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Perverse Cohomology of Potatoes and the Stability of the
Universe

The stability of our universe is clearly a fundamental problem.
Unfortunately, I proved

Theorem 1

Our universe, U, is unstable.

Proof.

It can be shown that the perverse cohomology group

H237
pot (U) = 101010

potatoes.

This is too big, therefore, the universe is unstable.

It is obvious that Theorem 1 implies that P 6= NP.
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1. Quadratic Optimization Problems; What Are They?

Many problems in computer vision, and more generally, computer science,
can be cast as optimization problems.

Typically, one defines an objective function, f , whose domain is a subset of
Rn, and one wants to

maximize f (x)

subject to constraints g1(x) = 0

g2(x) ≤ 0

...

The constaint functions, g1, g2, etc., are often linear or quadratic but they
can be more complicated.
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We usually want to find the maximum value of f (subject to the
constaints) and find some/all values of x for which f (x) is maximal (an
“argmax” problem).

Sometimes, one wants to minimize f (x), but this is equivalent to
maximizing −f (x).

Sometimes the domain of f is a discrete subset of Rn, for example, {0, 1}n.

The complexity of optimization problems over discrete domains is often
worse that than it is over continuous domains (NP-hard).

When we don’t know how to solve efficiently a discrete optimization
problem, we can try solving a relaxation of the problem.
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This means that we let x vary over Rn instead of a discrete domain.
If we are lucky, the relaxed problem can be solved efficiently.

However, the solutions of the relaxation are rarely solutions of the original
problem.

Solutions of the relaxation have to be “rounded”. This is not always
possible.

We will consider optimization problems where the optimization function,
f , is quadratic function and the constaints are quadratic or linear .
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A Simple Example

For example, find the maximum of

f (x , y) = 5x2 + 4xy + 2y 2

on the unit circle
x2 + y 2 = 1.

It turns out that the maximum of f on the unit circle is 6 and that it is
achieved for (

x

y

)
=

( 2√
5

1√
5

)
.

How did I figure that out?
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We can express f (x , y) = 5x2 + 4xy + 2y 2 in terms of a matrix as

f (x , y) = (x , y)

(
5 2
2 2

)(
x

y

)

The matrix

A =

(
5 2
2 2

)
is symmetric (A = A>), so it can be diagonalized .
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This means that there are (unit) vectors, e1, e2, that form a basis of R2

and such that

Aei = λiei , i = 1, 2,

where the scalars, λ1, λ2, are real.

The vectors, e1, e2, are eigenvectors and the numbers, λ1, λ2, are
eigenvalues, of A.

We say that ei is an eigenvector associated with λi .

The eigenvalues of A are the zeros of the characteristic polynomial ,

det(λI − A) =

∣∣∣∣5− λ 2
2 2− λ

∣∣∣∣ = λ2 − 7λ+ 6.
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Furthermore, e1 and e2 are orthogonal , which means that their inner
product is zero: e1 · e2 = 0.

It turns out that

λ1 = 6, λ2 = 1,

and

e1 =

( 2√
5

1√
5

)
, e2 =

(− 1√
5

2√
5

)
so we can write

A =

(
5 2
2 2

)
=

(
2√
5
− 1√

5
1√
5

2√
5

)(
6 0
0 1

)( 2√
5

1√
5

1
−
√

5
2√
5

)
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The matrix

P =

(
2√
5
− 1√

5
1√
5

2√
5

)

has the following properties:

PP> = P>P = I .

A matrix, P, such that

PP> = P>P = I .

is called an orthogonal matrix .
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Observe that

f (x , y) = (x , y)

(
5 2
2 2

)(
x

y

)
= (x , y)

(
2√
5
− 1√

5
1√
5

2√
5

)(
6 0
0 1

)( 2√
5

1√
5

1
−
√

5
2√
5

)(
x

y

)
= (x , y)P

(
6 0
0 1

)
P>
(

x

y

)

If we let (
u

v

)
= P>

(
x

y

)
,

then

f (u, v) = (u, v)

(
6 0
0 1

)(
u

v

)
= 6u2 + v 2.
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Furthermore, the constraint

x2 + y 2 = 1

can be written as

(x , y)

(
x

y

)
= 1.

