
1

CIS 480/899 – Embedded and

Cyber Physical Systems
Spring 2009

Introduction to Real-Time Scheduling

Insup Lee
Department of Computer and Information Science

University of Pennsylvania
lee@cis.upenn.edu

www.cis.upenn.edu/~lee

1/27/09 Intro Real-Time Scheduling 2

Examples of real-time

applications
• On-line transaction systems and interaction systems
• Real-time monitoring systems
• Signal processing systems

– typical computations
– timing requirements
– typical architectures

• Control systems
– computational and timing requirements of direct computer

control
– hierarchical structure
– intelligent control

• Embedded systems
– Resource limitations

2

1/27/09 Intro Real-Time Scheduling 3

Hard and Soft Real-Time Tasks

Task: a unit of work - a granule of computation, a unit of
transmission

Hard real-time tasks - critical tasks, deterministic tasks:
 - Failure of a deterministic task to complete in time a fatal

error
Soft real-time tasks:

– Essential tasks, statistical tasks: such a task is completed
always even when it requires more than available time.
Examples: display updates, interpretation of operator
commands

– Non-essential tasks: such a task may be aborted if it cannot be
completed in time.
Examples: connection establishment, monitoring non-critical
changes

Soft vs. hard real-time systems
– hard real-time systems are typical embedded systems.

1/27/09 Intro Real-Time Scheduling 4

Basic types of software systems

In order of increasing difficult in scheduling to meet
deadlines
– Type 1: purely cyclic, no asynchronous events or variations in

computing requirements.
o Examples: simple control systems such as those for small

missiles and target drones
– Type 2: mostly cyclic, some asynchronous events or variations in

computing requirements, such as fault recovery, external
commands, mode changes.

o Examples include modern avionics, process control, etc.
– Type 3: asynchronous, or event driven, cyclic processing does

not dominate, with known variations in computing requirements.
o Examples include communication, radar tracking, etc.

– Type 4: same as type 3 but variations in computing
requirements unpredictable.

Deadlines in type 3 and type 4 systems are typically soft.

3

1/27/09 Intro Real-Time Scheduling 5

Desired characteristics of RTOS

• Predictability, not speed, fairness, etc.
– Under normal load, all deterministic (hard deadline) tasks

meet their timing constraints
– Under overload conditions, failures in meeting timing

constrains occur in a predictable manner.
 Services and context switching take bounded times

• Application- directed resource management
– scheduling mechanisms allow different policies
– resolution of resource contention can be under explicit

direction of the application.

1/27/09 Intro Real-Time Scheduling 6

• Task: a unit of work, a granule of computation or
communication, with the following parameters:
– release time
– deadline
– processing time
– resource requirements

• A task system: a set of tasks, which are to be
executed on a processor (or processors) and share
resources.
– independent tasks
– dependent tasks (complex tasks) which precedence

(constraint) graph describing their dependencies

Tasks and Task Systems

4

1/27/09 Intro Real-Time Scheduling 7

Task Systems

a

d

b

f

e

c

g

predecessor of g

successor of a,b,d

 How to model conditional branches, or dependencies,
resource constrains, etc?

1/27/09 Intro Real-Time Scheduling 8

Tasks

Task, T: “A unit of work” with the following parameters:
– release time or ready time, r : T can be scheduled (and

executed) after, but not before r.
– deadline, d : T must be completed before d.
– processing time, e: amount of processor time required to

complete T, if T is executed alone.
T is periodic: T is a periodic sequence of requests for the same

executions
– b = release time of the first request, release times of 2nd,

3rd, 4th,… requests are b+p, b+2p, b+3p … respectively
– p = period of T
– = time to complete each request

 = processing time of T
– d = the time interval between its release time and the instant

by which each request must be completed
 = deadline of T.

 a request a subtask, task

5

1/27/09 Intro Real-Time Scheduling 9

Notations for periodic tasks

• (b, p, e, d)

