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Abstract
Analyzing videos of human activities involves not only

recognizing actions (typically based on their appearances),
but also determining the story/plot of the video. The sto-
ryline of a video describes causal relationships between ac-
tions. Beyond recognition of individual actions, discovering
causal relationships helps to better understand the semantic
meaning of the activities. We present an approach to learn
a visually grounded storyline model of videos directly from
weakly labeled data. The storyline model is represented as
an AND-OR graph, a structure that can compactly encode
storyline variation across videos. The edges in the AND-OR
graph correspond to causal relationships which are repre-
sented in terms of spatio-temporal constraints. We formu-
late an Integer Programming framework for action recogni-
tion and storyline extraction using the storyline model and
visual groundings learned from training data.

1. Introduction
Human actions are (typically) defined by their appear-

ances/motion characteristics and the complex and struc-
tured causal dependencies that relate them. These causal
dependencies define the goals and intentions of the agents.
The storylineof a video includes the actions that occur in
that video and causal relationships [21] between them. A
model that represents the set of storylines that can occur in
a video corpus and the general causal relationships amongst
actions in the video corpus is referred to as a “storyline
model”. Storyline models also indicate the agents likely
to perform various actions and the visual appearance of ac-
tions. A storyline model can be regarded as a (stochastic)
grammar, whose language (individual storylines) represents
potential plausible “explanations” of new videos in a do-
main. For example, in analysing a collection of surveillance
videos of a traffic intersection scene, a plausible (incom-
plete) storyline-model is:When a traffic light turns green
traffic starts moving. If while traffic is moving, a pedes-
trian walks into an intersection, then the traffic suddenly
stops. Otherwise it stops when signal turns red.. Not only
are the actions “turns green”, “moving” and “walks” ob-
servable, there are causal relationships among the actions:
traffic starts moving because a light turns green, but it stops
because a pedestrian entered an intersection or signal turned

red. Beyond recognition of individual actions, understand-
ing the causal relationships among them provides informa-
tion about the semantic meaning of the activity in video - the
entire set of actions is greater than the sum of the individ-
ual actions. The causal relationships are often represented
in terms of spatio-temporal relationships between actions.
These relationships provide semantic/spatio-temporal con-
text useful for inference of the storyline and recognition of
individual actions in subsequent, unannotated videos.

The representational mechanism of the storyline model
is very important; traditional action recognition has heav-
ily utilized graphical models, most commonly Dynamic
Bayesian networks (DBNs). However, the fixed structure of
such models (often encoded by a domain expert) severely
limits the storylines that can be represented by the model.
At each time step, only a fixed set of actions and agents are
available to model the video, which is not sufficient for sit-
uations in which the numbers of agents and actions varies.
For example, in sports, sequences of actions are governed
by the rules of the game and the goals of players/teams.
These rules and goals represent a structure that extends be-
yond a simple fixed structure of recurring events. The set of
possible or probable actions and/or agents at any given time
may vary substantially. An important contribution of this
work is the introduction of AND-OR graphs [22, 26] as a
representation mechanism for storyline models. In addition,
unlike approaches where human experts design graphical
models, we learn the structure and parameters of the graph
from weakly labeled videos using linguistic annotations and
visual data. Simultaneous learning of storyline models and
appearance models of actions constrains the learning pro-
cess and leads to improved visual appearance models. Fi-
nally, we show that the storyline model can be used as a
contextual model for inference of the storyline and recogni-
tion of actions in new videos.