Using the fact that(
u

v

)
= P>

(
x

y

)
, so

(
x

y

)
= P

(
u

v

)
,

we get

1 = (x , y)

(
x

y

)
= (u, v)P>P

(
u

v

)
= (u, v)

(
u

v

)
,

so
u2 + v 2 = 1.
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Therefore, we have to find the maximum of

f (u, v) = 6u2 + v 2

where
u2 + v 2 = 1.

Note that on the circle, u2 + v 2 = 1,

f (u, v) = 6u2 + v 2 ≤ 6(u2 + v 2) ≤ 6,

and
f (1, 0) = 6.

So, the maximum of f on the unit circle is indeed 6.
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This maximum is achieved for (u, v) = (1, 0), and since(
x

y

)
= P

(
u

v

)
=

(
2√
5
− 1√

5
1√
5

2√
5

)(
u

v

)
this yields (

x

y

)
=

( 2√
5

1√
5

)
.

In general, a quadratric function is of the form

f (x) = x>Ax ,

where x ∈ Rn and A is an n × n matrix.
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Figure: The power of abstraction
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Important Fact 1.
We may assume that A is symmetric , which means that A> = A.

This is because we can write

A = H(A) + S(A),

where

H(A) =
A + A>

2
and S(A) =

A− A>

2

and H(A) is symmetric , i.e., H(A)> = H(A),

S(A) is skew symmetric, i.e., S(A)> = −S(A), and

f (x) = x>Ax = x>H(A)x .

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 16 / 61



Important Fact 1.
We may assume that A is symmetric , which means that A> = A.

This is because we can write

A = H(A) + S(A),

where

H(A) =
A + A>

2
and S(A) =

A− A>

2

and H(A) is symmetric , i.e., H(A)> = H(A),

S(A) is skew symmetric, i.e., S(A)> = −S(A), and

f (x) = x>Ax = x>H(A)x .

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 16 / 61



Important Fact 1.
We may assume that A is symmetric , which means that A> = A.

This is because we can write

A = H(A) + S(A),

where

H(A) =
A + A>

2
and S(A) =

A− A>

2

and H(A) is symmetric , i.e., H(A)> = H(A),

S(A) is skew symmetric, i.e., S(A)> = −S(A), and

f (x) = x>Ax = x>H(A)x .

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 16 / 61



Important Fact 1.
We may assume that A is symmetric , which means that A> = A.

This is because we can write

A = H(A) + S(A),

where

H(A) =
A + A>

2
and S(A) =

A− A>

2

and H(A) is symmetric , i.e., H(A)> = H(A),

S(A) is skew symmetric, i.e., S(A)> = −S(A),

and

f (x) = x>Ax = x>H(A)x .

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 16 / 61



Important Fact 1.
We may assume that A is symmetric , which means that A> = A.

This is because we can write

A = H(A) + S(A),

where

H(A) =
A + A>

2
and S(A) =

A− A>

2

and H(A) is symmetric , i.e., H(A)> = H(A),

S(A) is skew symmetric, i.e., S(A)> = −S(A), and

f (x) = x>Ax = x>H(A)x .

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 16 / 61



Indeed, is S is skew symmetric, as f (x) = x>Sx is a scalar, so

f (x) = f (x)>

= (x>Sx)>

= x>S>x

= −x>Sx

= −f (x)

and we get 2f (x) = 0, that is, f (x) = 0.

If A is a complex matrix, then we consider

A∗ = (A)>

(the transjugate, conjugate transpose or adjoint of A)
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We also have (replacing A> by A∗)

A = H(A) + S(A)

where H(A) is Hermitian, i.e., H(A)∗ = H(A),

and S(A) is skew Hermitian, i.e., S(A)∗ = −S(A).

Then, a quadratic function over Cn is of the form

f (x) = x∗Ax ,

with x ∈ Cn.
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If S is skew Hermitian, we have

(x∗Sx)∗ = −x∗Sx ,

but this only implies that the real part of f (x) is zero that is, f (x) is pure
imaginary or zero.

However, if A is Hermitian, then f (x) = x∗Ax , is real .
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Important Fact 2.

Every n × n real symmetric matrix, A, has real eigenvalues, say

λ1 ≥ λ2 ≥ · · · ≥ λn,

and can be diagonalized with respect to an orthonormal basis of
eigenvectors.