• (p, e, d) , if b = 0
 (14, 5, 20), (7, 1, 7), (10, 3, 6)

• (p, e) , if d = p
 (15, 2), (10, 1), (3, 1)

A task system {T1, T2, …, Tn}, a set of tasks
This model is appropriate only for single resource scheduling,

typically used in processor scheduling.
Some jargons: schedule T in (a, b); T is scheduled in (a, b); the

processor is assigned to T in (a, b)

24 t = 0

release times

time

deadlines
(2, 4, 1, 3.3)

2 4 6 8 10 12 14 16 18 20 22

1/27/09 Intro Real-Time Scheduling 10

Paradigms for scheduling

Cyclic tasks (periodic tasks)

• Cyclic executive
• Weighted round robin
• Priority- driven scheduling of

– independent periodic tasks
– independent periodic tasks + aperiodic tasks (sporadic

tasks)
– periodic tasks that share resources

6

1/27/09 Intro Real-Time Scheduling 11

 Cyclic Executives

A cyclic executive is a program that deterministically
interleaves the execution of periodic tasks on a single
processor. The order in which the tasks execute is defined
by a cyclic schedule.

Example:
 A = (10, 1), B = (10, 3), C = (15, 2), D = (30,8) (30, 3) (30, 5)

Reference: “The Cyclic executive model and ADA” Proc. of
RTSS, 1988, by Baker and Shaw

frame 1 frame 2 frame 3

A major cycle containing 3 frames

i i + 10 i + 20 i +30 i +15

A A A B B B D C C D

1/27/09 Intro Real-Time Scheduling 12

General structure of a major schedule

 correct timing enforced at the end of each frame
Rules governing the choice of m for a given {(pi, ei , di)} of n tasks

– m di , i = 1, 2, … , n
– m ei , i = 1, 2, … , n
– M/n = integer (m divides pi for at least one i)
– there must be at least one frame in the interval between the

release time and deadline of every request.
2m - gcd (m, pi) di , for i = 1, 2, … , n

major

cycles

frames

(minor cycles)

i - 1
idle frame overrun

1 2 3 4

i i + 1

t t + m t + 2m t + 3m t + 4m t + M

...

7

1/27/09 Intro Real-Time Scheduling 13

An Example: choices of m

 T = {(15, 1, 14), (20, 2, 26), (22, 3)}

Possible values of m
- m min{di} = 14 m = 1, 2, 3, 4, … , 14
- m max{ei} = 3 m = 3, 4, 5, … , 14
- m divides one of pi m = 3, 4, 5, 10, 11
- 2m - gcd (m, pi) di m = 3, 4, 5

1/27/09 Intro Real-Time Scheduling 14

m = 4

0 20 24

24 40 48

72

96

660

….

(15, 1, 14) (20, 2, 26) (22, 3)

An Example: choices of m (cont)

8

1/27/09 Intro Real-Time Scheduling 15

Example Cont’d

• Suppose that T = {(15, 1, 14), (20, 7, 26), (22, 5)}
Rules 1 m min{di} = 4

 2 m max{ei} = 7
cannot be satisfied simultaneously.
We decompose the longer tasks into shorter ones
 T’ = {(15, 1, 14), (20, 3, 26), (20, 4, 26), (22, 2), (22, 3)}
for scheduling on one processor

1/27/09 Intro Real-Time Scheduling 16

Advantages of cyclic executive

• Simplicity and predictability:
– timing constraints can be easily checked
– the cyclic schedule can be represented by a table that is

interpreted by the executive
– context switching overhead is small
– it is easy to construct schedules that satisfy precedence

constraints & resource constraints without deadlock and
unpredictable delay

9

1/27/09 Intro Real-Time Scheduling 17

Disadvantages

• Given major and frame times, structuring the tasks with
parameters pi, ei, and di to meet all deadlines is NP-hard for
one processor

• Splitting tasks into subtasks and determining the scheduling
blocks of each task is time consuming