Our approach to modeling and learning storyline models
of actions from weakly labeled data is summarized in Fig-
ure 1. The storyline models are represented by AND-OR
graphs, where selections are made at OR-nodes to generate
storyline variations. For example, in the AND-OR graph
shown in the figure, the ‘pitching’ OR-node has two chil-
dren ‘hit’ and ‘miss’ which represent two possibilities in
the storyline, i.e after pitching either a ‘hit’ or a ‘miss’ can
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Figure 1. Visually Grounded Storyline-Model: Given annotated videos, we learn the storyline model and the visual grounding of each
action. The optimization function for searching the storyline model has three terms: (1) Simple structure. (2) Connections based on simple
conditional distributions. (3) Provides explanations for visual and text data in the training set. The figure also shows how our AND-OR
graph can encode the variations in storylines (three videos at the top with different storylines (bottom-right)), not possible with graphical
models like DBNs.
occur. The edges in the AND-OR graph represent causal re-
lationships and are defined in terms of spatio-temporal con-
straints. For example, an edge from ‘catch’ to ‘throw’ indi-
cates that ‘throw’ is causally dependent on ‘catch’(a ball can
be thrown only after it has been caught). This causal rela-
tionship can be defined in terms of time astcatch < tthrow.
The causal relationship has a spatial constraint also - some-
one typically throws to another agent at a different location.

Our goal is to learn the storyline model and the visual
groundings of each action from the weakly labeled data -
videos with captions. We exploit the fact that actions have
temporal orderings and spatial relationships, and that many
actions either “causally” influence or are “causally” depen-
dent on other actions. Humans learn these “causal” relation-
ships between different actions by utilizing sources of in-
formation including language, vision and direct experience
(interaction with the world). In our approach, we utilize hu-
man generated linguistic annotations of videos to support
learning of storyline models.

2. Related Work
Existing datasets for learning action appearance models

provide samples for a few classes and in controlled and
simplified settings. Such datasets fail to generalize to ac-
tions with large intra-class variations and are unsuitable
for learning contextual models due to unnatural settings.
There has been recent interest in utilizing large amounts of
weakly labeled datasets, such as movies/TV shows in con-
junction with scripts/subtitles. Approaches such as [6, 15]
provide assignment of frames/faces to actions/names. Such

approaches regard assignment and appearance learning as
separate process. Nitta et al. [20] present an approach to an-
notate sports videos by associating text to images based on
previously specified knowledge of the game. In contrast we
simultaneously learn a storyline model of the video corpus
and match tracked humans in the videos to action verbs (i.e,
solving the segmentation and correspondence problems).

Our approach is motivated by work in image annotation
which typically model the joint distribution of images and
keywords to learn keyword appearance models [1]. Similar
models have been applied to video retrieval, where annota-
tion words are actions instead of object names [7]. While
such models exploit the co-occurrence of image features
and keywords, they fail to exploit the overall structure in
the video. Gupta et. al [12] presented an approach to si-
multaneously learn models of both nouns and prepositions
from weakly labeled data. Visually grounded models of
prepositions are used to learn a contextual model for im-
proving labeling performance. However, spatial reasoning
is performed independently for each image. Some spatial
reasoning annotations in the images are not incidental and
can be shared across most images in the dataset (For ex-
ample, for all the images in the dataset sun is above wa-
ter). In addition, the contextual model based on priors over
possible relationship words restricts the clique size of the
Bayesian network used for inference. Also, it requires a
fully connected network, which can lead to intractable in-
ference. In contrast, our approach learns a computationally
tractable storyline model based on causal relationships that



generally hold in the given video domain.
There has been significant research in using contextual

models for action recognition [11, 23, 10, 2, 18]. Much
of this work has focused on the use of graphical models
such as Hidden Markov Models (HMMs) [24], Dynamic
Bayesian Networks (DBNs) [10] to model contextual rela-
tionships among actions. A drawback of these approaches
is their fixed structure, defined by human experts. The set of
probable actions and/or agents at any given time may vary
greatly, so a fixed set of successor actions is insufficient.
Our AND-OR graph storyline model can model both con-
textual relationships (like graphical models) while simulta-
neously modeling variation in structure (like grammars [2]).

In computer vision, AND-OR graphs have been used to
represent compositional patterns [26, 4]. Zhu and Mum-
ford [26] used AND-OR graph to represent a stochastic
grammar of images. Zhu et. al [25] present an approach
to learn AND-OR graphs for representing an object shape
directly from weakly supervised data. Lin et. al [16] also
used an AND-OR graph representation for modeling activ-
ity in an outdoor surveillance setting. While their approach
assumes hand-labeled annotations of spatio-temporal rela-
tionships and AND-OR structure is provided, our approach
learns the AND-OR graph structure and its parameters us-
ing text based captions. Furthermore, [16] assumes one-one
correspondence between nodes and tracks as compared to
one-many correspondence used in our approach.