This means that there is a basis of orthonormal vectors, (e1, . . . , en),
where ei is an eigenvector for λi , that is,

Aei = λiei , 1 ≤ i ≤ n.

The same result holds for (complex) Hermitian matrices (w.r.t. the
Hermitian inner product).
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The Basic Quadratic Optimization Problem
Our quadratic optimization problem is then to

maximize x>Ax

subject to x>x = 1, x ∈ Rn,

where A is an n × n symmetric matrix.

If we diagonalize A w.r.t. an orthonormal basis of eigenvectors,
(e1, . . . , en), where

λ1 ≥ λ2 ≥ · · · ≥ λn
are the eigenvalues of A and if we write

x = x1e1 + · · ·+ xnen,

then it is easy to see that

f (x) = x>Ax = λ1x2
1 + · · ·+ λnx2

n ,

subject to
x1

1 + · · ·+ x2
n = 1.
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Courant Fischer

Consequently, generalizing the proof given for n = 2, we have:

max
x>x=1

x>Ax = λ1,

the largest eigenvalue of A, and this maximum is achieved for any unit
eigenvector associated with λ1.

This fact is part of the Courant-Fischer Theorem.

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 22 / 61



Courant Fischer

Consequently, generalizing the proof given for n = 2, we have:

max
x>x=1

x>Ax = λ1,

the largest eigenvalue of A, and this maximum is achieved for any unit
eigenvector associated with λ1.

This fact is part of the Courant-Fischer Theorem.

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 22 / 61



Figure: Richard Courant, 1888-1972

This result also holds for Hermitian matrices.
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A Quadratic Optimization Problem Arising in Contour
Grouping

Jianbo Shi and his students Qihui Zhu and Gang Song have investigated
the problem of contour grouping in 2D images.

The problem is to find 1D (closed) curve-like structures in images.

The goal is to find cycles linking small edges called edgels.

The method uses a directed graph where the nodes are edgels and the
edges connect pairs of edgels within some distance.

Every edge has a weight, Wij , measuring the (directed) collinearity of two
edgels using the elastic energy between these edgels.
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Given a weighted directed graph, G = (V ,E ,W ), we seek a set of edges,
S ⊆ V , (a cut) and an ordering, O, on S , that maximizes a certain
objective function,

C (S ,O, k) =
1− Ecut(S)− Icut(S ,O, k)

T (k)
,

where

1 Ecut(S) measures how strongly S is separated from its surrounding
background (external cut)

2 Icut(S ,O, k) is a measure of the entanglement of the edges between
the nodes in S (internal cut)

3 T (k) is the tube size of the cut; it depends on the thickness factor , k
(in fact, T (k) = k/|S |).
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Very recently, Shi and Kennedy found a better formulation of the objective
function involving a new normalization of the matrix arising from the
graph G .

We will only present the “old” formulation.

Maximizing C (S ,O, k) is a hard combinatorial problem so, Shi, Zhu and
Song had the idea of converting the orginal problem to a simpler problem
using a
circular embedding .
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The main idea is that a cycle is an image of the unit circle.

Thus, we try to map the nodes of the graph onto the unit circle but nodes
not in a cycle will be mapped to the origin.

A point on the unit circle has coordinates

(cos θ, sin θ),

which are conveniently encoded as the complex number

z = cos θ + i sin θ = e iθ.
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The nodes in a cycle will be mapped to the complex numbers

zj = e iθj , θj =
2πj

|S |
.

The maximum jumping angle θmax will also play a role; this is the
maximum of the angle between two consecutive nodes.
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Circular embedding score

Then, Shi and Zhu proved that maximizing C (S ,O, k) is equivalent to
maximizing the circular embedding score,

Ce(r , θ, θmax) =
1

θmax

∑
θi<θj≤θi+θmax

ri>0, rj>0

Pij/|S |,

where

1 The matrix P = (Pij) is obtained from the weight matrix, W , (of the
graph G = (V ,E ,W )) by a suitable normalization

2 rj ∈ {0, 1}
3 θj is an angle specifying the ordering of the nodes in the cycle

4 θmax is the maximum jumping angle.
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This optimization problem is still hard to solve.

Consequently, Shi and
Zhu considered a continuous relaxation of the probem by allowing rj to be
any real in the interval [0, 1] and θj to be any angle (within a suitable
range).