• Error in timing estimates may cause frame overrun:
How to handle frame overrun? It is application dependent:
– suspense or terminate the overrun task, and execute the

schedule of the next frame
– complete the suspended task as background later
– complete the frame, defer the start of the next frame
– log overruns. If too many overruns, do fault recovery

1/27/09 Intro Real-Time Scheduling 18

Handling mode change is difficult.
Mode change: deletion and addition of tasks or change the parameters

of existing tasks
When to do mode change? Pros and cons of doing it at the end of

current frame, current major cycle, execution of the current task,
upon interrupt immediately

Handling sporadic tasks
• convert each sporadic task into a periodic one: periodic server (p, e, d)

• set aside time in minor cycles for execution of sporadic tasks
– does not guarantee worst case

E

deadline

d tm

min time between arrival

p = min (tm, d - e +1) -
too pessimistic - guarantees worst case

performance by giving max time to the task

10

1/27/09 Intro Real-Time Scheduling 19

Priority-driven algorithms

• A class of algorithms that never leave the processor(s) idle
intentionally

• Also known as greedy algorithms and list algorithms
• Can be implemented as follows: (preemptive)

– Assign priorities to tasks
– Scheduling decisions are made

o when any task becomes ready,
o when a processor becomes idle,
o when the priorities of tasks change

– At each scheduling decision time, the ready task with the
highest priority is executed

• If non-preemptive, scheduling decisions are made only when
a processor becomes idle.

• The algorithm is static if priorities are assigned to tasks
once for all time, and is dynamic if they change. Static if
fixed.

1/27/09 Intro Real-Time Scheduling 20

Example

T1

T1

T1

T1

T2

T2

T2

T2

T2

T3

T3

T3

T3

0

non preemptive EDF, FIFO

preemptive EDF

non preemptive, not priority-driven

10

14

11

3

2

6

4

4

0 3 9 13
missed

deadline

4

4

0 3 8

0 3 8 14

13

intentional idle time

11

1/27/09 Intro Real-Time Scheduling 21

T1 : 3 T2 : 2 T3 : 2 T4 : 2

T9 : 9 T5 : 4 T6 : 4 T7 : 4 T8 : 4

L = (T1, T2, T3, T4, T5, T6, T7, T8, T9)

T1

T2

T3

T4

T9

T5 T7

T6 T8

P1

P2

P3

t

Unexpected behavior of priority-driven

scheduling algorithm

1/27/09 Intro Real-Time Scheduling 22

Unexpected behavior of priority-driven

scheduling algorithm (cont.)
• Suppose that we have 4 processors:

• Suppose that execution times are
2, 1, 1, 1, 3, 3, 3, 3, 8

• Suppose that T4 < T5 and T4 < T6 are removed

P1

P2

P3

P4

12

Anomalies of Priority-Driven

Systems

• Given J1,J2,J3,J4
• Priority:

– J1 > J2 > J3 > J4
• Preemption but no

job migration
• Two processors P1

and P2

1/27/09 Intro Real-Time Scheduling 23

Cases: e2 = 6 and e2 = 2

1/27/09 Intro Real-Time Scheduling 24

13

Cases: e2 = 3 and e2 = 5

1/27/09 Intro Real-Time Scheduling 25

Validation Problem

• Scheduling anomalies make validation hard
• Can anomalies exist even on single processor

systems?

1/27/09 Intro Real-Time Scheduling 26

14

Schedulability Analysis of

Periodic Tasks

• Main problem:
– Given a set of periodic tasks, can they meet their

deadlines?
– Depends on scheduling policy

• Solution approaches
– Utilization bounds (Simplest)
– Exact analysis (NP-Hard)
– Heuristics

• Two most important scheduling policies
– Earliest deadline first (Dynamic)
– Rate monotonic (Static)

Utilization Bounds

• Intuitively:
– The lower the processor utilization, U, the easier it

is to meet deadlines.
– The higher the processor utilization, U, the more

difficult it is to meet deadlines.
• Question: is there a threshold Ubound such that

