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converting (2.16) to a matrix equation in the unknowns {c,.}  is to evaluate
the equation at three different values of t. Each such evaluation yields an
algebraic equation in { ci}.  The resulting matrix equation is different from
(2.15),  but the solution is the same. We now describe a general method,
built around a natural basis, for converting (2.13) to a matrix equation. The
coordinate matrix of a vector x relative to the basis !?C = {x1,. . . , xn} is
Cxln = (c, - * * CJ’, where the coordinates ci are obtained by solving the
vector equation

x=c,x,+-*-  +c,x,

A general method for obtaining an equivalent matrix equation consists in
taking coordinates of the vector equation relative to a natural basis —a
basis relative to which coordinates can be obtained by inspection. The
vector equation becomes

(2.17)

We determine [xl%, [x&, …  , [x,]~ by inspection. Then we solve (2.17)
routinely for [xl%.

Example 9. Finding Coordinates via a Natural Basis. Let the set 9 2 {f,, f,, f3}

be a basis for 9’, where f,(t)=l+2t+3t2, f2(t)=2+3t+2t2,  and f,(t)=2+5t+
5 t2. We seek [f], for the vector f(t) = 1 + t + t2. To convert the defining equation for
coordinates into a matrix equation, we use the natural basis CJC i {gl, g2, g3},
where gk(t)= t k-1. For this problem, (2.17) becomes

VI, = (PII, :. P21, i [r,l,)mT

or

The solution to this equation is [f], = (5 $ - 3)‘. (Compare with Example 8.)
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Typically, the solution of (2.17) requires the elimination procedure

(2.18)

If we wish to solve for the coordinates of more than one vector, we still
perform the elimination indicated in (2.18),  but augment the matrix with
all the vectors whose coordinates we desire. Thus if we wish the
coordinates for zi, z2, and z3, we perform elimination on

This elimination requires less computation than does the process which
goes through inversion of the matrix ([xi]%  i l - l i [x,,]~),  regardless of
the number of vectors whose coordinates we desire (P&C 1.3).

Example 10. A Basis and Coordinates for a Subspace. Let %! be the subspace of
Tp3 consisting in all functions f defined by the rule f(t)=& + t2t + (& +&)t2 for
some [i and t2. Note that the standard basis functions for Y3 are not contained in
‘?lf.  The functions defined by gi( t) = 1 + t2 and g2(t)  = t + t2 are clearly independent
vectors in %. Because there are two “degrees of freedom” in % (i.e., two
parameters [i and 42 must be given to specify a particular function in 7JJ) we

expect the set 9 4 {gi, g2} to span %f and thus be a basis. We seek the coordinate
matrix [f], of an arbitrary vector f in ‘%f  . That is, we seek cl and c2 such that

f(t) = c&(t) + c2g2w

The matrix equation (2.17) can be written by inspection using the natural basis FYZ
of Example 9:

[II, = ([&I, i k¶2la)Me ~

Then Ci =& and

lfl
(1

9 =
(6 12

Because we were able to solve uniquely for the coordinates, we know that
4 is indeed a basis for %. The subspace % is equivalent to the subspace
of Example 1. Note that the elimination procedure does not agree precisely
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with (2.18) because there are only two degrees of freedom among the three
coefficients of the arbitrary vector f in W .

Dimension

The equivalence between the three vector spaces CR3,  T3, and 9lL3x  ’ is
apparent from Examples 7 and 8; The subspace % of Example 10,
however, is equivalent to 9R,2x ’ rather than 9L3 x I, even though the
elements of % are polynomials in (Y3. The key to the equivalence lies not
in the nature of the elements, but rather in the number of “degrees of
freedom” in each space (the number of scalars which must be specified in
order to specify a vector); more to the point, the key lies in the number of
vectors in a basis for each space.

Definition. A vector space is finite dimensional if it is spanned by a finite
number of vectors. It is intuitively clear that all bases for a finite-
dimensional space contain the same number of vectors. The number of
vectors in a basis for a finite-dimensional space Y is called the dimension
of ?r and is denoted by dim( ‘Y).

Thus CR3 and 53”  are both three-dimensional spaces. The subspace % of
Example 10 has dimension 2. Knowledge of the dimension of a space (or a
subspace) is obtained in the course of determining a basis for the space

(subspace). Since the space 0 2 { 8} has no basis, we assign it dimension
zero.

