the basis

‘?C  A {(l,O),(l,l)}.  Explain the simple form of Q%.
Let ( , ) be an inner product defined on an n-dimensional space
?f. Let QX and Q3 be the matrices of this inner product relative
to the bases ?C and 94 , respectively. Let S be the coordinate
transformation matrix defined by [xl% = S[x]% .
(c) Determine the relationship between Q%, Q%, and S;
(d) What special property does S possess if ‘% and 3 are both

orthonormal?

5.6 The set ‘?X A {(1,1),(0,-1)} is a basis for %2. Find an inner
product which makes the basis ‘2X orthonormal. Determine the
matrix QG of this inner product relative to the standard basis for
5L2 .

5.7 Let

The set 9C = {x1 ,x2 ,x3} is a basis for %3x1.
(a) Determine an inner product for %3x ’ with respect to which

the basis is orthonormal.
(4 Find QG, the matrix of the inner product relative to the

standard basis for %3x ‘.
5.8 Let %, be the subspace of q3 which is spanned by the pair of

vectors (1,0,1) and (0,1,-1). Let (?K2 be the subspace of a3 which
is spanned by the vector (1,1,1). Pick an inner product for a3
which makes every vector in q$, orthogonal to every vector in w2.

*5.9  Positive-definite matrices: a symmetric n x n matrix A is called
positive definite if xTAx > 0 for all real n X 1 vectors x and if



320 Hilbert Spaces

equality occurs only for x = 8. Suppose we pick the kth component
of x equal to zero; it follows that the submatrix of A obtained by
deleting the kth row and kth column of A must also be positive
definite. In fact, any principal submatrix of A (obtained by deleting
a set of rows and the corresponding columns of A) must be positive
definite. The determinant of a matrix equals the product of its
eigenvalues (P&C 4.6). Furthermore, the eigenvalues of a positive
definite matrix are all positive (P&C 5.28). Consequently, if A is
positive definite, the determinant of A and of each principle sub-
matrix of A must be positive.

Let Ar be obtained from A by deleting all but the first r rows and
columns of A; det(Ar) is called the rth leading principle minor of A.
A symmetric n X n matrix A is positive definite if and only if the n
leading principle minors of A are positive (see [5.14] and [5.25]).
Checking the sign of the leading principle minors is a convenient
test for positive definiteness of A.

5.10 Show that the statement (A, B) = trace(BTA) defines a valid inner
product on the real vector space aRx” ; (the trace of a square
matrix is defined to be the sum of the elements on its main
diagonal).

5.11 Let % B {x1, . . . ,xn } be an orthonormal basis for a vector space ‘V.
Let T be a linear operator on V. Then the element in row i,
column j of [T],,  is (Txj,xi)  for i , j = 1,. . . , n.

5.12 Let ‘?X = {x1 ,x2,... } be an orthogonal basis for a real inner product
space V. Approximate a vector x of V by a linear combination,
xa =Xg=ickxk,  of the first n vectors of !X in such a way that
I]x-x~]]~ is minimized. Show that the coefficients {c k} are the
Fourier coefficients. How are the coefficients affected if we im-
prove the approximation by adding more terms to xa (increasing
n)?

5.13 Let A be a 3 X 3 matrix with eigenvalues and
corresponding linearly independent eigenvectors x1, x2, and x3. Let
(. , a) denote an inner product for which the above eigenvectors are
orthonormal. We wish to solve the equation Ax = y.
(a) Assuming solutions exist, express the general solution x in

terms of the eigendata and the inner product.
(b) Determine the conditions that y must satisfy in order that

solutions exist. Express these conditions in terms of the ei-
gendata and the inner product.

5 .14 Equip %3x1 with the standard inner product, x,y  k yTx . Let
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x,=&2=($ x3=Q-2 Obtain an orthonormal basis for span

{x 1, x2, x3} by applying the Gram-Schmidt procedure to {x 1 ,  x2 ,  x 3}.

5.15 Assign to %3x ’ the inner product (x, y) 4 yTQx, where

Let x1 = (1 0 1)T. Find an orthogonal basis for {x1 }  *, the ortho-
gonal complement of x1 .

