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System Models :
Transformations

on Vector Spaces

The fundamental purpose in modeling a system is to develop a mechanism
for predicting the condition or change in condition of the system. In the
abstract model TX =y of (1.1), T represents (or is a model of) the system,
whereas x and y have to do with the condition of the system. We explore
first some familiar models for the condition or changes in condition of
systems. These examples lead us to use a generalization of the usual notion
of a vector as a model for the condition of a system. We then develop the
concept of a transformation of vectors as a model of the system itself. The
rest of the chapter is devoted to examination of the most commonly used
models-linear models-and their matrix representations.

2.1 The Condition of a System

The physical condition (or change in condition) of many simple systems
has been found to possess a magnitude and a direction in our physical
three-dimensional space. It is natural, therefore, that a mathematical
concept of condition (or change in condition) has developed over time
which has these two properties; this concept is the vector. Probably the
most obvious example of the use of this concept is the use of arrows in a
two-dimensional plane to represent changes in the position of an object on
the two-dimensional surface of the earth (see Figure 2.1). Using the usual
techniques of analytic geometry, we can represent each such arrow by a
pair of numbers that indicates the components of that arrow along each of
a pair of coordinate axes. Thus pairs of numbers serve as an equivalent
model for changes in position.

An ordinary road map is another model for the two-dimensional surface
of the earth. It is equivalent to the arrow diagram; points on the map are
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34 System Models: Transformations on Vector Spaces

Figure 2.1. An “arrow vector” diagram.

equivalent to the arrow tips of Figure 2.1. The only significant difference
between these two models is that the map emphasizes the position (or
condition) of an object on the earth, whereas the arrow diagram stresses
the changes in position and the manner in which intermediate changes in
position add to yield a total change in position. We can also interpret a
position on the map as a change from some reference position. The
manner in which we combine arrows or changes in position (the paral-
lelogram rule) is the most significant characteristic of either model. Con-
sequently we focus on the arrow model which emphasizes the combination
process.

Reference arrows (coordinate axes) are used to tie the arrow model to
the physical world. By means of a reference position and a pair of
reference “position changes” on the surface of the earth, we relate the
positions and changes in position on the earth to positions and arrows in
the arrow diagram. However, there are no inherent reference axes on either
the physical earth or the two-dimensional plane of arrows.

The same vector model that we use to represent changes in position can
be used to represent the forces acting at a point on a physical object. The
reason we can use the same model is that the magnitudes and directions of
forces also combine according to the parallelogram rule. The physical
natures of the reference vectors are different in these three situations: in
one case they are changes in position on the earth, in another they are
arrows, in the third, forces. Yet once reference vectors are chosen in each,
all three situations become in some sense equivalent; corresponding to
each vector in one situation is a vector in the other two; corresponding to
each sum of vectors in one is a corresponding sum in the other two. We
use the set of arrows as a model for the other two situations because it is
the most convenient of the three to work with.

The set of complex numbers is one more example of a set of objects
which is equivalent to the set of arrows. We usually choose as references in
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the set of complex numbers the two numbers 1 and i. Based on these
reference numbers and two reference arrows, we interpret every arrow as a
complex number. Here we have one set of mathematical (or geometrical)
objects serving as a model for another set of mathematical objects.

Consider now a physical system which is more complicated than the two
physical systems discussed above. Imagine a flat metal sheet exposed to the
sun and partly submerged in a stream. (The sheet is representative of any
object subject to heat sources and coolants.) The thermal condition of the
sheet is described by the temperature distribution over the surface of the
sheet. A change in the cloud cover in the sky will change the pattern in
which the sun falls on the sheet. As a result, the temperature distribution
will change. Assuming the temperature distribution reaches a new steady
state, the new distribution equals the old distribution plus the change in
the distribution. We model this situation as follows. Let (s,t) denote a
position in some two-dimensional coordinate system on the surface of the
sheet. Let f(s,t) be the temperature at the point (s,t),  measured in degrees
centigrade, for all points (s,t) on the sheet. We model a change in the
thermal condition of the sheet by

(2.1)

for all (s,t) on the sheet. In effect, (2.1) defines fchange.  However, we hope to
use a model of the system to predict fchange.  Then (2.1) will determine fnew.
Equation (2.1) is a “distributed” equivalent of the arrow diagram in Figure
2.1; each of these models illustrates the manner in which changes in
condition combine to yield a net condition of the system in question. Once
again, references have been chosen in both the physical system and the
model (mathematical system) in order to equate the two systems; choosing
physical units of measurement (degrees centigrade) amounts to fixing the
relationship between the physical and mathematical systems.