Example 11. A Basis for a Space of Random Variables. A vector space Y of
random variables, defined on the possible outcomes of a single die-throwing
experiment, is described in Example 11 of Section 2.1. A natural basis for ‘v is the

set of random variables 5% 9 {Xi, i= 1,...,6},  where

Xi(U) ’ 1 for u = i (the die equals i)

i 0 for (I # i (the die does not equal i)

That 5% is a basis for Y can be seen from an attempt to determine the coordinates
with respect to 5X of an arbitrary random variable z defined on the experiment. If

then [z]% = (ci . . . C6)T;  a unique representation exists.
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The random variables {xi,. . . , xg}  are linearly independent. However, they are
not statistically independent. Statistical independence of two random variables x
and y means that knowledge of the value of one variable, say, x, does not tell us
anything about the outcome of the experiment which determines the value of the
other variable y, and therefore it tells us nothing about the value of y. The random
variables {Xi}  are related by the underlying die-throwing experiment. If we know
xi = 0, for instance, then we know u # 1 (the die is not equal to 1); the probability
mass functions for x2,..., x, and for all other vectors in V are modified by the
information concerning the value of xi. The new probability mass functions for x
and y of Example 11, Section 2.1, given that xi = 0, are

ox(x;x,=O)  = 5 for x=0 w,(y;x,=O)=l  fory=O

=32 forx=l =0 fory=l

The space I2 of square-summable sequences described in Example 4 of
Section 2.1 is obviously infinite dimensional. A direct extension of the
standard basis for % seems likely to be a basis for Z2. It is common
knowledge that functions f in e(O, 27~),  the space of functions continuous
on [0,  27~1, can be expanded uniquely in a Fourier series of the form
f(O=b,+X~., ( ak sinkt + b,cos kt). This fact leads us to suspect that the
set of functions

9: (l,sint,cost,sin2t,cos2t,...} (2.19)

forms a basis for L?(O,  2w),  and that the coordinates of f relative to this
basis are

This suspicion is correct. The coordinates (or Fourier coefficients) actually
constitute a vector in Z2. We show in Example 11 of Section 5.3 that Z2
serves as a convenient standard space of coordinate vectors for infinite-
dimensional spaces; in that sense, it plays the same role that %’ x ’ does
for  n-dimensional spaces. Unfortunately, the concepts of independence,
spanning sets, and bases do not extend easily to infinite-dimensional vector
spaces. The concept of linear combination applies only to the combination
of a finite number of vectors. We cannot add an infinite number of vectors
without the concept of a limit; this concept is introduced in Chapter 5.
Hence detailed examination of infinite-dimensional function spaces is left
for that chapter.
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There is no inherent basis in any space-one basis is as good as another.
Yet a space may have one basis which appears more convenient than
others. The standard basis for 9” is an example. By picking units of
measurement in a physical system (e.g., volts, feet, degrees centigrade) we
tie together the system and the model; our choice of units may automati-
cally determine convenient or standard basis vectors for the vector space
of the model (based on, say, 1 V, 1 ft, or 1 O C).

By choosing a basis for a space, we remove the most distinguishing
feature of that space, the nature of its elements, and thus tie each vector in
the space to a unique coordinate matrix. Because of this unique connection
which a basis establishes between the elements of a particular vector space
and the elements of the corresponding space of coordinate matrices, we are
able to carry out most vector manipulations in terms of coordinate
matrices which represent the vectors. We have selected %,‘x ‘, rather than
%“, as our standard n-dimensional space because matrix operations are
closely tied to computer algorithms for solving linear algebraic equations
(Section 1.5). Most vector space manipulations lead eventually to such
equations.

Because coordinate matrices are themselves vectors in a vector space
(w x ‘), we must be careful to distinguish vectors from their coordinates.
The confusion is typified by the problem of finding the coordinate matrix
of a vector x from wx ’ relative to the standard basis for ntnx ‘. In this
instance [xl, =x; the difference between the vector and its coordinate
matrix is only conceptual. A vector is simply one of a set of elements,
although we may use it to represent the physical condition of some system.
The coordinate matrix of the vector, on the other hand, is the unique set of
multipliers which specifies the vector as a linear combination of arbitrarily
chosen basis vectors.