– When U < Ubound deadlines are met
– When U > Ubound deadlines are missed

15

1/27/09 Intro Real-Time Scheduling 29

An example: schedule (2, 0.9) (5, 2.3) on

one processor
• Rate monotone, shortest period first

• Earliest deadline first

Static priority assignment Vs
Dynamic priority assignment

(2, 0.9)

(5, 2.3)

(2, 0.9)

(5, 2.3)

1/27/09 Intro Real-Time Scheduling 30

Schedule (2,1) (5, 2.5)

• Rate-monotone

• Earliest deadline first

• Shortest slack time first

(2, 1)

(5, 2.5)

missed deadline

(2, 1)

(5, 2.5)

(2, 1)

(5, 2.5)

16

EDF (Earliest Deadline First)

1/27/09 Intro Real-Time Scheduling 31

1/27/09 Intro Real-Time Scheduling 32

 Optimality of EDF

Optimality of the earliest deadline first algorithm
for preemptive scheduling on one processor:

feasible schedule = one in which all release time and
deadline constraints are met

Given a task system T, if the EDF algorithm fails to
find a feasible schedule, then T has no feasible
schedule.

d1

d1

d2

d2

r1 , r2

r1 , r2

T2’s deadline T1’s deadline

T1 T2

T2 T1 T2

can always be transform to

17

1/27/09 Intro Real-Time Scheduling 33

Schedulable Utilization

• Utilization of a periodic task (p, , d)
 u = /p the fraction of time the task keeps the

 processor busy
 U , total utilization of task system
 T = {(pi, i , di)} contains n tasks

• A system of n tasks with di = pi can be feasibly
scheduled if and only if U 1
– If U >1 , the total demand of processor in the time interval (0,

p1, p2 … pn) is p2 p3 … pn 1 + p1 p3 … pn 2 + … p1 p2 … pn-1 n > p1 p2 …
pn
clearly, no feasible schedule exists.

– If U 1 , the EDF algorithm can always find a feasible schedule.
To show this statement is true, we suppose that the EDF
algorithm fails to find a feasible schedule. And, then show U >1,
which is a contradiction to U 1

1/27/09 Intro Real-Time Scheduling 34

Behavior of earliest deadline

algorithm
• Schedule (2, 1) (5, 3) with U = 1.1

• Schedule (2, 0.8) (5, 3.5) with U = 1.1

Which deadline will be missed
as U increases cannot be predicted

(2, 1)

(5, 3)

(2, 0.8)

(5, 3.5)

18

RM (Rate Monotonic)

1/27/09 Intro Real-Time Scheduling 35

1/27/09 Intro Real-Time Scheduling 36

Fixed (static) Priority Scheduling
 T1 = (50, 50, 25, 100) u1 = 0.5
 T2 = (0, 62.5, 10, 50) u2 = 0.16
 T3 = (0, 125.0, 25, 75) u3 = 0.2

 U = 0.86
Rate- monotone schedule (L = T1, T2, T3)

T1

T2

T3

0

0

0

10

10

50 75

75 85

100 125

125 135

150 175

187.5
197.5

200 225 250

19

1/27/09 Intro Real-Time Scheduling 37

Fixed (static) Priority Scheduling

(cont.)

Deadline-monotone schedule (L = T2, T3, T1)

Rate- monotone = deadline-monotone when di = pi
for all i

T1

T2

T3

0

0

0

10

10

50 75

75 85

100 125

125 135

150 175

187.5
197.5

200 225 250

1/27/09 Intro Real-Time Scheduling 38

T1

T2

T3

0

0

0

10

10

50 75

75 85

100 125

125 135

150 175

187.5 197.5

200 225 250

T1

T2

T3

0

0

0

10

10

50 75

75 85

100 125

125 135

150 175

187.5
197.5

200 225 250

20

1/27/09 Intro Real-Time Scheduling 39

Advantages of Rate-Monotone (and

deadline-monotone) algorithm

• Priorities being fixed, the algorithms are easy to implement.
• The resultant schedules have predictable behavior:

– Lower priority tasks are executed as background of higher
priority tasks!!!