The most significant difference between a system’ modeled by Figure 2.1
and a system modeled by (2.1) consists in the nature of the conditions in
each system. In one case we have a quantity with magnitude and direction
(e.g., force); in the other, a quantity without magnitude and direction—a
quantity that is distributed over a two-dimensional region. Yet there are
important similarities between the two systems. The changes in condition
of the system are under scrutiny; also, several changes in condition
combine by simple rules to yield a total or net condition.

Vector Spaces

By expressing various types of problems in a common framework, we learn
to use concepts derived from one type of problem in understanding other
types of problems. In particular, we are able to draw useful analogies
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between algebraic equations and differential equations by expressing both
types of equations as “vector” equations. Therefore, we now generalize the
common notion of a vector to include all the examples discussed in the
previous section.

Definition. A linear space (or vector space) v is a set of elements x, y,
Z,***, called vectors, together with definitions of vector addition and scalar
multiplication.

a. The definition of vector addition is such that:
1. To every pair, x and y, of vectors in V there corresponds a

unique vector x+ y in “/, called the sum of x and y.
2 .  x+y=y+x.
3 .  (x+y)+z=x+(y+z).
4. There is a unique vector 8 in ?r, called the zero vector (or

origin), such that x + 8 =x for all x in ‘V.
5. Corresponding to each x in 7/ there is a unique vector “-x” in

Ir such that x+(-x)=@.
b. The definition of scalar multiplication is such that:

1. To every vector x in ?r and every scalar a there corresponds a
unique vector ax in Y, called the scalar multiple of x?

2. a(bx) = (ab)x.
3 . l(x) =x (where 1 is the unit scalar).
4 .  a(x+y)=ax+  ay.
5 .  (a+b)x=ax+  bx.

Notice that a vector space includes not only a set of elements (vectors)
but also “valid” definitions of vector addition and scalar multiplication.
Also inherent in the definition is the fact that the vector space Ir contains
all “combinations” of its own vectors: if x and y are in V, then ax+ by is
also in ?r. The rules of algebra are so much a part of us that some of the
requirements may at first appear above definition; however, they are
necessary. A few more vector space properties which may be deduced from
the above definition are as follows:

1. Ox= 8 (where “0” is the zero scalar).
2. d9= 8.
3. (- 1)x= -xx.

Example 1. The Real 3-tuple Space S3. The space 9’ consists in the set of all

*The scalars are any set of elements which obey the usual rules of algebra. A set of elements
which obeys these rules constitutes a field (see Hoffman and Kunze [2.6]). We usually use as
scalars either the real numbers or the complex numbers. There are other useful fields, however
(P&C 2.4).
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real  3- tuples  (al l  ordered sequences of  three real  numbers) ,  x =  (&,&,Q,  y
= (~i,r)~,~),  with the following definitions of addition and scalar multiplication:

(2.2)

It is clear that the zero vector for this 3-tuple space, 8 = (0,0,0), satisfies x + 8 =x.
We show that 0 is unique by assuming another vector y also satisfies x+ y =x; that
is,

or & + 7jj = &. The properties of scalars then require vi=0 (or y = e). It is easy to
prove that 9L3, as defined above, satisfies the other requirements for a linear space.
In each instance, questions about vectors are reduced to questions about scalars.

