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If € is smal, say e = 0.01, then

R )

After only three iterations, the sequence x; has settled; the vector x; provides a
good description of the near nullspace of T. If € = 0, T is singular; x5 lies amost in
the nullspace of this singular operator (Figure 2.7). Were we to try other starting
vectors x,, we would obtain other vectors x, nearly parald to (-1 2)". This near
nullspace of T should be considered one-dimensional.

We note from Example 7 that the vector x, in the inverse iteration grows
dragtically in size. Practicd computer implementations of inverse iteration
include normalization of x, at each step in order to avoid numbers too
large for the computer. A description for a two-dimensional near nullspace
is sought in P&C 2.26. In Section 4.2 we analyze the inverse iteration more
precisely in terms of eigenvalues and eigenvectors. Forsythe [2.3] gives
some interesting examples of the treatment of nearly singular operators.

The Role of Linear Transformations

The purpose of modeling a system is to develop insight concerning the
system, to develop an intuitive feel for the input-output relationship. In
order to decide whether or not a particular model, linear or nonlinear, is a
good model, we must compare the input-output relationship of the model
with the corresponding, but measurable, input-output relationship of the
system being modeled. If the model and the system are sufficiently in
agreement for our purposes, we need not distinguish between the system
and the model.

Almost al physical systems are to some degree nonlinear. Yet most
systems act in a nearly linear manner if the range of variation of the
variables is restricted. For example, the current through a resistor is
essentially proportional to the applied voltage if the current is not large
enough to heat the resistor significantly. We are able to develop adequate
models for a wide variety of static and dynamic physical systems using
only linear transformations. For linear models there is available a vast
array of mathematical results; most mathematical analysis is linear anay-
sis. Furthermore, the analysis or optimization of a nonlinear system is
usually based on linearization (Chapters 7 and 8). Even in solving a
nonlinear equation for a given input, we typicaly must resort to repetitive
linearization.

The examples and exercises of this section have demonstrated the
variety of familiar transformations which are linear: matrix multiplication,
differentiation, integration, etc. We introduce other linear transformations



72 System Models: Transformations on Vector Spaces

as we need them. The next few chapters pertain only to linear transforma-
tions. In Chapter 3 we focus on the peculiarities of linear differential
systems. In Chapter 4 we develop the concepts of spectral decomposition
of linear systems. The discussion of infinite-dimensional systems in
Chapter 5 is also directed toward linear systems. Because we use the
symbols T and U so much in reference to linear transformations,
hereinafter we employ the symbols F and G to emphasize concepts which
apply as well to nonlinear transformations. We begin to examine nonlinear
concepts in Chapter 6. We do not return fully to the subject of nonlinear
systems, however, until we introduce the concepts of linearization and
repetitive linearization in Chapters 7 and 8.

2.5 Matricesof Linear Transformations

By the process of picking an ordered basis for an n-dimensiona vector
space Y, we associate with each vector in ¥ a unique n X 1 column
matrix. In effect, we convert the vectors in < into an equivalent set of
vectors which are suitable for matrix manipulation and, therefore, auto-
matic computation by computer. By taking coordinates, we can also
convert a linear equation, TX=¥, into a matrix equation. Suppose T:
Y- A is a linear transformation, dim( V) = n, and dim( W )= m. Pick as
baaﬁfor‘Vandéllfthesets%é{xl,...,x,,}and@é{)'p-..,ym},
respectively. The vectors x in ¥ and Tx in @ can be represented by their
coordinate matrices [x] and [Tx]e. The vectors x and Tx are linearly
related (by the linear transformation T). By (2.41), we know that a vector
and its coordinates are also linearly related. Therefore, we expect [x]q and
[Tx]q to be linearly related as well. Furthermore, we intuitively expect the
linear relation between the n X 1 matrix [x], and the m X 1 matrix [Tx]q to
be multiplication by an m X n matrix. We denote this matrix by [T] e and
refer to it as the matrix of T relative to the ordered bases X and % ; it must
satisfy

[Tly o [Xlo = [Tx]4 (2.45)

for all x in Y. Assume we can find such a matrix. Then by taking
coordinates (with respect to % ) of each side of the linear equation Tx =y,
we convert the equation to the equivalent matrix equation.

[Tl o[X] = [¥lq (2.46)

We will show that we can represent any linear transformation of <V into
U by a matrix multiplication by selecting bases for ¥ and U —we can
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convert any linear equation involving finite-dimensional vector spaces into
a matrix equation. We first show how to determine the matrix of T, then
we show that it satisfies the defining equation (2.45) for all vectors x in V.