In the circular embedding, a node in then represented by the complex
number

xj = rje
iθj .

We also introduce the average jumping angle

∆θ = θk − θj .

Then, it is not hard to see that the numerator of Ce(r , θ, θmax) is well
approximated by the expression∑

j ,k

Pjk cos(θk − θj −∆θ) =
∑
j ,k

Re(x∗j xk · e−i∆θ).
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Continuous Relaxation

Thus, Ce(r , θ, θmax) is well approximated by

1

θmax

∑
j ,k Re(x∗j xk · e−i∆θ)∑

j |xj |2
.

This term can be written in terms of the matrix P as

Ce(r , θ, θmax) ≈ 1

θmax

Re(x∗Px · e−i∆θ)

x∗x
,

where x ∈ Cn is the vector x = (x1, . . . , xn).
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where x ∈ Cn is the vector x = (x1, . . . , xn).
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The matrix P is a real matrix but, in general, it not symmetric nor normal
(PP∗ = P∗P).

If we write δ = ∆θ and if we assume that
0 < δmin ≤ δ ≤ δmax, we would like to solve the following optimization
problem:

maximize Re(x∗e−iδPx)

subject to x∗x = 1, x ∈ Cn;

δmin ≤ δ ≤ δmax.
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Zhu then further relaxed this problem to the problem:

maximize Re(x∗e−iδPy)

subject to x∗y = c, x , y ∈ Cn;

δmin ≤ δ ≤ δmax.

with c = e−iδ.

However, it turns out that this problem is too relaxed , because the
constraint x∗y = c is weak; it allows x to be very large and y to be very
small , and conversely.
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However, this relaxation in unnecessary.

Indeed, for any complex number, z = x + iy ,

Re(z) = x =
z + z

2
,

and a calculation shows that

Re(x∗ e−iδP x) = x∗
1

2
(e−iδP + e iδP>)x .

Note that

H(e−iδP) =
1

2
(e−iδP + e iδP>)

is the Hermitian part of e−iδP.
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A New Formulation of the Optimization Problem

Another simple calculation shows that

H(e−iδP) = cos δH(P)− i sin δ S(P).

In view of the above, our original (relaxed) optimization problem can be
stated as

maximize x∗H(δ) x

subject to x∗x = 1, x ∈ Cn;

δmin ≤ δ ≤ δmax

with
H(δ) = H(e−iδP) = cos δH(P)− i sin δ S(P),

a Hermitian matrix .
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The optimal value is the largest eigenvalue, λ1, of H(δ), over all δ such
that δmin ≤ δ ≤ δmax and it is attained for any associated complex unit
eigenvector, x = xr + ixi .

Ryan Kennedy has implemented this method and has obtained good
results.
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The Case Where P is a Normal Matrix

When P is a normal matrix (PP> = P>P) it is possible to express the
eigenvalues of H(δ) and the corresponding eigenvectors in terms of the
(complex) eigenvalues of P and its eigenvectors.

If u + iv is an eigenvector of P for the (complex) eigenvalue λ+ iµ, then
u + iv is also an eigenvector of H(δ) for the (real) eigenvalue
cos δ λ− sin δ µ.

Geometrically, this means that the eigenvalues of H(δ) vary on circles,
plotted as a function of δ.

The next four Figures were produced by Ryan Kennedy.
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Figure: The eigenvalues of a matrix H(δ) which is not normal
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Figure: The eigenvalues of the matrix for an actual image
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Derivatives of Eigenvectors and Eigenvalues

To solve our maximization problem, we need to study the variation of the
largest eigenvalue, λ1(δ), of H(δ).

This problem has been studied before and it is possible to find explicit
formulae for the derivative of a simple eigenvalue of H(δ) and for the
derivative of a unit eigenvector of H(δ).

Shi and Cour obtained similar formulae in a different context.

It turns out that it is not easy to find clean and complete derivations of
these formulae.

The best source is Peter Lax’s linear algebra book (Chapter 9). A nice
account is also found in a blog by Terence Tao.
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Let X (δ) be a matrix function depending on the parameter δ.