We emphasize that the definition of a3 says nothing about coordinates.
Coordinates are multipliers for reference vectors (reference arrows, for
instance). The 3-tuples are vectors in their own right. However, there is a
commonly used correspondence between $FL3  and the set of vectors (ar-
rows) in the usual three-dimensional space which makes it difficult not to
think of the 3-tuples as coordinates. The two sets of vectors are certainly
equivalent. We will, in fact, use this natural correspondence to help
illustrate vector concepts graphically.

Example 2. The Two-Dimensional Space of Points (or Arrows). This space con-
sists in the set of all points in a plane. Addition is defined by the parallelogram rule
using a fixed reference point (see Figure 2.2). Scalar multiplication is defined as
“length” multiplication using the reference point. The zero vector is obviously the

Figure 2.2. The two-dimensional space of points.
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reference point. Each of the requirements can be verified by geometrical argu-
ments.

An equivalent (but not identical) space is one where the vectors are not the
points, but rather, arrows to the points from the reference point. We distinguish
only the magnitude and direction of each arrow; two parallel arrows of the same
length are considered identical.

Both the arrow space and the point space are easily visualized: we often
use the arrow space in two or three dimensions to demonstrate concepts
graphically. Although the arrow space contains no inherent reference
arrows, we sometimes specify reference arrows in order to equate the
arrows to vectors in CJL3. Because of the equivalence between vectors in C9L3
and vectors in the three-dimensional space of points, we occasionally refer
to vectors in $R3 and in other spaces as points.

Example 3. The Space of Column Vectors ‘X3 x ‘. The space 91L3  x ’ consists in
the set of all real 3x1 column matrices (or column vectors), denoted by

with the following definitions of addition and scalar multiplication:

(2.3)

In order to save space in writing, we occasionally write vectors from
9lL3x  ’ in the transposed form x = (5, t2 t3)‘. The equivalence between
9lL3x  ’ and 9L3 is obvious. The only difference between the two vector
spaces is in the nature of their vectors. Vectors in 9lL3x ’ can be multiplied
by m x 3 matrices (as in Section 1.5), whereas vectors in CR3 cannot.
Example 4. The Space of Real Square-Summable Sequences, I,. The space t2
consists in the set of all infinite sequences of real numbers, x= ([r,&,t3,. . .),
Y=@I~J~,Q,...)  which are square summable; that is, for which XF- rti2 < cc.
Addition and scalar multiplication in Z, are defined by

ax ii (a&&, 43,.  . . )
(2.4)

Most of the properties required by the definition of a linear space are easily
verified for Z2;  for instance, the zero vector is obviously 8 = (0,0,0, . . .). However,
there is one subtle difference between 1, and the space 9L3 of Example 1. Because
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the sequences in Z2 are infinite,
in l2. It can be shown that

it is not obvious that if x and y are in I,, x + y is also

[This fact is known as the triangle inequality (P&C 5.4)]. Therefore,

and x + y is square-summable. The requirement of square summability is a definite
restriction on the elements of Z2; the simple sequence (I, 1, 1,. . .), for instance, is not
in 12.

The definition of CR3 extends easily to w, the space of n-tuples of real
numbers (where n is a positive integer). The space anx ’ is a similar
extension of X3 x ’ Mathematically these “n-dimensional” spaces are no.
more complicated than their three-dimensional counterparts. Yet we are
not able to draw arrow-space equivalents because our physical world is
three-dimensional. Visualization of an abstract vector space is most easily
accomplished by thinking in terms of its three-dimensional counterpart.

The spaces CRn, wx ‘, and I, can also be redefined using complex
numbers, rather than real numbers, for scalars. We denote by $ the
complex n-tuple space. We use the symbol %zx ’ for the space of complex
n x 1 column vectors. Let 1; represent the space of complex square-
summable sequences. (We need a slightly different definition of square
summability for the space Zi:EF= llsi12  < cc). In most vector space defi-
nitions, either set of scalars can be used. A notable exception to inter-
changeability of scalars is the arrow space in two or three dimensions. The
primary value of the arrow space is in graphical illustration. We have
already discussed the equivalence of the set of complex scalars to the
two-dimensional space of arrows. Therefore, substituting complex scalars
in the real two-dimensional arrow space would require four-dimensional
graphical illustration.