Our work is similar in spirit to structure learning of
Bayesian networks in [8], which proposed a structural-EM
algorithm for combining the standard EM-algorithm for op-
timizing parameters with search over the Bayesian network
structure. We also employ an iterative approach to search
for parameters and structure. The structure search in [8]
was over the space of possible edges given a fixed set of
nodes. However, in our case, both the nodes and edges are
unknown. This is because a node can occur more than once
in a network, depending upon the context in which it occurs
(See figure 2). Therefore, the search space is much larger
than the one considered in [8].

3. Storyline Model
We model the storyline of a collection of videos as an

AND-OR graphG = (Vand, Vor, E). The graph has two
types of nodes - OR-nodes,Vor and AND-nodesVand. Each
OR-nodev ∈ Vor represents an action which is described
by its type and agent. Each action-type has a visual ap-
pearance model which provides visual grounding for OR-
nodes. Each OR-node is connected to other OR-nodes ei-
ther directly or via an AND-node. For example, in Fig 1,
middle, the OR-node “Pitch” has two OR-children which
represents two possibilities after a pitch (i.e either the bat-
ter hits the ball (“Hit-Batter”) or misses it (“Miss-Batter”).
A path from an OR-nodevi to an OR-nodevj (directly or
via an AND-node) represents the causal dependence of ac-
tion vj upon actionvi. Here, AND-nodes are dummy nodes
and only used when an activity can causally influence two
or more simultaneous activities. The causal relationships
between two OR-nodes are defined by spatio-temporal con-
straints. For example, the causal relationship that ‘hitting’

depends on ‘pitching’ the ball can be defined temporally
as tpitch < thit (hitting occurs after pitching) and spa-
tially as the pitcher must be some distanced′ from the bat-
ter d(pitch, hit) ≈ d′. Figure 1 shows several examples
(top) of videos whose actions are represented by AND-OR
graphs. Note that the AND-OR graph can simultaneously
capture both long and short duration storylines in a single
structure (bottom-right).

4. Learning the Storyline Model

Our goal is to learn a visually grounded storyline model
from weakly labeled data. Video annotations include names
of actions in the videos and some subset of the temporal
and spatial relationships between those actions. These rela-
tionships are provided by both spatial and temporal prepo-
sitions such as “before”, “left” and “above”. Each temporal
preposition is further modeled in terms of the relationships
described in Allen’s Interval Logic. As part of bottom-up
processing, we assume that each video has a set of human-
tracks, some of which correspond to actions of interest. The
feature vector that describes each track is based on appear-
ance histograms of Spatio-Temporal Interest Points (STIPs)
[14, 19] extracted from the videos.

Establishing causal relationships between actions and
learning groundings of actions involves solving a match-
ing problem. We need to know which human-tracks in the
training videos match to different action-verbs of the sto-
ryline to learn their appearance models and the storyline-
model of videos. However, matching of tracks to action-
verbs and storyline extraction of a particular video depends
on the structure of the storyline-model, the appearances of
actions and causal relationships between them. This leads
to yet another chicken-and-egg problem, and we employ
a structural EM-like iterative approach to simultaneously
learn the storyline-model and appearance models of actions
from collections of annotated videos. Formally, we want to
learn the structureG and parameters of the storyline model
Θ = (θ, A) (θ-Conditional Distributions,A-Appearance
models), given the set of videos(V1..Vn) and their asso-
ciated annotations(L1..Ln):
(G, Θ) = arg max

G′,Θ′
P (G′, Θ′|V1..Vn,L1..Ln)

∝ arg max
G′,Θ′

∏
i

∑
Mi,Si

P (Vi,Li|G′, Θ′, M i, Si)P (G′, Θ′)

• Si : Storyline for videoi.
• M i : Matchings of tracks to actions for videoi.