It is proved in Lax (Chapter 9, Theorem 7 and Theorem 8) that if λ is a
simple eigenvalue of X (δ), for δ = δ0 and if u is a unit eigenvector
associated with λ, then, in a small open interval around δ0, the matrix
X (δ) has a simple eigenvalue, λ(δ), that is differentiable (with λ(δ0) = λ)
and that there is a choice of an eigenvector, u(t), associated with λ(t), so
that u(t) is also differentiable (with u(δ0) = u).

In the case of an eigenvalue, the proof uses the implicit function theorem
applied to the characteristic polynomial, det(λI − X (δ)).

The proof of differentiability for an eigenvector is more involved and uses
the non-vanishing of some principal minor of det(λI − X (δ)).
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The formula for the derivative of an eigenvector is simpler if we assume
X (δ) to be normal. In this case, we get

Theorem 2

Let X (δ) be a normal matrix that depends differentiably on δ. If λ is any
simple eigenvalue of X at δ0 (it has algebraic multiplicity 1) and if u is the
corresponding unit eigenvector, then the derivatives at δ = δ0 of λ(δ) and
u(δ) are given by

λ′ = u∗X ′u

u′ = (λI − X )†X ′u,

where (λI − X )† is the pseudo-inverse of λI − X , X ′ is the derivative of X
at δ = δ0 and u′ is orthogonal to u.
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Proof.

If X is a normal matrix, it is well known that Xu = λu iff X ∗u = λu and
so, if Xu = λu then

u∗X = λu∗.

Taking the derivative of Xu = λu and using the chain rule, we get

X ′u + Xu′ = λ′u + λu′.

By taking the inner product with u∗, we get

u∗X ′u + u∗Xu′ = λ′u∗u + λu∗u′.

However, u∗X = λu∗, so u∗Xu′ = λu∗u′, and as u is a unit vector,
u∗u = 1, so

u∗X ′u + λu∗u′ = λ′ + λu∗u′,

that is, λ′ = u∗X ′u.

Deriving the formula for the derivative of u is more involved.
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The Field of Values of P

It turns out that

x∗H(δ)x ≤ |x∗Px |

for all x and all δ, and this has some important implications regarding the
local maxima of these two functions.

In fact, if we write x∗Px in polar form as

x∗Px = |x∗Px |(cosϕ+ i sinϕ),

I proved that

x∗H(δ)x = |x∗Px | cos(δ − ϕ).
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This implies that

x∗H(δ)x ≤ |x∗Px |

for all x ∈ Cn and all δ, (0 ≤ δ ≤ 2π), with equality iff

δ = ϕ,

the argument (phase angle) of x∗Px .

In particular, for x fixed, f (x , δ) = x∗Hx has a local optimum when δ = ϕ
and, in this case, x∗Hx = |x∗Px |.
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The inequality x∗Hx ≤ |x∗Px | also implies that if |x∗Px | achieves a local
maximum for some vector, x, then f (x , δ) = x∗Hx achieves a local
maximum equal to |x∗Px | for δ = ϕ and for the same x (where ϕ is the
argument of x∗Px).

Furthermore, x must be an eigenvector of H(ϕ).

Generally, if f (x , δ) = x∗Hx is a local maximum of f at (x , δ), then |x∗Px |
is not necessarily a local maximum at x .

However, we can show that if f (x , δ) = x∗Hx is a local maximum of f at
(x , δ), then δ = ϕ, the phase angle of |x∗Px | and so, x∗Hx = |x∗Px |.
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Unfortunately, this doesn’t not seem to help much in finding for which δ
the function f (x , δ) has local maxima.

Still, since the maxima of |x∗Px | dominate the maxima of x∗H(δ)x , and
are a subset of those maxima, it is useful to understand better how to find
the local maxima of |x∗Px |.

The determination of the local extrema of |x∗Px | (with x∗x = 1) is closely
related to the structure of the set of complex numbers

F (P) = {x∗Px ∈ C | x ∈ Cn, x∗x = 1},

known as the field of values of P or the numerical range of P (the
notation W (P) is also commonly used, corresponding to the German
terminology “Wertvorrat” or “Wertevorrat”).

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 50 / 61



Unfortunately, this doesn’t not seem to help much in finding for which δ
the function f (x , δ) has local maxima.

Still, since the maxima of |x∗Px | dominate the maxima of x∗H(δ)x , and
are a subset of those maxima, it is useful to understand better how to find
the local maxima of |x∗Px |.