We eventually find it useful to combine simple vector spaces to form
more complicated spaces.

Definition. Suppose ?i and w are vector spaces. We define the Cartesian
product ?r x 02ui of the spaces Ir and % to be the set of pairs of vectors

z i (X,Y), with x in Ir and y in ‘?.$.  We define addition and scalar
multiplication of vectors in Ir x ‘% in terms of the corresponding opera-
tions in ‘v and in w : if zr = (x,,y,) and z2 = (x2,y2), then

z,+z,  A 0% + x29 Y 1+ Y2)

az, =*(axPaY,)
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Example 5. A Cartesian Product. Let x = (&,t2),  a vector in 3’. Let y= (qr), a

vector in 9%‘.  Then z i ((51,52),  (qi)) is a typical vector in 9L2 x 9’. This Cartesian
product space is clearly equivalent to 913. Strictly speaking, however, z is not in R3.
It is not a 3-tuple, but rather a 2-tuple followed by a 1-tuple. Yet we have no need
to distinguish between 913 and %2X 9,‘.

Function Spaces

Each vector in the above examples has discrete elements. It is a small
conceptual step from the notion of an infinite sequence of discrete num-
bers (a vector in I,) to the usual notion of a function—a “continuum” of
numbers. Yet vectors and functions are seldom related in the thinking of
engineers. We will find that vectors and functions can be viewed as
essentially equivalent objects; functions can be treated as vectors, and
vectors can be treated as functions. A function space is a linear space
whose elements are functions. We usually think of a function as a rule or
graph which associates with each scalar in its domain a single scalar value.
We do not confuse the graph with particular values of the function. Our
notation should also keep this distinction. Let f denote a function; that is,
the symbol f recalls to mind a particular rule or graph. Let f(t) denote the
value of the function at t. By f = g, we mean that the scalars f(t) and g(t) are
equal for each t of interest.

Example 6. 9”, The Polynomials of Degree Less Than n. The space 9” consists
in all real-valued polynomial functions of degree less than n : f(t) = & + t2t + - - - +
&,t”-’  for all real t. Addition and scalar multiplication of vectors (functions) in qn
are defined by

(2.5)

for all t. The zero function is  for all t. This zero function is unique; if the
function g also satisfied f + g=f, then the values of f and g would satisfy

(f+g)(t)=f(t)+g(t)=f(t)

It would follow that for all t, or The other requirements for a vector
space are easily verified for qp”.

We emphasize that the vector f in Example 6 is the entire portrait of the
function f. The scalar variable t is a “dummy” variable. The only purpose
of this variable is to order the values of the function in precisely the same
way that the subscript i orders the elements in the following vector from Z2:

x=(&t2 ,..., ,,**-5. )
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Figure 2.3. A function f and its values f(t).

Figure 2.3 distinguishes graphically between the vector f and its value at t
for the specific function f defined by f(t) = 2 + 0.5 t. Figure 2.4 distinguishes
in a similar manner between an infinite sequence x and its ith element.

It is evident that the vector x from Z2 is just as much a function as is the
polynomial f from (Tn. In the space of polynomials, the index t is
continuous; in the space of infinite sequences the index i is discrete—it
takes on only positive integral values. In the latter case, we could as well
refer to the ith element li as the value of x at i. In point of fact, most
vector spaces can be interpreted as spaces of functions; the terms vector
space and function space are somewhat interchangeable. However, it is
common practice to use the term function space only for a space in which
the index t varies continuously over an interval.

It is unfortunate that the symbol f(t) is commonly used to represent both
a function and the value of that function at t. This blurring of the meaning
of symbols is particularly true of the sinusoidal and exponential functions.
We will try to be explicit in our distinction between the two concepts. As
discussed in the preface, boldface type is used to emphasize the interpreta-
tion of a function as a vector. However, to avoid overuse of boldface type,
it is not used where emphasis on the vector interpretation appears un-

i

Figure 2.4. The elements 6 of an infinite
sequence x.
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necessary; thus the value of a function f at t may appear either as f(t) or as
f(t). Furthermore, where confusion is unlikely, we sometimes use standard
mathematical shorthand; for example, we use Jb,fgdt  to mean Jb,f(t)g(t)dt.