We treat bothS andM as missing data and formulate
an EM-approach. The prior,P (G, Θ), is based on simple
structure (R(G)) and simple conditional distributions terms
(D(G, Θ)) and the likelihood terms are based on how well
the storyline model generates storylines which can explain
both the videos and their linguistic annotations(C(G, Θ)).

Figure 2 summarizes our approach for learning visu-
ally grounded storyline-models of training videos. Given
an AND-OR graph structure at the beginning of an itera-
tion, we fix the structure and iterate between learning pa-
rameters/visual grounding of the AND-OR graph and the
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Figure 2. An Overview of our approach; our storyline model(G, Θ) is initialized using videos and captions, and we propose an iterative
procedure to improve its parametersΘ and the structureG.

matching of tracks to action nodes(Sec. 4.1). In the hard-
E step, we estimate storyline and matchings for all train-
ing videos using the currentG, Θ. In the M step, we up-
dateΘ using the estimated storylines and matchings for all
videos. After convergence or a few iterations, we generate
new graph proposals by local modifications to the original
graph (Sec. 4.2) and select the modification that best repre-
sents the set of storylines for the videos(Sec. 4.3). This new
storyline model is then used for re-initializing the iterative
approach, which iterates between appearances and match-
ings. The new storyline model, which is a better model of
the variations in storylines across the training videos, al-
lows better interpretation. For example, in the figure, the
“run-fielder” action after the “catch” was labeled as “throw”
since the initial storyline-model did not allow “run” after
“catch”. Subsequently, an updated storyline model allows
for “run” after “catching”, and the assignments improve be-
cause of the new expanded storyline.

4.1. Parsing Videos
We now describe how, an AND-OR storyline model is

used to analyze, or parse, videos and obtain their storylines
and matchings of human tracks to storyline actions. We
provide a one-many matching formulation, where several
human tracks can be matched to a single action. Match-
ing of tracks to actions also requires making a selection at
each OR-nodes to select one storyline out of the set of pos-
sible storylines. While there have been several heuristic in-
ference algorithms for AND-OR graphs, we formulate an
integer programming approach to obtain the storyline and
matchings, and solve a relaxed version of the problem in
the form of a linear program.

Given an AND-OR graphG, a valid instantiation,
S(representing a storyline), of the AND-OR graph is a func-

tion S : i ∈ Vand ∪ Vor → {0, 1} that obeys the following
constraints: (1) At each OR-nodevi there is an associated
variableSi which represents whether the or-node has been
selected for a particular storyline of not. For example, in
fig 3, ‘hit’ is a part of the storyline, thereforeS3 = 1, and
miss is not a part of the storyline soS2 = 0. (2) Since OR-
children represent alternate possible storyline extensions,
exactly one child can be selected at each OR-node. (3) An
OR-node,i, can be instantiated (i.eSi = 1) only when all
the OR-nodes in the unique path from the root to nodei have
been instantiated. For example, since the path from ‘pitch-
ing’ to ‘catching’ includes ‘hitting’, ‘catching’ can be part
of a storyline if and only if ‘hitting’ is part of the storyline.

GivenT human tracks in a video, a matching of tracks
and nodes is a mappingM : i ∈ Vor, j ∈ {1, ..., T + 1} →
{0, 1}. Mij = 1 indicates that the action at the OR-node
i is matched with trackj. Since some of the actions might
not be visible due to occlusion and camera-view, we add
a dummy track which can be associated with any action
with some penalty. Depending on the constraints imposed
on M , different matchings between actions and tracks can
be allowed: many-to-many, many-to-one, one-to-many, or
one-to-one. We consider those mappings that associate one
action to many tracks, which is represented by the constraint
1TM = 1. Furthermore, no tracks should be matched to an
OR node that is not instantiated:∀i ∈ Vor, Mij ≤ Si.