Example 1. Determining the Matrix of a Linear Transformation Let x= (£;, &,
£,), an arbitrary vector in R3. Define T: #°—®2? by

T(£,65,¢5) = Q44,4 +5+8)

We now find [T]g,s,, Where &, and &, are the standard bases for ®* and @2,
respectively. By (2.45), we have

[Tls,8,[(41,62:83)]6,= (262~ 1. 61 + 62+ 63) s,
for al vectors (¢, &2 §3), or

(au a; 013) 2 =(2§z—§1 ) (2.47)
¢

a; 4ap 43 §,+6,+4,
3

where we have used {ay} to represent the elements of [T]g,s, By making three
independent choices of the scalars £, £, and &, we could convert this matrix
equation into six equations in the six unknowns {ay;}. However, by using a little
ingenuity, we reduce this effort. Think of the matrix multiplication in terms of the
columns of [T]g,s,. The ith element of [x]g, multiplies the ith column of [Tlg, s, If

1
we choose x=(1, 0, 0), then [(1, O, 0)]83{8), and (2.47) becomes

(a" ap 013) (1) =(a11)=<—-1)
Gu dn )\, a2 1

We have found the first column of [T]g,s, directly. We obtain the other two
columns of [Tlg, s, from (2.47) by successive substitution of x= (0, 1, 0) and x=(0,
0, 1). The result is

me(] 29

In Example 1 we avoided the need for simultaneous equations by
substituting the basis vectors ¢, &, and e, into (2.47) to pick out the
columns of [T]g, s, This same technique can be used to find the matrix of
any linear transformation acting on a finite-dimensional space. We refer
again to T: V- & , with dim(V) = n, dim( W) = m, X a basis for Y, and
% a basis for U . If we substitute into (2.45) the vector x,, the ith vector of
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the basis %, we pick out the ith column of [Tleq :

0

[Tl o[Xdox =[Tlo o ; | =ith column of [T]y o =[Tx/]q

Qo

0

We can find each column of [T]ge independently. The only computa-
tional effort is that in determining the coordinate matrices [Tx;}q. There-
fore,

[Tloeq = ([Tx,]g © [Txoly o0 - 1 [TX,]g) (2.48)

Example 2. The Matrix of a Linear Operator. Define the differential operator
A

D: 935 93 asin (2.36). The set N = {f,, £y, f5), where £,(£) = 1, £5(¢) = ¢, £3(1) = £,

is a natural basis for 3. We use (2.48) to find

[D]ma=([Df1]m [szqu [Dfsqu,)

=([0ly, : [fily : [2f:]s)
(05 150)
={0:0:2
0:0:0

From the method used to determine [Tlgq in (2.48), we know that this
matrix correctly represents the action of T on the basis vectors {x;}. We
now show that the matrix (2.48) aso represents correctly the action of T on
al other vectors in V. An arbitrary vector x in V' may be written in terms
of the basis vectors for V:

n
x= 2 §X;
i=1
Since the transformation T is linear,

Tx= > £Tx;

i=1
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Because the process of taking coordinates is linear [see (2.41)],
[Tx]y = 2 gi[Txi]Gy
i=1

£
=(Txly @ oo 1 [Tx,]q)]
£
=[T]oq[X]
Thus, continuing Example 2 above, if f is the arbitrary vector defined by
£(1) = £ +£,t +&,1% then

3 19)
(DA)(1) =&, +2¢,¢, [f], =| &2 ) [Df]o, =|26; | and [D]y 5 [f]o =[Df]g
&, 0

When the domain and range space of T are identical, and the same basis is
used for both spaces (as it is in Example 2), we sometimes refer to the
matrix [T]g & as the matrix of the operator T relative to the basis %X .

We expect the matrix of a linear transformation to possess the basic
characteristics of that transformation. The only basic characteristics of a
linear transformation that we have discussed thus far are its rank and
nullity. The picking of coordinate systems X and % converts the trans-
formation equation Tx = y to a precisely equivalent matrix equation, [Tx]s
=[Tlxa Xl =[¥ly ; for every x and y in the one equation, there is a
unique [x]s and [yle in the other. The dimensions of the nullspace and
range of the transformation “multiplication by [T]eq " must be the same,
therefore, as the dimensions of the nullspace and range of T. We speak
loosely of the rank and nullity of [T]yq wWhen we actually mean the rank
and nullity of the transformation “multiplication by [T]eq .” We refer to
the nullity and rank of a matrix as if it were the matrix of a linear
transformation. The nullspace and range of matrix multiplications are
explored in P&C 2.19; the problem demonstrates that for an m X »n matrix
A,

rank(A)= the number of independent columns of A

= the number of independent rows of A
nullity(A) = n—rank(A)
nullity(AT) = m—rank(A)
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Once again referring to Example 2, we see that the nullity of D is 1 [the
vector f; is a basis for nullspace(D)]. The nullity of (D]g o iS @S0 1 ([D]oy o
contains one dependent column). The matrix [D]e o does possess the same
nullity and rank as the operator D.