*5.16 Recurrence formulas for orthogonal polynomials: let {p 0 , p1 , p2, . . . } be
a set of polynomials orthogonal with respect to some inner product.
Then pn can be expressed in terms of pn -1 and pn -2 in the
following fashion:

p,(t) = (q + 4JPn-  l(t) - %IPn-2w

Once the appropriate coefficients {a n, bn, cn} are known, the three-
term recurrence formula allows successive determination of the
orthogonal polynomials in a manner which is far less cumbersome
than the Gram-Schmidt procedure [5.7]. Three-term recurrence
formulas exist for other orthogonal sets as well: sine-cosine func-
tions, Bessel functions, and various sets of functions defined on
discrete domains. (See [5.24], p. 269 and [5.12]).

Verify for n = 2  that the Legendre polynomials of Example 2,
Section 5.2 obey the recurrence relation

PW (
= 2n-1

n -) tp,&) - (V)Ptz-2w
n

Use this recurrence relation to compute p3 and verify that it is the
next polynomial in the Legendre polynomial set; that is, show that
p 3 has the correct norm and is orthogonal to the lower-order
polynomials in the set.

5.17 Let 03( - 1,l) be the ‘space of real polynomial functions of degree
less than three with the inner product
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Let (?!I! be the subspace of T3( - 1,l) spanned by f0, where

f0 (t) 2 1. Find a basis for qt’-, the orthogonal complement of ‘%‘.

5.18 Let Ir be the space of complex-valued functions on [0,l] which are
bounded, piecewise continuous, and have no more than a finite
number of maxima, minima, or discontinuities (these are called the
Dirichlet conditions). A typical function in V is

Equip Ir with the inner product

(f,g) A j-‘f(t) g(t) dt
0

Then the set of functions

g,(t) 2 ei- n=o, k 1, ?2,...

where i=d?, is an orthonormal basis for the space.
(a) Determine the coordinates of the function h relative to this

orthonormal basis; that is, expand h in its exponential Fourier
series.

(6) To what value does the series converge at the discontinuities
(t = 0, i, l)? (Hint: combine the positive and negative n t h
order terms of the series.)

*5.19 Let T be the linear operator on %zxl defined by

TX 9 Ax

where A is an n x n matrix. Let the inner product on %:x ’ be
defined by

(x, Y> = Y=Qx,

where Q is a hermitian-symmetric, positive-definite matrix.
Determine the form of T*.

5.20 Let T be the linear operator on the standard inner product space
I;,(O, 1) defined by

(Tf)(t) A jlb(s)f(s)ds
0

Determine the form of T*. Hint: watch the limits of integration.
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5.21

5.22

5.23

5.24

5.25

5.26

Let T: I;,(O, 1) X E2(0,  I)+ %2x1 be defined by

Tu A
J 'Q(s)u(s)d~

0

where Q(s) is a 2 x 2 matrix and u(s) is a 2 X 1 matrix. Find the
adjoint T* for the inner products

(x,y)~2”1  A y’x

k s
1

(u,v)e* x e2 v’( s)u( s) ds
0

Let (x,z>, L zTQx and (y,w), A wTRy specify the inner products
on the real spaces Wx ’ and ?IRmx ‘, respectively, where Q and R
are symmetric, positive-definite matrices. Define T: EXn x ‘-+ Xrn x ’

by TX A Ax.
(a) Find T*.
(6) Determine the properties which must be satisfied by A, Q,

and R in order that T be self-adjoint.

Define T on ‘?JE2”’ by Tx A Ax, where A = Define the

inner product by (x, y) = yTQx. Pick Q such that T is self-adjoint.

Let L i D2 +D act on those functions f in CZ2(a,6) which satisfy the
boundary conditions f (a) = f’(6) = 0. Assuming the standard inner
product for Ci?‘(a,b),  find the formal adjoint L* and the adjoint
boundary conditions.

