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Examples of real-time 

applications 
• On-line transaction systems and interaction systems 
• Real-time monitoring systems 
• Signal processing systems 

– typical computations 
– timing requirements 
– typical architectures 

• Control systems 
– computational and timing requirements of direct computer 

control 
– hierarchical structure 
– intelligent control 

• Embedded systems 
– Resource limitations 
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Hard and Soft Real-Time Tasks 

Task: a unit of work - a granule of computation, a unit of 
transmission 

Hard real-time tasks - critical tasks, deterministic tasks: 
 - Failure of a deterministic task to complete in time  a fatal 

error 
Soft real-time tasks: 

– Essential tasks, statistical tasks: such a task is completed 
always even when it requires more than available time. 
Examples: display updates, interpretation of operator 
commands 

– Non-essential tasks: such a task may be aborted if it cannot be 
completed in time. 
Examples: connection establishment, monitoring non-critical 
changes 

Soft vs. hard real-time systems 
– hard real-time systems are typical embedded systems. 
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Basic types of software systems 

In order of increasing difficult in scheduling to meet 
deadlines 
– Type 1: purely cyclic, no asynchronous events or variations in 

computing requirements.  
o Examples: simple control systems such as those for small 

missiles and target drones 
– Type 2: mostly cyclic, some asynchronous events or variations in 

computing requirements, such as fault recovery, external 
commands, mode changes.  

o Examples include modern avionics, process control, etc. 
– Type 3: asynchronous, or event driven, cyclic processing does 

not dominate, with known variations in computing requirements.  
o Examples include communication, radar tracking, etc. 

– Type 4: same as type 3 but variations in computing 
requirements unpredictable. 

Deadlines in type 3 and type 4 systems are typically soft. 
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Desired characteristics of RTOS 

• Predictability, not speed, fairness, etc. 
– Under normal load, all deterministic (hard deadline) tasks 

meet their timing constraints 
– Under overload conditions, failures in meeting timing 

constrains occur in a predictable manner. 
 Services and context switching take bounded times 

• Application- directed resource management 
– scheduling mechanisms allow different policies 
– resolution of resource contention can be under explicit 

direction of the application. 
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• Task: a unit of work, a granule of computation or 
communication, with the following parameters: 
– release time 
– deadline 
– processing time 
– resource requirements 

• A task system: a set of tasks, which are to be 
executed on a processor (or processors) and share 
resources. 
– independent tasks 
– dependent tasks (complex tasks) which precedence 

(constraint) graph describing their dependencies 

Tasks and Task Systems 
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Task Systems 

a 

d 

b 

f 

e 

c 

g 

predecessor of g 

successor of a,b,d 

 How to model conditional branches, or dependencies, 
resource constrains, etc? 
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Tasks 

Task, T: “A unit of work” with the following parameters: 
– release time or ready time, r : T can be scheduled (and 

executed) after, but not before r. 
– deadline, d : T must be completed before d. 
– processing time, e: amount of processor time required to 

complete T, if T is executed alone. 
T is periodic: T is a periodic sequence of requests for the same 

executions 
–  b = release time of the first request, release times of 2nd, 

3rd, 4th,… requests are b+p, b+2p, b+3p … respectively 
–  p = period of T 
–   = time to complete each request 

    = processing time of T 
–  d = the time interval between its release time and the instant 

by which each request must be completed 
    = deadline of T. 

 a request  a subtask, task 
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Notations for periodic tasks 

• (b, p, e, d)  

• (p, e, d) , if b = 0 
 (14, 5, 20), (7, 1, 7), (10, 3, 6) 

• (p, e) , if d =  p 
 (15, 2), (10, 1), (3, 1) 

A task system  {T1, T2, …, Tn}, a set of tasks 
This model is appropriate only for single resource scheduling, 

typically used in processor scheduling. 
Some jargons: schedule T in (a, b); T is scheduled in (a, b); the 

processor is assigned to T in (a, b)