It is difficult to describe or discuss functions in any detail except in
terms of their scalar values. In Example 6, for instance, the definitions of
addition and scalar multiplication were given in terms of function values.
Furthermore, we resorted again to function values to verify that the vector
space requirements were met. We will find ourselves continually reducing
questions about functions to questions about the scalar values of those
functions. Why then do we emphasize the function f rather than the value
f(t)? Because system models act on the whole vector f rather than on its
individual values. As an example, we turn to the one system model we
have explored thus far-the matrix equation Ax= y which was introduced
in Section 1.5. If A is an m X n matrix, the vector x is a column matrix in
9lLnX1; y i s  in  9Lmx1. Even though the matrix multiplication requires
manipulation of the individual elements (or values) of x, it is impossible to
determine any element of y without operating on all elements of x. Thus it
is natural to think in terms of A operating on the whole vector x. Similarly,
equations involving functions require operations on the whole function
(e.g., integration), as we shall see in Section 2.3.

Example 7. The Space e(iz,  b) of Continuous Functions. T h e  v e c t o r s  i n  e(a,b)
are those real functions which are defined and continuous on the interval
Addition and scalar multiplication of functions in (?(a,  b) are defined by the
standard function space definitions (2.5) for all t in [a,b].  It is clear that the sums
and scalar multiples of continuous functions are also continuous functions.

Example 8. The Real Square-integrable Functions. The space
consists in all real functions which are defined and square integrable on the
interval [a,b]; that is, functions f for which*

/
b2f (t)dt<oo

a

Addition and scalar multiplication of functions in are defined by (2.5) for
all t in [a,b]. The space lZ,(a,b)  is analogous to Z,. It is not clear that the sum of
two square-integrable functions is itself square integrable. As in Example 4, we
must rely on P&C 5.4 and the concepts of Chapter 5 to find that

*The integral used in the definition of C,(a,b) is the Lebesgue integral. For all practical
purposes, Lebesgue integration can be considered the same as the usual Riemann integration.
Whenever the Riemann integral exists, it yields the same result as the Lebesgue integral. (See
Royden [2.l].)
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It follows that if f and g are square integrable, then f + g is square integrable.

Example 9. A Set of Functions. The set of positive real functions [together with
the definitions of addition and scalar multiplication in (2.91 does not form a vector
space. This set contains a positive valued function f, but not the negative valued
function -f; therefore, this set does not include all sums and multiples of its
members.

Example 10. Functions of a Complex Variable. Let Y be the space of all
complex functions w of the complex variable z which are defined and analytic on
some region G! of the complex z plane.* For instance, s1 might be the circle ]z 1 Q 1.
We define addition and scalar multiplication of functions in Ir by

(2.6)

for all z in Sk In this example, the zero vector 8 is defined by 8 (z) = 0 for all z in St.
(We do not care about the values of the functions 0 and w outside of a.)

Exercise 1. Show that if w1 and w2 are in the space V of Example 10,
then w1 + w2 is also in ‘v.

Example 11. A Vector Space of Random Variables t A random variable x is a
numerical-valued function whose domain consists in the possible outcomes of an
experiment or phenomenon. Associated with the experiment is a probability
distribution. Therefore, there is a probability distribution associated with the values
of the random variable. For example, the throwing of a single die is an experiment.
We define the random variable x in terms of the possible outcomes u by

= 2,4,6 (the die is even)

= 1,3,5 (the die is odd)

The probability mass function w associated with the outcome (I of the experiment is
given by

*Express the complex variable t in the form s+ it, where s and t are real. Let the complex
function w be written as u+ iv, where u(z) and v(z) are real. Then w is analytic in !G? if and
only if the partial derivatives of II and v are continuous and satisfy the Cauchy-Riemann
conditions in Sz:

For instance, w(z) A z2 is analytic in the whole z plane. See Wylie [2.11].
† See Papoulis [2.7], or Cramér and Leadbetter [2.2].
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Then the probability mass function w, associated with the values of the random
variable x is

o,(x) = 4 forx=O,l

We can define many other random variables
experiment. One other random variable is

(functions) for the same die-throwing

1 (the die is 1)

2,3,4,5,6 (the die is not 1)

where

Oy(Y) =$ fory=O

=i fory=l

Two random variables x1 and x2 are equal if and only if their values x,(u)  and
x2(u)  are identical for all possible outcomes u of the experiment.

A vector space of random variables defined on a given experiment consists in a
set of functions defined on the possible outcomes of the experiment, together with
the following definitions of addition and scalar multiplication*:

for all possible outcomes u of the experiment. Let Y be the space of all possible
random variables defined on the above die-throwing experiment. If x and y are the
particular vectors described above, then is given by

and

What is the zero random variable for the vector space Y? It is       = 0 for   = 1,…,6.

*We note that the set of functions must be such that it includes all sums and scalar multiples
of its members.
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2.2 Relations Among Vectors

Combining Vectors

Assuming a vector represents the condition or change in condition of a
system, we can use the definitions of addition and scalar multiplication of
vectors to find the net result of several successive changes in condition of
the system.

Definition. A vector x is said to be a linear combination of the vectors x,,
x29 - * ’ , x, if it can be expressed as

(2.7)

for some set of scalars ci, . . . , cn. This concept is illustrated in Figure 2.5
where x= fxi +x2-xX,.

A vector space ‘Y is simply a set of elements and a definition of linear
combination (addition and scalar multiplication); the space V includes all
linear combinations of its own elements. If S is a subset of ?r, the set of
all linear combinations of vectors from S , using the same definition of
linear combination, is also a vector space. We call it a subspace  of V. A
line or plane through the origin of the three-dimensional arrow space is an
example of a subspace.

Definition. A subset % of a linear space y is a linear subspace (or linear
manifold) of V if along with every pair, x, and x2, of vectors in %, every
linear combination cix, + czx2  is also in % .* We call ‘% a proper subspace
if it is smaller than Ir; that is if % is not V itself.

Figure 2.5. A linear combination of arrows.

*In the discussion of infinite-dimensional Hilbert spaces (Section 5.3), we distinguish between
a linear subspace and a linear manifold. Linear manifold is the correct term to use in this
definition. Yet because a finite-dimensional linear manifold is a linear subspace as well, we
emphasize the physically motivated term subspace.
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Example 1. A Linear Subspace. The set of vectors from a3 which are of the
form (Cl, $9 cr + ~2) forms a subspace of ?k3.  It is, in fact, the set of all linear
combinations of the two vectors (1, 0, 1) and (0, 1, 1).

Example 2. A Solution Space. The set QJ  of all solutions to the matrix equation

is a subspace of 32,3x I. By elimination (Section 1.5), we find that %J contains all
vectors of the form (0 t2 -t2)=.  Clearly, % consists in all linear combinations of
the single vector (0 1 -l)T. This example extends to general matrices. Let A be an
m x n matrix. Let x be in %“x  ‘. Using the rules of matrix multiplication (Appen-
dix 1) it can be shown that if x1 and x2 are solutions to Ax- 8, then an arbitrary
linear combination crxt + c2x2  is also a solution. Thus the space of solutions is a
subspace of 31t” x ‘.

Example 3. Subspaces (Linear Manifolds) of Functions. Let (.?2(s2) be the space of
all real-valued functions which are defined and have continuous second partial
derivatives in the two-dimensional region Sk (This region could be the square
0 Q s < 1,O < t < 1, for instance.) Let r denote the boundary of the region Qt. Linear
combination in e’(s2)  is defined by

(f+g)W i f(s,t)+gb,t)

(afh 0 9 df(s, 0)
(2.8)

for all (s, t) in !Z The functions f in (Z’(G)  which satisfy the homogeneous boundary
condition f(s, t) = 0 for (s, t) on I? constitute a linear manifold of e2(Q).  For if f, and
f, satisfy the boundary condition, then (ctf, + c2fz)(s,  t) = crf,(s,  t) + czf2(s, t) = 0,
and the arbitrary linear combination ctfr + c2f2  also satisfies the boundary condi-
tion.

