(a) Find $[\mathbf{T}]_{\mathscr{X} X}$.
(b) Find the coordinate transformation $\mathbf{S}_{\mathfrak{X} \mathscr{y}}$.
(c) Use the answers to (a) and (b) to compute $[\mathbf{T}]_{\mathrm{g}_{\mathrm{y}}}$ by means of a similarity transformation.
2.35 Multiplication by an invertible matrix can be interpreted either as a linear transformation or as a change of coordinates. Let $\mathfrak{X}=$ $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ be a basis for a two-dimensional space \mathbb{V} and \mathbf{x} a vector in \mathfrak{V}. Then $\left[\mathbf{x}_{1}\right]_{\mathcal{X}}=\binom{1}{0}$ and $\left[\mathbf{x}_{2}\right]_{\mathfrak{X}}=\binom{0}{1}$. Let

$$
[\mathrm{x}]_{\mathscr{X}}=\binom{2}{1}, \quad \mathbf{A}=\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right)
$$

(a) Alias interpretation: assume $\mathbf{A}[\mathbf{x}]_{\mathscr{X}}=[\mathbf{x}]_{\mathscr{Q}_{\mathcal{U}}}$, where $\mathscr{y}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}\right\}$ is a second basis for \mathfrak{V}. Find $\left[\mathbf{y}_{1}\right]_{\mathcal{X}}$ and $\left[\mathbf{y}_{2}\right]_{\mathcal{X}}$. Sketch $\left[\mathbf{x}_{1}\right]_{\mathcal{X}}$, $\left[\mathbf{x}_{2}\right]_{\mathcal{X}},[\mathbf{x}]_{\mathscr{X}},\left[\mathbf{y}_{1}\right]_{\mathcal{X}}$, and $\left[\mathbf{y}_{2}\right]_{\mathscr{X}}$ as arrows in a plane. What is the relationship between $[\mathbf{x}]_{\mathcal{X}}$ and the basis $\left\{\left[\mathbf{y}_{1}\right]_{\mathcal{X}},\left[\mathbf{y}_{2}\right]_{\mathcal{X}}\right\}$; that is, what is meant by the notation $[\mathbf{x}]_{9,}$?
(b) Alibi interpretation: assume $\mathbf{A}[\mathbf{x}]_{\mathcal{X}}=[\mathbf{T x}]_{\mathscr{X}}$. Sketch $\left[\mathbf{x}_{1}\right]_{\mathcal{X}}$, $\left[\mathbf{x}_{2}\right]_{\mathcal{X}},[\mathbf{x}]_{\mathcal{X}}$, and $[\mathbf{T x}]_{\mathscr{X}}$ as arrows in a plane. What is the relationship between $[\mathbf{T}]_{\mathcal{X}}$ and the basis $\left\{\left[\mathbf{x}_{1}\right]_{\mathcal{X}},\left[\mathbf{x}_{2}\right]_{\mathcal{X}}\right\}$; that is, what is meant by the notation $[\mathbf{T x}]_{\mathscr{X}}$?

2.7 References

[2.1] Churchill, R. V., Fourier Series and Boundary Value Problems, McGraw-Hill, New York, 1941.
[2.2] Cramer, Harald and M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967.
[2.3] Forsythe, George E., "Singularity and Near Singularity in Numerical Analysis," Am. Math. Mon., 65 (1958), 229-40.
[2.4] Forsythe, George E. and Wolfgang R. Wasow, Finite Difference Methods for Partial Differential Equations, Wiley, New York, 1960.
*[2.5] Halmos, P. R., Finite-Dimensional Vector Spaces, Van Nostrand, Princeton, N. J., 1958.
*[2.6] Hoffman, Kenneth and Ray Kunze, Linear Algebra, Prentice-Hall, Englewood Cliffs, N. J., 1961.
[2.7] Papoulis, Athanasios, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965.
[2.8] Peterson, W. Wesley, Error-Correcting Codes, M.I.T. Press and Wiley, New York, 1961.
[2.9] Pratt, William K., Julius Kane, and Harry C. Andrews, "Hadamard Transform Image Coding," Proc. IEEE, 57, 1 (January 1969), 58-68.
[2.10] Royden, H. L., Real Analysis, 2nd ed., Macmillan, New York, 1968.
[2.11] Wylie, C. R., Jr., Advanced Engineering Mathematics, 3rd ed., McGraw-Hill, New York, 1966.