Define the differential operator L on e2(a,6) by Lf A f” - f’. As-
sociate with L the boundary conditions f(a)  + f’(a)  = f(6) + f’(6) = 0.
Find the formal adjoint L* and the adjoint boundary conditions
relative to the standard inner product.

The wave equation is

where s and o are space variables and t represents time. This
equation can be represented in operator notation as

(V”  - D2)f  = 8

where the Laplacian operator V2 acts only with respect to the space
variables and the ordinary differential operator D2 acts only with
respect to the time variable. Assume V*-D*  acts on the space
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e,(a) X C2(0, 6) with the inner product

(fd= /“/f(p,f)g(p,t)dpdt0 cl
where p = (s, a), Q is the spatial domain (with boundary I), and t is
in [0,b]. Show that the “wave operator” V2-  D2 is formally self-
adjoint. Hint: use Examples 10 and 11 of Section 5.4.

*5.27 Let ‘v be an inner product space (perhaps infinite dimensional)
with a basis %. Let T be a linear operator on ?r. Show that if %
is orthonormal, [T*lXX  =[TlT3CX. Hint: express the inner product
in terms of coordinates relative to the orthonormal basis.

*5.28 Let T be a linear operator on a complex inner product space v.
(a) (1) If  T*T =  we call T a normal operator.

(2) If T*T = TT* = I (i.e., T* = T -1), we call T a unitary
operator.

(3) We call T non-negative if (TX, x) > 0 for all complex x in
V. If, in addition, (Tx,x)  = 0 only for x = 8, we say T is
positive definite.

(6) If T is (1) self-adjoint, (2) non-negative, (3) positive definite,
(4) unitary, or (5) a projector, then the eigenvalues of T are,
respectively, (1') real, (2') non-negative, (3') positive, (4') of
absolute value 1, or (5') equal to 1 or 0. If T is normal and v
is finite dimensional, then (1')-(5') also imply (1)-(5). The
inclusions among these classes of linear operators are il-
lustrated by the following diagram.
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*5.29 Norms of linear transformations: define T: ‘%z x ’ + ‘%T x ’ by

TX&%X, where A is an mxn matrix. Assume the standard inner
products. Then

where h, is the eigenvalue of ATA which is of largest magnitude.
(a) Find l]Al]  for the following matrix by carrying out the max-

imization indicated above:

(6) Find ]]A[]  for the matrix A of (a) by determining the eigen-
value h,.

(c) A coarse, but easily computed, upper bound on ]]A/ is the
Euclidean norm of A defined by

llAll$ A c IaJ’= trace( ATA) = trace(AAT) = 2 IAil
id i

(The numbers {xi} are the eigenvalues of A.) Find l]AllE  for

(dj
the matrix A of (a). (The last of the equalities applies only for square A. )
If T is a bounded normal operator on a complex Hilbert space
Ir, then

IITII = ,;FI I(TJ->I = “” l&l

where the numbers {xi} are the eigenvalues of T [5.2, p. 382].
Use this relationship to find l]T- ‘I] for T equal to the differen-
tial system of Example 2, Section 4.3. Note that this re-
lationship between l]Tl]  and the largest eigenvalue of T can be
used to determine [IAll  for any symmetric matrix A; it cannot
be used for the matrix A of (a).

*5.30 Let T be a bounded linear operator on a Hilbert space V.

(a) Show that (x, y), A (x,Ty) is an inner product on ‘V if and
only if T is self-adjoint and positive definite.

(6) The operator T is self-adjoint and positive definite if and only
if T can be decomposed as T = U2 where U is a self-adjoint
positive-definite linear operator on Ir.

(c) L e t  V=CX2x1 with the standard inner product. Let Tx A Qx



326 Hilbert Spaces

where

Find a self-adjoint, positive-definite operator U on %2x r
such that T = U2 .