The determination of the local extrema of |x∗Px | (with x∗x = 1) is closely
related to the structure of the set of complex numbers

F (P) = {x∗Px ∈ C | x ∈ Cn, x∗x = 1},

known as the field of values of P or the numerical range of P (the
notation W (P) is also commonly used, corresponding to the German
terminology “Wertvorrat” or “Wertevorrat”).

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 50 / 61



Unfortunately, this doesn’t not seem to help much in finding for which δ
the function f (x , δ) has local maxima.

Still, since the maxima of |x∗Px | dominate the maxima of x∗H(δ)x , and
are a subset of those maxima, it is useful to understand better how to find
the local maxima of |x∗Px |.

The determination of the local extrema of |x∗Px | (with x∗x = 1) is closely
related to the structure of the set of complex numbers

F (P) = {x∗Px ∈ C | x ∈ Cn, x∗x = 1},

known as the field of values of P or the numerical range of P (the
notation W (P) is also commonly used, corresponding to the German
terminology “Wertvorrat” or “Wertevorrat”).

Jean Gallier (Upenn) Quadratic Optimization Problems March 23, 2011 50 / 61



This set was studied as early as 1918 by Toeplitz and Hausdorff who
proved that F (P) is convex .

Figure: Felix Hausdorff, 1868-1942 (left) and Otto Toeplitz, 1881-1940 (right)
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The next three Figures were produced by Ryan Kennedy.
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Figure: Numerical Range of a matrix which is not normal
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The quantity
r(P) = max{|z | | z ∈ F (P)}

is called the numerical radius of P.

It is obviously of interest to us since it corresponds to the maximum of
|x∗Px |, over all unit vectors, x .

It is easy to show that

F (e−iδP) = e−iδF (P)

and so,
F (P) = e iδF (e−iδP).

Geometrically, this means that F (P) is obtained from F (e−iδP) by
rotating it by δ.
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This fact yields a nice way of finding supporting lines for the convex set,
F (P).

To show this, we use a proposition from Horn and Johnson whose proof is
quite simple:

Theorem 3

For any n × n matrix, P, and any unit vector, x ∈ Cn, the following
properties are equivalent:

(1) Re(x∗Px) = max{Re(z) | z ∈ F (P)}
(2) x∗H(P)x = max{r | r ∈ F (H(P))}
(3) The vector, x, is an eigenvector of H(P) corresponding to the largest

eigenvalue, λ1, of H(P).
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In fact, Theorem 3 immediately implies that

max{Re(z) | z ∈ F (P)} = max{r | r ∈ F (H(P))} = λ1.

As a consequence, for every angle, δ ∈ [0, 2π), if we let λδ be the largest
eigenvalue of the matrix H(e−iδP) and if xδ is a corresponding unit
eigenvector, then zδ = x∗δPxδ is on the boundary, ∂F (P), of F (P) and the
line, Lδ, given by

Lδ = {e iδ(λδ + ti) | t ∈ R}
= {(x , y) ∈ R2 | cos δ x + sin δ y − λδ = 0},

is a supporting line of F (P) at zδ.
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These properties can be exploited to find the local maxima of the objective
function of our contour identification problem. Ryan Kennedy has done
some work on this problem.

Much more work needs to be done, in particular

Cope with the dimension of the matrix, P

Understand the role of various normalizations of P (stochastic,
bi-stochastic).

Shi and Kennedy have made recent progress on the issue of
normalization.
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Other Quadratic Optimization Problems

Some variations of the basic quadratic optimization problem have occurred
in the contex of computer vision:

Adding linear constraints of the form

C>x = 0.

It is relatively easy to eliminate these constraints using a
QR-decomposition or a pseudo-inverse. This was shown by Golub
(1973).

Adding linear constraints of the form

C>x = t,

where t 6= 0. This is a lot harder to deal with!
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Gander, Golub and von Matt (1989) showed that these constraints can be
eliminated but a linear term has to be added to the objective function.

One needs to consider objective functions of the form

f (x) = x>Ax + 2x>b,

with b 6= 0.

This problem was studied by Gander, Golub and von Matt (1989).

I also have a solution to this problem involving an algebraic curve
generalizing the hyperbola to Rn, but this will have to wait for another
talk!
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