Finally, to incorporate pairwise constraints (such as tem-
poral ordering and spatial relationships) between matches
of two nodesi andk, Mij andMkl, we introduce variables
X : xijkl ∈ {0, 1}; xijkl = 1 indicates that the action
at nodei and track j are matched, and the action at node
k and track l are matched.Instead of enforcing a compu-
tationally difficult hard constraintxijkl = Mij ∗ Mkl, we
marginalize both sides overl and represent the constraint
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tion components.

as:∀k,
∑

l xijkl = Mij .
In parsing, we search for a “best” valid instantiation

S (representing a storyline from the storyline model) and
a matchingM of tracks and actions (representing visual
grounding of nodes). The optimization function for selec-
tion is based on three terms: (1) Select a storyline consisting
of nodes for which good matching tracks can be found. (2)
Select a storyline which can explain as many human tracks
as possible. (3) The matching of nodes to tracks should not
violate spatio-temporal constraints defined by the storyline
model (See Figure 3). The three terms that form the basis
of the objective to be minimized, subject to the above con-
straints onS, M andX, are:

Appearance Matching: The cost of a matching is based
on the similarity of the appearances of instantiated nodes
and corresponding tracks. This cost can be written as:

A(S, M) =
∑

i

||(
∑

j

Mij)tj − SiAi|| (1)

wheretj represents the appearance histogram of trackj
andAi represents the appearance histogram model of the
action at nodei. In many to one matching, multiple tracks
combine to match to a single action node. Therefore, the
first term,(

∑
j Mijtj), sums the appearance histograms of

human tracks that match to nodei. This is then compared to
the appearance model at nodei by measuring the L1-norm.
Figure 3 shows an example of parsing with high(left parse)
and low matching costs(right parse). The left parse has high
matching cost since the track of a batter running is assigned
to the pitching node which are not similar in appearance.

Explanation Reward: Using only appearance matching
would cause the optimization algorithm to prefer small sto-
rylines, since they require less matching. To remove this
bias, we introduce a reward,E , for explaining as many of
the STIPs as possible. We computeE as:

E(M) = −
∑

j

min(
∑

i

Mij , 1)||tj || (2)

This term computes the number of tracks/STIPs that have
been assigned to a node in the AND-OR graph and therefore
explained by the storyline model.

Spatio-Temporal Constraints: We also penalize
matchings which violate spatio-temporal constraints im-
posed by causal relationships. Ifpijkl encodes the violation
cost of having an incompatible pair of matches (nodei to
trackj and nodek to trackl), the term for spatio-temporal
violation cost is represented as:T (X) =

∑
ijkl pijklxijkl.

This term prefers matchings that do not violate the spatio-
temporal constraints imposed by the learned AND-OR
graph. For example, the left parse in Figure 3 matches the
‘pitching’ and ‘miss’ actions to incorrect tracks, resulting
in ‘pitching’ starting after ‘batting’ in the video, which is
physically impossible. The tracks are also not in the typical
pitcher-batter spatial configuration. Therefore, this match-
ing has a high cost as compared to the matching shown in
the right parse.

The above objective and the constraints result in an Inte-
ger Program which is a NP-Hard problem. We approximate
the solution by relaxing the variablesS, M andX to lie in
[0, 1]. The result is a linear program, which can be solved
very quickly. For the learning procedure, we have the anno-
tated list of actions that occur in the video. We utilize these
annotations to obtain a valid instantiation/storylineS and
then optimize the function overM,X only. For inference,
given a new video with no annotations, we simultaneously
optimize the objective overS, M, X.

4.2. Generating new Storyline Model Proposals
After every few inner iterations of the algorithm, we

search for a better storyline model to explain the matchings
and causal-relationships between actions. To do this, we
generate new graph proposals based on local modifications
to the AND-OR graph structure from the previous iteration.

The local modifications are: (1) Deletion of an edge and
adding a new edge (2) Adding a new edge (3) Adding a new
node. The selection of edges to delete and add is random
and based on the importance sampling procedure, where
deletion of important edges are avoided and addition of an
important edge is preferred. The importance is defined on
the basis of the likelihood that the head and tail of the edge
are related by a causal relationship.