*5.31 Reciprocal bases: let { x1 , ... , xn } be a basis for snxl which is
composed of eigenvectors for the invertible n x n matrix A . Assume
the standard inner product for 91Lnx  ‘. The reciprocal basis
{y l , …, yn } (reciprocal to {xi}) is defined by (xi, yj) = y;x,. = aO.
(a) The vectors in the reciprocal basis are eigenvectors of AT

(left-hand eigenvectors of A) .
(b) Every vector x in W x ’ can be expressed as a biorthogonal

expansion, x = IX:- ,(x, yi)xi. Use this fact to show that the
solution to Ax = y can be expanded as

Hint: follow the derivation of (5.24).
(c) The outer product of two vectors in W x ’ is defined by

x><yA xyT. Such a “backwards inner product” is sometimes
referred to as a dyad. Use the dyad notation to convert the
expansion in (b) to an explicit matrix multiplication of y .
Compare the resulting matrix to the fundamental formula for
A - 1,

A - 1 =

where p is the number of distinct eigenvalues of A . How are
the constituent matrices {ETO}  related to the pair of biortho-
gonal bases {xi} and {y i}?

(d) Let A = Find a basis for 9R,2x1 consisting in

eigenvectors for A; find the reciprocal basis; use the pair of
biorthogonal bases to find the constituents of A; use the
constituents to compute A- 1.

5.32 Let A be an n x n matrix. Then TX *
on Xnxl.

= Ax defines a linear operator T
Let Q be an n x n symmetric positive-definite matrix.

(a) Show that if T is self-adjoint with respect to the inner product
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(x,Y)~  k yTQx, then the operator U defined by Ux g QAx is
self-adjoint with respect to the standard inner product. The
matrix equation Ax = y can be replaced by an equivalent
equation, QAx = Qy; the latter equation can be analyzed in
terms of a set of eigenvectors (of QA) which is orthonormal
with respect to the standard inner product.

Let A = Find a matrix Q such that T is self-adjoint

with respect to the inner product (x, Y)~ = yTQx.
for positive definiteness is given in P&C 5.9.

Hint: a test

5.33 By Example 2, Section 5.5, the differential operator L A -D2 and
the boundary conditions f(0) = f (b) = 0 are self-adjoint with respect
to the standard inner product on the interval [0,b ].
(a) The eigendata for L with the given boundary conditions are

k = 1,2,3,...

Show that the eigenfunctions form an orthogonal set.
(b) Express the solution to the differential system -f"  =  u,  f(0)

= f(b ) = 0 as an eigenfunction expansion.
(c) Compare the first term of the eigenfunction expansion in (b)

to the exact solution for the specific input function u(t ) = 1
and b = 1.

5.34 The (nonharmonic) eigendata for the differential operator -D2

with the boundary conditions f(0) = f(b) + f'(b) = 0 are derived in
Example 1, Section 4.3.
(a) Show that the eigenfunctions are orthogonal with respect to

the standard inner product on the interval [0,b ] (and, con-
sequently, that L and the boundary conditions are self-
adjoint).

(b) Express the solution to the differential system -f"  =  u,  f(0)
= f (b) + f'(b) = 0 as an eigenfunction expansion.

(c) Compare the first term of the eigenfunction expansion in (b)
to the exact solution for the specific input u( t ) = 1 and b = 1.
Hint: tan(2.0288) -2.0288. (The exact solution for the
differential system is given in P&C 3.13. Note that the sym-
metry of the Green’s function again implies the self-
adjointness of the system with respect to the standard inner
product .)

5.35 A (nonsinusoidal) periodic voltage e of frequency w (period 277/o)
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is applied to the terminals of the R-L circuit of Figure 5.4. The
steady-state current i1 satisfies the differential equation Li; + Ri,
= e with the periodic boundary condition il(2T/o)  = i,(O).
(a) Find the eigendata for the differential operator LD + RI with

periodic boundary conditions.
(6) Show that the eigenfunctions are orthogonal with respect to

the standard complex inner product on the interval [0,2~/0].
(c) Determine the eigenfunction expansion of the steady-state

current for an arbitrary periodic voltage. Verify the result by
applying the voltage e(t) = sin wt.