2.3 System Models

The concept of a vector as a model for the condition or change in
condition of a system is explored in Sections 2.1 and 2.2. We usually
separate the variables which pertain to the condition of the system into two
broad sets: the independent (or input) variables, the values of which are
determined outside of the system, and the dependent (or output) variables,
whose values are determined by the system together with the independent
variables. A model for the system itself consists in expressions of relations
among the variables. In this section we identify properties of system
models.
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Example I. An Economic System Let x represent a set of inputs to the U. S.
national economy (tax rates, interest rates, reinvestment policies, etc.); let y
represent a set of economic indicators (cost of living, unemployment rate, growth
rate, etc.). The system model T must describe the economic laws which relate y to
X.

Example 2. A Baking Process. Suppose x is the weight of a sample of clay
before a baking process and y is the weight after baking. Then the system model T
must describe the chemical and thermodynamic laws insofar as they relate x and y.

Example 3. A Positioning System. Suppose the system of interest is an armature-
controlled motor which is used to position a piece of equipment. Let x represent
the armature voltage, a function of time; let y be the shaft position, another
function of time. The system model T should describe the manner in which the
dynamic system relates the function y to the function x.

The variables in the economic system of Example 1 clearly separate into
input (or independent) variables and output (or system condition)
variables. In Example 2, both the independent and dependent variables
describe the condition of the system. Yet we can view the condition before
baking as the input to the system and view the condition after baking as
the output. The dynamic system of Example 3 is reciprocal; x and y are
mutually related by T. Since the system is used as a motor, we view the
armature voltage x as the input to the system and the shaft position y as
the output. We could, as well, use the machine as a dc generator; then we
would view the shaft position as the input and the armature voltage as the
output.

The notation TX = y that we introduced in (1.1) implies that the model T
does something to the vector x to yield the vector y. As a result, we may
feel inclined to call x the input and y the output. Yet in Section 1.3 we note
that equations are sometimes expressed in an inverse form. The positions
of the variables in an equation do not determine whether they are inde-
pendent or dependent variables. Furthermore, we can see from Example 3
that the input and output of a system in some instances may be determined
arbitrarily. In general, we treat one of the vectors in the equation TX = y as
the input and the other as the output. However, unless we are exploring a
problem for which the input is clearly defined, we use the terms input and
output loosely in reference to the known and unknown variables, respec-
tively.

Transformations on Vector Spaces

Our present purpose is to make more precise the vaguely defined model T
introduced in (1.1) and illustrated above.

Definition. A transformation or function T: 5 ,-) s, is a rule that
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associates with each element of the set S, a unique element from the set
S,*. The set S, is called the domain of T; 5, is the range of definition of T.

Our attention is directed primarily toward transformations where s, and
S, are linear spaces. We speak of T: V+ (?l! as a transformation from the
vector space ‘v into the vector space W. An operator is another term for a
transformation between vector spaces. We use this term primarily when
the domain and range of definition are identical; we speak of T: V+ ?r as
an operator on V. If S y is a subset of ?r, we denote by T( s y) the set of
all vectors TX in % for which x is in s y; we refer to T( S y) as the image
of S y under T. The range of T is T(V), the image of V under T. The
nullspace of T is the set of all vectors x in V such that TX = 8, (8, is the
zero vector in the space %). If SW is a subset of ‘?&,  we call the set of
vectors x in Ir for which TX is in S U the inverse image of S GuT. Thus the
nullspace of T is the inverse image of the set { 8, }. See Figure 2.6.

Figure 2.6. Abstract illustration of a transformation T.

Example 4. A Transformation Define T: ?iL2+%’  by

T(L52) :)/G-l for(f+<i>l (2.20)

AO= for [f+[i< 1

Physically, the vector TX can be interpreted as the distance between x and the unit
circle in the two-dimensional arrow space. The variables t, and I2 are “dummy”
variables; they merely assist us in cataloguing the “values” of T in the defining

*In the modeling process we use the function concept twice: once as a vector—a model for
the condition of a system—and once as a relation between input and output vectors—a model
for the system itself. In order to avoid confusion, we use the term function in referring to
vectors in a vector space, but the term transformation in referring to the relation between
vectors.
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equation; we can use any other symbols in their place without changing the
definition of T. The range of T is the set of positive numbers in al. The nullspace
of T is the set consisting of all vectors in the domain R2 which satisfy [f + 6,’ < 1.