The set of solutions to Laplace’s equation,

(2.9)

for all (s, t) in !J,  also forms a linear manifold of c’(s2).  For if f, and f2 both satisfy
(2.9),  then

a 2klfl(s, t) + czus,  01 + a 2[Clf,(s,t)  + c2f2(s,  01 = o

as2 at2

and the arbitrary linear combination crf, + c2f2  also satisfies (2.9). Equation (2.9) is
phrased in terms of the values of f. Laplace’s equation can also be expressed in the
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vector notation

V2f=0 (2.10)

The domain of definition &? is implicit in (2.10). The vector 8 is defined by
8 (s, t) = 0 for all (s, t) in a.

In using vector diagrams to analyze physical problems, we often resolve
a vector into a linear combination of component vectors. We usually do
this in a unique manner. In Figure 2.5, x is not a unique linear combina-
tion of xi, x2, and x3; x = Ox,  +3x,+ 2x, is a second resolution of x; the
number of possible resolutions is infinite. In point of fact, x can be
represented as a linear combination of any two of the other vectors; the
three vectors xi, x2, and x3 are redundant as far as representation of x is
concerned.

Definition. The vectors xi, x2,. . . , x,, are linearly dependent (or coplanar) if
at least one of them can be written as a linear combination of the others.
Otherwise they are linearly independent. (We often refer to sets of vectors
as simply “dependent” or “independent.“)

In Figure 2.5 the set {xi, x2, x3}  is dependent. Any two of the vectors
form an independent set. In any vector space, a set which contains the 8
vector is dependent, for 8 can be written as zero times any other vector in
the set. We define the 8 vector by itself as a dependent set.

The following statement is equivalent to the above definition of inde-
pendence: the vectors xi, x2,. . . , x, are linearly independent if and only if

c,x,+c2x2+- +c,x,=e  * c1=***  =cn=o (2.11)

Equation (2.11) says the “zero combination” is the only combination that
equals 8. For if ci were not 0, we could simply divide by Ci to find Xi as a
linear combination of the other vectors, and the set (xi> would be
dependent. If ci = 0, Xi cannot be a linear combination of the other vectors.
Equation (2.11) is a practical tool for determining independence of vectors.

Exercise 1. Explore graphically and by means of (2.11) the following set
of vectors from

Example 4. Determining Independence In the space (X3 let xl = (1, 2, l), x2 = (2,
3, l), and x3 = (4, 7, 3). Equation (2.11) becomes
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Each component of this vector equation is a scalar-valued linear algebraic equa-
tion. We write the three equations in the matrix form:

We solve this equation by elimination (Section 1.5) to find cl = - 2c, and c2 = - c3.
Any choice for c3 will yield a particular nonzero linear combination of the vectors
x1,  x2, x3 which equals 8. The set is linearly dependent.

Definition. Let s e {xi, x2,. . . ,x,,} be a set of vectors from a linear space
V. The set of all linear combinations of vectors from S is called the
subspace of Y spanned (or generated) by 5 .* We often refer to this
subspace as span( S ) or span

Bases and Coordinates

We have introduced the vector space concept in order to provide a
common mathematical framework for different types of systems. We can
make the similarities between systems more apparent by converting their
vector space representations to a standard form. We perform this stan-
dardization by introducing coordinate systems. In the example of Figure
2.5, the vectors {x, xi, x2, x3} span a plane; yet any two of them will span
the same plane. Two of them are redundant as far as generation of the
plane is concerned.

Definition. A basis (or coordinate system) for a linear space ?r is a
linearly independent set of vectors from ?r which spans Ir.