4.3. Selecting the New Storyline Model
Each iteration selects the AND-OR graph from the set

of modifications which best represents the storylines of the
training videos. The criteria for selection is based on four
different terms:

Track Matching Likelihood: The first criteria measures
how well a proposal explains the matchings obtained in
the previous parsing step. The matching of tracks to ac-
tions from the previous step is used to obtain a likelihood
of an AND-OR graph generating such a matching. The
likelihood of the pth graph proposal,Gp

r generating the
pairwise matchingsXr−1 (at iterationr − 1) is given by



1
Z exp(−TGp

r
(Xr−1)). This likelihood is based on the third

term from the parsing cost, but here the penalty terms are
computed with respect to the individual graph proposals.

Annotation Likelihood: The AND-OR graph repre-
senting the storyline model should not only explain the
matching of tracks to actions, but also the linguistic anno-
tations associated with each video. The underlying idea is
that the same storyline model is used to generate the visual
data and linguistic annotations. The cost function measures
how likely an instantiation of the AND-OR graph storyline
model accounts for the video’s actions annotations and how
well the constraints specified by linguistic prepositions in
annotations are satisfied by the AND-OR graph constraints.
For example, if the annotation for a training video includes
‘pitching before hitting’, a good AND-OR graph would not
only generate a storyline including ‘pitching’ and ‘hitting’
but also have the conditional distribution for the edge pitch-
ing→ hitting, such thatP (thit − tpitch > 0|θ) is high.

Structure Complexity If we only consider likelihoods
based on linguistic and visual data, more complex graphs
which represent large numbers of possibilities will always
be preferred over simple graphs. Therefore, an important
criteria for selection of an AND-OR graph is that it should
be simple. This provides a prior over the space of possible
structures. We use a simplicity prior similar to [9], which
prefers linear chains over non-linear structures.

Distribution Complexity The complexity of an AND-
OR graph depends not only on its graph structure, but also
the conditional distributions of children actions given parent
actions. For an actioni (OR-node) in an AND-OR graph,
we form a distribution over all possible successors, or sets
of actions that could appear immediately after actioni in
a storyline. The individual spatio-temporal conditional dis-
tributions betweeni and its successors are combined into
a single distribution over successors, and we compute the
entropy of this combined distribution. The entropies of
the successor distributions for all OR-nodes in the graph
are averaged, providing a measure of the complexity of the
conditional distributions contained in the AND-OR graph.
Our cost prefers higher entropy distributions; empirically,
we have found that this results in better ranking of struc-
tures. We can also draw intuition from work on maximum
entropy Markov models [17], where higher entropy distri-
butions are preferred in learning conditional distributions to
prevent overfitting.

4.4. Initializing the Search
For initialization, we need some plausible AND-OR

causal graph to represent the storyline model and appear-
ance models of actions. Establishing a causal sequence
of actions from passive visual data is a difficult problem.
While one can establish a statistical association between
two variablesX andY , inferring causality - whetherX →
Y or Y → X- is difficult. For initialization, we use the lin-
guistic annotations of the videos. Based on psychological
studies of causal learning, we use ‘time’ as a cue to generate
the initial storyline model [13]. If an actionA immediately
precedes actionB, thenA is more likely to be the cause and
B is more likely to be the effect.

We initialize the AND-OR graph with the minimum
number of nodes required to represent all the actions in the
annotations of the training videos. Some actions might have
more than one node due to their multiple occurrences in the
same video and due to different contexts under which the
action occur. For example, ‘catch-fielder’ can occur in a
video under two different contexts. The action ’catching’
in the outfield and ’catching’ at a base are different and re-
quire different nodes in the AND-OR graph. Using Allen’s
interval temporal logic, we obtain the weight of all possi-
ble edges in the graph, which are then selected in a greedy
manner such that there is no cycle in the graph. Dummy
AND-nodes are then inserted by predicting the likelihood
of two activities occurring simultaneously in a video.

For initialization of appearance models, we use the ap-
proach proposed in [12]. Using the spatio-temporal rea-
soning based on the prepositions and the co-occurrence of
visual features, we obtain a one-one matching of tracks to
actions which is used to learn the initial appearance models.