It is apparent that determination of the matrix of a transformation
reduces to the determination of coordinate matrices for the set of vectors
{Tx,} of (2.48). We found in Section 2.2 that determination of the
coordinate matrix of a vector x with respect to a basis X = {x,} can be
reduced to performing elimination on the matrix equation (2.17):

Xl =([Xi)ep © = [Xa)o)[X]eg

where 9 is a natural basis for the space V' of which x is a member (i.e,, a
basis with respect to which coordinates can be determined by inspection).

Exercise 1. Show that [T]gq Of (2.48) can be obtained by the row
reduction

((C7PSEIREREEN % RN | % RSN | o' W B N s y IO
(2.49)

where 9 is a natural basis for the range of definition €Uf . (Hint: if the
elements of [Tx,]q are denoted by [Tx,]g = (¢y; * * « ¢,)", then Tx, =% GiYis
and [Tx;)o, = Zc;ly]er -) Use this approach to find [T]g, 5, of Example 1
Example 3. The Matrix of a Matrix Transformation. Let T: 9% 1 Om¥ 1 pe
defined by Tx = Ax, where A is an m X n matrix. Denoting the standard bases for
Mt and M1y &, and &, , respectively, we find [Tlg, § = A. Although [x]e
and x are identical in this example, we should distinguish between them, for it is
certainly incorrect to equate the matrix [Tlg g, to the transformation T.

Suppose T: V=9 is invertible and linear; V and U are fin-
ite-dimensional with bases %X and % , respectively. It follows from (2.45)
that

[T~ ]q ol¥]a =[T7'y]y (2.50)
for al y in Q. Then, for each x in V,
[x]o =[T_'Tx]% =[T—l]sy ol TX] g =[T—'l]6y ol Tlo o[X] e

A similar relationship can be established with T and T~! reversed. Then as
a consequence of (2.29),

[T g =[Tlg e (2.51)



Sec. 25 Matrices of Linear Transformations 7

Exercise 2. Suppose Y, 9 , and QL are finite-dimensiona vector spaces
with bases %, ¥ , and £, respectively. Show that
alf T: Vo and U: VU are linear, then

[aT+5U]y o =a[T]g o +b5[Ulg 4 (2.52)
b. If T: Vo 9 and U: W — QL are linear, then

[UT]y ¢ =[Ulg [ Tly o (2.53)

Changes in Coordinate System

In Chapter 4 we discuss coordinate systems which are particularly suitable
for analysis of a given linear transformation—coordinate systems for
which the matrix of the transformation is diagona. In preparation for that
discussion we now explore the effect of a change of coordinate system on a
coordinate matrix [x] and on the matrix of a transformation [T].

Suppose %X and £ are two different bases for an n-dimensiona vector
space V. We know by (2.41) that the transformations

x—>[x]y and x—[x]q
are linear and invertible. Thus we expect [x]y and [x]g to be related by
S[x]s = [x]g (2.54)

where S is an n X n invertible matrix. In fact, multiplication of [x]s by any
invertible matrix represents a change from the coordinate system %X to
some new coordinate system. We sometimes denote the matrix S of (2.54)
by the symbol S44, thereby making explicit the fact that S converts
coordinates relative to % into coordinates relative to €. Then (Seg) ™"
=Sz N

Detgérmination of the specific change-of-coordinates matrix S defined in
(2.54) follows the same line of thought as that used to determine [T] in
(2.48). By successively substituting into (2.54) the vectors x,, X,,. . . ,X, from
the basis %, we isolate the columns of S: the ith column of S is [x]g.
Thus the unique invertible matrix 8 which transforms coordinate matrices
relative to % into coordinate matrices relative to € is

S=Saz=([x]g : ~** : [Xlg) (2.55)

where the x; are the vectors in the basis .
Since a change-of-coordinates matrix is aways invertible, we determine
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from (2.54) that

S™[x]y = [x]q
and
$71=Saz=Sza=(zlx i ilZla) (256)

where the z; are the vectors in the basis € . If € is a natura basis for the
space, then S can be found by inspection. On the other hand, if %X is a
natural basis, we find S~! by inspection. It is appropriate to use either
(2.55) or (2.56) in determining S. We need both S and S~! to allow
conversion back and forth between the two coordinate systems. Besides,
the placing of S on the left side of (2.54) was arbitrary.