– There are known sufficient conditions which can be used to
determine whether a task system is schedulable.

o A system of K tasks with di = pi and total utilization U is
schedulable by the rate-monotone algorithm if

1/27/09 Intro Real-Time Scheduling 40

1

ln 2 = 0.693

U*

0.828

1 2 4 3

0.780
0.756

K

21

A Conceptual View of

Schedulability

Utilization

Task Set

Schedulable
Unschedulable

• Modified Question: is there a threshold Ubound such that
– When U < Ubound deadlines are met
– When U > Ubound deadlines may or may not be missed

?

All green area (schedulable)

1/27/09 Intro Real-Time Scheduling 42

Advantages (cont.)

• Û is called the worst case schedulability bound
– In general, a task system with di = pi for all i, is schedulable

if

– Task systems with total utilization larger than the worst-case
schedulability bound are often schedulable by rate-monotone
algorithm. Average schedulability bound is closer to 1.

– To check whether all requests in T1, T2 … Tn meet there
deadlines, where p1 < p2 < … < pn, examine a rate-monotone
schedule with b1 = b2= … =bn = 0; all deadlines in Tn are met if
the first request of Tn meets its deadline

– if pi = kpj for some integer k , for all i, j = 1, 2, … , n the task
system containing such n tasks is schedulable by the rate-
monotone algorithm if and only if U 1.

22

Critical Instants

• A critical instant of task T is a time instant such
that the job in T released at the instant has the
maximum response time of all jobs in T

1/27/09 Intro Real-Time Scheduling 43

1/27/09 Intro Real-Time Scheduling 44

Harmonic Periods

• A task system is said to be in phase if the time of
the first requests are all equal to

 zero, i.e. , b1 = b2= … =bk = 0
Otherwise, it is said to have arbitrary phase

• The system is simply periodic (or harmonic) if
 pi = kpj for some integer k

or
 pi = kijpj for integers kij

for all i and j.

23

1/27/09 Intro Real-Time Scheduling 45

An Example
Given (1, 2), (1, 2), … , (1, 2), (1+ , 1), schedule them on n

processors using the rate-monotone algorithm

Unacceptable performance
Solution: assign tasks to processors, and schedule tasks on each

processor independently of tasks on other processors.

1

2

3

n

0 2 1 1+

n - 1

missed deadline

...

...

Processor

1/27/09 Intro Real-Time Scheduling 46

Practical Questions

• When to do mode change: mode change protocol.
(by Sha, Rajkumar, Lehoczky and Ramamritham,
Journal of RTS, vol 1, 1989)

• What is the context switching overhead and its
effect on schedulability?

• What is the effect of variations in processing
time?

• What is the effect of limited priority levels?
• How to schedule aperiodic tasks together with

periodic ones?
• How to handle synchronization of tasks?

24

Priority Inversion Problem:

An Anomaly of Priority-Driven

systems

1/27/09 Intro Real-Time Scheduling 47

1/27/09 Intro Real-Time Scheduling 48

Modified Workload Model

• The system contains
– processor (s)
– m types of serially reusable resource, R1, R2, … , Rm. There are

Ni units of resource (resources) of type Ri.
• An execution of a task requires

– a processor for units of time (processing time)
– some resources for exclusive use

• Every resource can be allocated to one task at a time and,
once allocated, is held by the task until it is no longer
needed.

• Examples of resources are
semaphores, read/write locks, servers.
– A resource that has one unit but can be shared by many tasks is

modeled as a type of resource with many units.

25

1/27/09 Intro Real-Time Scheduling 49

Modified Workload Model (cont.)