5. Experimental Evaluation
For our dataset, we manually chose video clips of a wide

variety of individual plays from a set of baseball DVDs
for the 2007 World Series and processed them as follows:
We first detect humans using the human detector[5]. Ap-
plied to each frame with a low detection threshold, the out-
put of the detector is a set of detection windows which
potentially contain humans. To create tracks, we perform
agglomerative clustering of these detection windows over
time, comparing windows in nearby frames according to
the distance between their centroids, and similarity of color
histograms as measured by the Chi-square distance. The re-
sulting tracks can be improved by extending each track for-
wards and backwards in time using color histogram match-
ing. STIPs that fall within the detection window of a track
in a frame contribute to the track’s appearance histogram.

Training: We trained the storyline model on 39 videos
(individual baseball plays), consisting of approximately
8000 frames. The training videos contained both very
short and very long plays. We evaluate the performance
of our training algorithm in terms of number of actions cor-
rectly matched to tracks. Figure 4 shows how this accuracy
changed over the training process. The figure is divided
into three colored blocks. Within each colored block, the
structure of the storyline model remains the same and the
approach iterates between parsing and parameter update.
At the end of each colored block, we update our storyline
model and select a new storyline model which is then used
to parse videos and estimate parameters. We can see that
the accuracy rises significantly over the course of training,
well above the initial baselines, validating our iterative ap-
proach to training. The percentage improvement over Gupta
et. al [12] is as much as 10%.

Figure 5 a) shows an example of how a parse for a video
improves with iterations. Figure 5 b) shows an additional
example of a video with its inferred storyline and matchings
of actions to tracks; we can see that all but the run-fielder
action are correctly matched.

Storyline Extraction for New Videos: Our test set in-
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cludes 42 videos from the same baseball corpus. Again,
they ranged from very short and simple to longer and more
complicated. We first evaluated the performance in terms
of storyline extraction. Fig.7 shows some qualitative exam-
ples of the storyline extraction in terms of the instantiation
of AND-OR graphs, assignment of tracks to actions and the
text that is generated from the storyline model. We use re-
call and precision values of action labeling to measure the
performance of storyline extraction. We compare the per-
formance of our approach to the baseline methods of Gupta
et.al [12] and IBM Model 1[3]. Figure 6 shows two bar
plots, one for recall (left) and the other for precision (right).
For the baseline methods, we show the average precision
and recall values and compare against our method’s per-
formance (block of blue, red and green bars). Our method

nearly doubles the precision of the baseline methods (.8 vs.
.4), and has a much higher recall (.85 vs. 0.5 for [12] and
0.1 for [3]). It performs well over most of the actions, with
the exception of the action Swing-Miss (low recall). We
also evaluated the number of correct matchings obtained
for the actions in the predicted storylines. Quantitatively,
we obtained70% correct assignments of tracks to actions.

We attribute the success of our approach to three reasons:
(1) An important reason for improvement in training com-
pared to Gupta et. al [12] is that they did not feedback the
contextual models learned at the end of their single itera-
tive loop of training to relearning models of object appear-
ances. (2) During inference, the coupling of actions via the
AND-OR graph model provides a more structured model
than simple context from co-occurrence statistics and binary
relationship words can provide. (3) The one-many (action
to track matching) framework used here is more powerful
than the one-one framework in [12] and handles the prob-
lem of fragmented segmentation.

6. Conclusion
We proposed the use of storyline model, which repre-

sents the set of actions and causal relationships between
those actions. Our contributions include: (1) Representa-
tion of storyline model as an AND-OR graph whose com-
positional nature allows for compact encoding of substantial
storyline variation across training videos. (2) We also pre-
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sented a method for learning storyline models from weakly
annotated videos. (3) We formulate the parsing problem as
a linear integer program. Our formulation permits one-to-
many matching of actions to video tracks, addressing the
problem of fragmented bottom-up segmentation. Experi-
mental results show that harnessing the structure of videos
helps in better assignment of tracks to action during train-
ing. Furthermore, coupling of actions into a structured
model provides a richer contextual model that significantly
outperformed two baselines that utilize priors based on co-
occurrence and relationships words.
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