Example 4. A Change-of-Coordinates Matrix, Let & be the standard basis for
R3. Another basis for ®* is € = {z;, 2, 23}, where z,=(1, 1, 1), z,=(1, 1, 0), and
z; = (1, 0, 0). Since & is a naturd basis for 2, we use (2.56) to find

1

1 1
S—1=([21]5 [12]5 [13](-;)=({ (1) g) (2.57)

A draightforward elimination (Section 1.5) yields

0 0 1
S={o 1 -1 (2.58)
1 -1 0

We note that for an arbitrary vector x=(£,, &, &) in &3, [x]g = (¢, & &) By
(2.54),

[x]g =SIx]s =(¢; &—& fx‘fz)T (2.59)
But then,

x=(&)zy + (- &)z, + (§— &)z
=)L, 1L,1D)+(6-£)(1, 1,00+ (£, —£,)(1,0,0)
=1 665) (2.60)
and the vdlidity of the change of coordinates matrix S is verified.

If neither % nor € is a naturd basis, the determination of S can ill be
systematized by the introduction of an intermediate step which does
involve a natural bass.
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Exercise 3. Suppose we need the change-of-coordinates matrix S such
that S[x]y = [X]g, where neither %€ nor Z is a natural basis for V.
Suppose 9 is a natural basis. Show, by introducing an intermediate
change to the coordinates [X]q;, that

-1

S=(lzlo : * * i [Zde) (Kiay P o [Xalor) (2.61)

Example5. Change of CoordinatAes via an Intermediate Natural Basis. Two bases
A
for 9% are § = {f}, f5, 3} and § = {g,, &, &}, where

(D=1, f,()=1+1, f()=1+7

g(D=1+1, g)=1, g)=1+7

A
To find S such that Sif]¢ = [flg, we introduce the naturd basis 9U = {h,, hy, hy},
whereh,(¢) =t~ 1. Then, by (2.61),

S= (lgila (g2l [gz]m)—l([fl]a [f2]o : Bl
1 0 o\ 'f1 1 1
=(I 1 1) (O 1 0)
0 0 1 0 0 1

( 1 0 0)(1

=l -1 1-1]f0

0 0 1/\0

Similarity and Equivalence Transformations
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Now that we have a process for changing coordinate systems, we explore
the effect of such a change on the matrix of a transformation. Suppose T is
a linear operator on VY, and that % and € are two different bases for V.
Then [T]ge is defined by

[T]og oc[X]ox =[Tx]o
The change from the % to the £ coordinate system is described by
S[x]y = [x]g
The change-of-coordinates matrix S also applies to the vector Tx in V :

S[Tx] o =[TX]¢
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By substituting [x]¢ and [Tx]s from these last two equations into the
defining equation for [Tx],, , we find

[T)o oS '[X]g =S7'[Tx]g
or
(S[T]%%S_l)[x]z = [Tx]g
But this is the defining equation for [T]ge. It is apparent that
[Tlee =S[T]g oS~ (2:62)

where S converts from the % coordinate system to the £ coordinate
system. Equation (2.62) describes an invertible linear transformation on

[Tl known as a similarity transformation. In Section 4.2, we find that a
similarity transformation preserves the basic spectral properties of the
matrix. It is comforting to know that any two matrix representations of a
linear system have the same properties-these properties are inherent in
the model, T, and should not be affected by the coordinate system we
select.

Example 6. A Similarity Transformation. In Example 2 we found the matrix of
the differential operator on @* relative to the natural basis for 93

01 0
[Dlgo={0 0 2
0 0 O
Another basis for 9% is 8 = {g,, &, g3}, Where g,(f) = 1+ ¢, g,(t) = ¢, and gs(¢) = ¢ +

2. The change-of-coordinates matrix which relates the two bases 9 and § is
defined by S[fle, =I[fl4 ; we find it using (2.56):

S7T'=(lg)lo, ¢ lgaley + g5]er)

1 0 0
={1 1 1
0 0 1

The inverse matrix is