• To use a resource of type Ri, a task executes Lock(Ri).
– To use k resources it executes Lock(Ri,k)
– In examples, we use L(Ri) or L(Ri,k)

• After a resource is allocated to a task, the task holds the
resource until the task executes an Unlock(Ri) (or in the case
of multi-units, Unlock(Ri,k)) to release it.
– In examples, we use U(Ri) or U(Ri,k)

• If the OS takes back a resource allocated to a task before
the task releases the resource, some work done by the task
is undone.

 Resources are allocated on nonpreemptive basis.
• A task holding resources release them in Last-in-First-out

order.
– Overlapping critical sections are properly nested.

1/27/09 Intro Real-Time Scheduling 50

Example

Lock(A)

Lock(X,3)

Lock(Y,4)

T1

Unlock(Y,4)

Unlock(X,3)

Unlock(A)

T2

Lock(B)

Lock(C)

Unlock(C)

Unlock(B)

T3

Lock(C)

Lock(B)

Unlock(B)

Unlock(C)

Terms: critical sections, outmost critical section, duration of (outmost) critical sec

Lock(D)

Unlock(D)

26

1/27/09 Intro Real-Time Scheduling 51

Scheduling anomaly

0 2 4 6 8 10 12 14 16 18 20 22 24 26

6 fails

L(R) L(R) L(R)

L(R)

L(R)

L(R)

fails

L(R)

fails

U(R)

U(R)

U(R)

U(R)

T1 = (8, 5) , T2 = (22, 7) , T3 = (26, 6)

1/27/09 Intro Real-Time Scheduling 52

0 2 4 6 8 10 12 14 16 18 20 22 24 26

6

T1

T2

T3

fails

L(R) L(R) L(R)

L(R)

L(R)

L(R)

fails

L(R)

fails

U(R)

U(R)

U(R)

U(R)

T1 = (8, 5) , T2 = (22, 7) , T3 = (26, 6)

27

1/27/09 Intro Real-Time Scheduling 53

0 2 4 6 8 10 12 14 16 18 20 22 24 26

6

T1

T2

T3

L(R) L(R)

L(R)

L(R)

U(R)

U(R)

U(R)

missed deadline

T1 = (8, 5) , T2 = (22, 7) , T3 = (26, 4.5)

14

How to predict such behavior?

1/27/09 Intro Real-Time Scheduling 54

Preemption of tasks in critical

sections can cause priority inversion

• Can occur when synchronization mechanisms such as Ada
rendezvous, semaphores or monitors are used

• Affect schedulability and predictability if uncontrolled
• Such schedules are allowed by the traditional resource

management algorithms, such as the Banker’s algorithm,
which try to decouple resource management decisions from
scheduling decisions.

in
creasin

g

p
rio

rities

T1

T2

T0

time

blocked

(attempt

to lock S)

S locked

S locked

S unlocked

28

1/27/09 Intro Real-Time Scheduling 55

Direct blockage

• A task T is directly blocked when it executes Lock(Ri,k), but
there are less than k units of resource of type Ri available,
i.e., not allocated to some task(s).

• The scheduler grants the lock request, i.e., allocates the
requested resources, to task T, according to resource
allocation rules, as soon as the resources become available.

• T’ directly blocks T if T’ holds some resources for which T
has requested but not allocated

Priority Inheritance: A basic strategy for controlling priority
inversion:
If the priority of T’, ’, is lower than the priority of T, , (i.e., ’ <

), the priority of T’ is raised to whenever T’ directly blocks
T.

Other form(s) of blocking may be introduced by the resource
management policy to control priority inversion or/and
prevent deadlock.

References

• Jane W.S. Liu, Real-Time Systems, Prentice Hall,
2000.

• C.L. Liu and J.W. Layland, Scheduling Algorithms
for Multiprogramming in a Hard Real-Time
Environment, Journal of the ACM, Vol. 20 No. 1,
pp. 40-61, 1973.

• Lui Sha, et al. "Real Time Scheduling Theory: A
Historical Perspective," Journal of Real-time
Systems, December 2004.

1/27/09 Intro Real-Time Scheduling 56