Example 5. The Standard Bases for $Iln, OJR”  x ‘, and 9”. It is evident that any
three linearly independent vectors in S3 form a basis for CR3. The n-tuples

(2.12)

form a basis for 9’. The set E i {et,...,e,} is called the standard basis for 9Ln.

We use the same notation to represent the standard basis for

where e, is a column vector of zeros except for a 1 in the ith place. The set % i {f,,

f,, * * * , f,} defined by fk(t)= tkT1  forms a basis for 9” ; it is analogous to the
standard bases for 3,” and

*The definition of the space spanned by an infinite set of vectors depends on limiting
concepts. We delay the definition until Section 5.3.
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Example 6. The Zero Vector Space. The set { 6} together with the obvious
definitions of addition and scalar multiplication forms a vector space which we
denote 0 . However, the vector 8, by itself, is a dependent set. Therefore 0 has no
basis.

If !X : {Xi,  x2,. . .,x,} is a basis for the space V, any vector x in V can
be written uniquely as some linear combination

x=clxl+czx2+“’  +c,x, (2.13)

of vectors in % . The multipliers ci are called the coordinates of x relative to
the ordered basis %. It is easy to show that the coordinates relative to a
particular ordered basis are unique: just expand x as in (2.13) for a second
set {di} of coordinates; then independence of the basis vectors implies
4= ci.

It is common to write the coordinates of a vector relative to a particular
basis as a column matrix. We will denote by [xl% the coordinate matrix of
the vector x relative to the (ordered) basis % ; thus corresponding to (2.13)
we have

(2.14)

Some bases are more natural or convenient than others. We use the term
natural basis to mean a basis relative to which we can find coordinates by
inspection. The bases of Example 5 are natural bases for %‘, Xnx i, and
CP’.  Thus if f(t)=&+t2‘zt+--  +&t”-‘, then [f],=(& 52-$,)T.

Example 7. Coordinates for Vectors in S3. Let OX  i {x1, x2, x,} be an ordered
basis for 9t3, where x1 = (1, 2, 3), x2= (2, 3, 2), and x3=(2, 5, 5). Let x = (1, 1, 1). To
find [xl,, we must solve (2.13):

++2C2+2C3, 2Cl+3C2+5C3, 3C,+2C2+5C3)

We rewrite the vector (3-tuple) equation in the matrix notation:

(2.15)
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We solved this equation in Example 1 of Section 1.5. The result is

The coordinate matrix of Example 7 is merely a simple way of stating
that x= 3x1 +$x2- $,x3.  We choose to write the coordinates of a vector x
as a column matrix because it allows us to carry out in a standard matrix
format all manipulations involving the coordinates of x.

In Example 4 of Section 1.5 we solved (2.15) with a general right-hand
side; that is, for x=(~~,r/~,~).  That solution allows us to determine quickly
the coordinate matrix, relative to the basis !X of Example 7, for any vector
x in $F13,  including the case x= (0, 0, 0). In general, (2.13) includes (2.11);
inherent in the process of finding coordinates for an arbitrary vector x is
the process of determining whether 3(, is a basis. If % is not independent,
there will exist nonzero coordinates for x= 8. If % does not span the
space, there will be some vector x for which no coordinates exist (P&C
2.7).

Example 8. Coordinates for Vectors in 9’. Let S i {f,, f2, f,} be an ordered
basis for q3, where f,(t)= 1 +2t+3t2,  f2(t)=2+3t+2t2,  and f3(t)=2+5t+5t2.  Let
f be defined by f(t) = 1 + t + t2. To find [f],, we solve (2.13), f = c,f l + c2f2  + c3f3.  To
solve this equation, we evaluate both sides at t:

f(t) = (c,f1+ c2f2 + c$3)(0

= Clf,(d + &W + @3(t) (2.16)

1+t+t2=c1(1+2t+3t2)+c2(2+3t+2t2)+c3(2+5t+5t2)

Equating coefficients on like powers of t we again obtain (2.15). The coordinate
matrix of f is

In order to solve the vector (function) equation (2.16) we converted it to
a set of scalar equations expressed in matrix form. A second method for