Suppose we wish to solve the equation TX= 1 for the transformation of
Example 4. In effect, we ask which points in the arrow space are a unit
distance from the unit circle—all points on the circle of radius 2. The
solution is not unique because T assigns to the single number 1 in 3’ more
than one vector in S2. The equation TX = -1, on the other hand, has no
solution because T does not assign the number -1 in %’ to any vector in
CF12. We now proceed to specify the properties of a transformation which
are necessary in order that the transformation be uniquely reversible.

Definition. Let T: ?r+ “?ti. Then T is one-to-one if

Xl 7-2 + TX, #TX, (2.21)

for all x, and x2 in 1/; that is, if T does not assign more than one x in ?r
to a single y in %J.

If T is one-to-one, any solution to TX= y is unique. It might appear that
the effect of T is reversible if T is one-to-one. The nonreversibility of T in
Example 4, however, arises only in part because T is not one-to-one. In
general, there may be vectors in the range of definition % which are not
associated in any way with vectors in Ir. In point of fact, range(T)  consists
precisely of those vectors y in w for which the equation TX= y is solvable.
Unless we know which vectors are in range(T),  we cannot reverse the
transformation.

Definition. Let T: V+ %. Then T is onto if

range(T)  = % (2.22)

That is, T is onto if every vector y in ‘% is associated with at least one
vector x in V.

Definition. If a transformation is one-to-one and onto, then it is invertible
—it can be reversed uniquely. If T: ‘v+(% is invertible, we define the
inverse of T to be the transformation T- ’ : w + Y which associates with
each y in % the unique vector x in V for which TX = y. See (2.29) for
another characterization of T- ‘.

Example 5. The Identity Operator, I. Let V be a vector space. Define the
operator I on Y by

IX:, (2.23)
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for all x in Y. The nullspace of I is &. Range (I)= ?r; thus I is onto. Furthermore,
I is one-to-one. Therefore, the identity operator is invertible.

Example 6. The Zero Transformation, 8. Let Y and % be vector spaces. Define
9: T’-+%J  b y

e&ew (2.24)

for all x in Y. The nullspace of 8 is Y. The range of 8 is eW. The zero
transformation is neither one-to-one nor onto. It is clearly not invertible.

Example 7.  A Transformation on a Function Space. Define T: b? (a,b)+%,’ by

Tf k lbff2(t)dt
a

(2.25)

for all f in (2 (a, b). This transformation specifies an integral-square measure of the
size of the function f; this measure is used often in judging the performance of a
control system. The function f is a dummy variable used to define T; the scalar t is
a dummy variable used to define f. In order to avoid confusion, we must carefully
distinguish between the concept of the function f in the vector space e(a, b) and
the concept of the transformation T which relates each function f in (?(a,  6) to a
vector in 9%‘.  The transformation acts on the whole function f-we  must use all
values of f to find Tf. The range of T is the set of positive numbers in a’; thus T is
not onto the range of definition CFL’.  The nullspace of T is the single vector fIy. If
we define f, and f2 by f,(t) = 1 and f2(t) = -1, then Tf, = Tf2; therefore T is not
one-to-one.

The transformations of Examples 4 and 7 are scalar valued; that is, the
range of definition in each case is the space of scalars. We call a
scalar-valued transformation a functional. Most functionals are not one-to-
one.

Example 8. A Transformation for a Dynamic System. Let e2(a, b) be the space of
functions which have continuous second derivatives on .[a,  b]. Define L: e2(a, b)
+WO) by

(Lf)(t)  e f~(t)+,(f(t)+0.01f3(t>) (2.26)

for all f in lZ2(a,  b) and all t in [a, b]. This transformation is a model for a particular
mass-spring system in which the spring is nonlinear. The comments under Example
7 concerning the dummy variables f and t apply here as well. As usual, the
definition is given in terms of scalars, functions evaluated at t. Again, L acts on the
whole function f. Even in this example we cannot determine any value of the
function Lf without using an “interval” of values of f, because the derivative
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function f’ is defined in terms of a limit of values of f in the neighborhood of t:

The nullspace of L consists in all solutions of the nonlinear differential equation,
Lf-eW ; restated in terms of the values of Lf, this equation is

f”(t)+a(f(t)+0.01f3(t))=0 a<t<b

To determine these solutions is not a simple task. By selecting C? (a, b) as the range
of definition, we ask that the function Lf be continuous; since Lf represents a force
in the mass-spring system described by (2.26) continuity seems a practical assump-
tion. By choosing e’(a,b) as the domain, we guarantee that Lf is continuous. Yet
the range of L is not clear. It is in the range of definition, but is it equal to the
range of definition? In other words, can we solve the nonlinear differential
equation Lf =u for any continuous u? The function f represents the displacement
versus time in the physical mass-spring system. The function u represents the force
applied to the system as a function of time. Physical intuition leads us to believe
that for given initial conditions there is a unique displacement pattern f associated
with each continuous forcing pattern u. Therefore, L should be onto. On the other
hand, since no initial conditions are specified, we expect two degrees of freedom in
the solution to Lf =u for each continuous u. Thus the dimension of nullspace (L) is
two, and L is not one-to-one.

Combining Transformations

The transformation introduced in Example 8 is actually a composite of
several simpler transformations. In developing a model for a system, we
usually start with simple models for portions of the system, and then
combine the parts into the total system model. Suppose T and U are both
transformations from II into % . We define the transformation aT+ bU:
‘-lb%  b y

(aT+ bU)x 4 aTx + bUx (2.27)

for all x in V. If G: % +G%, we define the transformation GT: V+%
bY

(GT)x i G(Tx) (2.28)

for all x in Ir. Equations (2.27) and (2.28) define linear combination and
composition of transformations, respectively.
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Example 9. Composition of Matrix Multiplications. Define G: a3+a2 by

and T: CR2+CX3  by

$3 i (5 $)

Then GT: (Zk2+CR2  is described by

Exercise 1. Let T: Y+%. Show that T is invertible if and only if
V = % and there is a transformation T- ’ : % -+ Y such that

T-‘T=m-l=I (2.29)

Exercise 2. Suppose G and T of (2.26) are invertible. Show that

(GT)-‘=T-‘G-l (2.30)

The composition (or product) of two transformations has two nasty
characteristics. First, unlike scalars, transformations usually do not com-
mute; that is, GT#TG.  As illustrated in Example 9, G and T generally do
not even act on the same vector space, and TG has no meaning. Even if G
and T both act on the same space, we must not expect commutability, as
demonstrated by the following matrix multiplications:
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Commutable operators do exist. In fact, since any operator commutes with
itself, we can write G2, as we do in Example 10 below, without being
ambiguous. Operators which commute act much like scalars in their
behavior toward each other (see P&C 4.29).

If two scalars satisfy ab = 0, then either a = 0, b = 0, or both. The second
matrix multiplication above demonstrates that this property does not
extend even to simple transformations. This second difficulty with the
composition of transformations is sometimes called the existence of divi-
sors of zero. If GT =8 and G #9, we cannot conclude that T = 9 ; the
cancellation laws of algebra do not apply to transformations. The difficulty
lies in the fact that for transformations there is a “gray” region between
being invertible and being zero. The range of T can lie in the nullspace of
G.

Example 10. Linear Combination and Composition of Transformations. The
space en (a, b) consists in all functions with continuous nth derivatives on [a, b].

Define G: 67” (a, b)+P-‘(a,b)  by Gf 9 f’ for all f in en (a, b). Then G2: e2(a, b)

+ e (a, b) is well defined. Let U: CZ2(a,  b)+ e(a, 6) be defined by (Uf)(t) i f(t)
+ 0.01f3(t)  for all f in e2(a, b) and all t in [a, b]. The transformation L of Example 8

can be described by L 9 G2 + au.

As demonstrated by the above examples, the domain and range of
definition are essential parts of the definition of a transformation. This
importance is emphasized by the notation T: ‘v+w. The spaces li‘ and
G2Lci  are selected to fit the structure of the situation we wish to model. If we
pick a domain that is too large, the operator will not be one-to-one. If we
pick a range of definition that is too large, the operator will not be onto.
Thus both ‘Y and ‘?lJ affect the invertibility of T. We apply loosely the
term finite (infinite) dimensional transformation to those transformations
that act on a finite (infinite) dimensional domain.

2.4 Linear Transformations

One of the most common and useful transformations is the matrix
multiplication introduced in Chapter 1. It is well suited for automatic
computation using a digital computer. Let A be an m X n matrix. We
define T: Wx1+9?Yx1  by

TX 5 Ax (2.3 1)

for all x in QYxl. We distinguish carefully between T and A. T is not A,
but rather multiplication by A. The nullspace of T is the set of solutions to
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