5.36 Define V2f(s,  t) k (a2f/as2)+(a2f/at2)  on the rectangle 0 < s < a ,
0 d t Q b. Let f satisfy the boundary conditions

=$O,t)=  z(a,t)= g(s,O)= $(s,b)=O

(a) The eigendata for V2 with the given boundary conditions are
displayed in P&C 4.15. Show that the eigenfunctions are
orthogonal with respect to the inner product

(f,g) A ~blaf(s,t)g(s,+hdf
0 0

(6) Note that one of the eigenvalues is zero. The range of the
operator was derived in Example 12, Section 5.4. Express as
an eigenfunction expansion the general solution to the partial
differential system V*f = u with the given boundary conditions.

*5.37 A Hilbert space of random variables: let ?r be a vector space of
real-valued random variables defined on a particular experiment
(Example 11, Section 2.1). An inner product can be defined on Ir
in terms of the expected value operation (P&C 2.23):

(x, y> A E(xy) = x(σ)y(σ) ω(σ) dσ

(a) Show that E(xy) is a valid inner product on li‘.
(6) We refer to E(x) as the mean of the random variable x. The

variance of x is defined by

var(x) A \lx-E(~)~~~=E(x~)-E~(x)

The covariance between x and y is defined by

cov(x,y)  4 (X-E(~),Y-E(Y))=E(~Y)-E(~)E(Y)
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The random variables x and y are said to be uncorrelated if
cov (x,y) = 0. Show that if x and y are uncorrelated, then
var(x + y) = var(x) + var(y). Show that if x and y are ortho-
gonal, then E((x + y)2) = E(x2) + E(y2) (Pythagorean theorem).
If either x or y has zero mean, then x and y are orthogonal if
and only if they are uncorrelated.

(c) The vector space X which consists in all random variables
(defined on the experiment) of finite norm is a Hilbert space.
Show that X consists in precisely those random variables
which have finite mean and finite variance.

5.38 Karhunen-Loêve Expansion: let x A (x(1)…x(n))T be a discrete
finite random process with zero mean; that is, x consists in a
sequence of n random variables {x(i)}, all defined on a single
experiment,* and E(x(i)) = 0, i = 1, ... , n. (For notational con-
venience we treat the n elements of x as an n x 1 column vector.) A
particular running of the underlying experiment yields a sample
function Tt, a specific column of n numbers. The sample function
has a unique Fourier series expansion X = X&l (Z, yj)yj correspond-
ing to each orthonormal basis (2 = {y j } for the standard inner
product space !JL” x I. We can also expand the random process
itself in a Fourier series, x= Xi”=  lcjyj, where cj = (x, yj)= X:“-  x(p)p-1
yj(p),  and  yj(p) i s  the  pth element of yj. However, since the
elements {x(p)} of x are random variables, the Fourier coefficients
cj are also random variables. We wish to pick the basis 3 for
9RnX ’ in such a way that the random variables {c j} are statistically
orthogonal (E(c jc k) = 0), The resulting Fourier series expansion is
known as the Karhunen-Loêve expansion of the random process.†

The sequence of random variables {x(i)} can be represented by the
sequence of random variables {ci} ; the latter are uncorrelated.
(a) If we substitute into E(x(i)ck)  the Fourier series expansion

x=x,”i= lcjy~) we find E(x(i)Q=XT,  ,E(cjck)yj(i).  On the other
hand, if we substitute the Fourier coefficient expansion ck

we obtain W(i)ck)  = Xi=, E(x(i)x(p))
yk(p). By equating these two expansions, show that the ran-
dom variables {c k} are orthogonal if and only if the basis
functions {yk } satisfy

Ry,=E(~z)y,, k= L...,n

where R is the autocorrelation matrix for the random process;

* See Example 11, Section 2.1.
† See Papoulis [5.19] for a discussion of the Karhunen-Loêve expansion for continuous
random processes.
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(b) Let the autocorrelation matrix of a two-element random pro-
cess x be

Find an orthonormal basis {y1 ,y2} for the standard inner
product space ‘%2x ’ relative to which the coordinates of x
are statistically orthogonal. Verify your results by computing
the coordinates, c1 and c2 .
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