24 t = 0 

release times 

time 

deadlines 
(2, 4, 1, 3.3) 

2 4 6 8 10 12 14 16 18 20 22 
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Paradigms for scheduling 

Cyclic tasks (periodic tasks) 

• Cyclic executive 
• Weighted round robin 
• Priority- driven scheduling of 

– independent periodic tasks 
– independent periodic tasks + aperiodic tasks (sporadic 

tasks) 
– periodic tasks that share resources 
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 Cyclic Executives 

A cyclic executive is a program that deterministically 
interleaves the execution of periodic tasks on a single 
processor. The order in which the tasks execute is defined 
by a cyclic schedule. 

Example: 
 A = (10, 1), B = (10, 3), C = (15, 2), D = (30,8)  (30, 3)  (30, 5) 

Reference: “The Cyclic executive model and ADA” Proc. of 
RTSS, 1988, by Baker and Shaw 

frame 1 frame 2 frame 3 

A major cycle containing 3 frames 

i i + 10 i + 20 i +30 i +15 

A A A B B B D C C D 
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General structure of a major schedule 

  correct timing enforced at the end of each frame 
Rules governing the choice of m for a given {(pi, ei , di )} of n tasks 

– m  di , i = 1, 2, … , n 
– m  ei , i = 1, 2, … , n 
– M/n = integer  (m divides pi for at least one i ) 
– there must be at least one frame in the interval between the 

release time and deadline of every request. 
2m - gcd (m, pi)  di , for i = 1, 2, … , n 

major 

cycles 

frames 

(minor  cycles) 

i - 1 
idle frame overrun 

1 2 3 4 

i i + 1 

t t + m t + 2m t + 3m t + 4m t + M 

... 
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An Example: choices of m 

 T = {(15, 1, 14), (20, 2, 26), (22, 3)} 

Possible values of m 
- m  min{di} = 14        m = 1, 2, 3, 4, … , 14 
- m  max{ei} = 3          m = 3, 4, 5, … , 14 
- m divides one of pi      m = 3, 4, 5, 10, 11 
- 2m - gcd (m, pi)  di    m = 3, 4, 5 

   

1/27/09 Intro Real-Time Scheduling 14 

m = 4 

0 20 24 

24 40 48 

72 

96 

660 

…. 

(15, 1, 14) (20, 2, 26) (22, 3) 

An Example: choices of m (cont) 
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Example Cont’d 

• Suppose that T = {(15, 1, 14), (20, 7, 26), (22, 5)} 
Rules   1    m  min{di} = 4  

    2    m  max{ei} = 7 
cannot be satisfied simultaneously.  
We decompose the longer tasks into shorter ones 
 T’ = {(15, 1, 14), (20, 3, 26), (20, 4, 26), (22, 2), (22, 3)} 
for scheduling on one processor 
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Advantages of cyclic executive 

• Simplicity and predictability: 
– timing constraints can be easily checked 
– the cyclic schedule can be represented by a table that is 

interpreted by the executive 
– context switching overhead is small 
– it is easy to construct schedules that satisfy precedence 

constraints & resource constraints without deadlock and 
unpredictable delay  
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Disadvantages 

• Given major and frame times, structuring the tasks with 
parameters pi, ei, and di  to meet all deadlines is NP-hard for 
one processor 

• Splitting tasks into subtasks and determining the scheduling 
blocks of each task is time consuming 

• Error in timing estimates may cause frame overrun: 
How to handle frame overrun? It is application dependent: 
– suspense or terminate the overrun task, and execute the 

schedule of the next frame 
– complete the suspended task as background later 
– complete the frame, defer the start of the next frame 
– log overruns. If too many overruns, do fault recovery 
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Handling mode change is difficult. 
Mode change: deletion and addition of tasks or change the parameters 

of existing tasks 
When to do mode change? Pros and cons of doing it at the end of 

current frame, current major cycle, execution of the current task, 
upon interrupt immediately 

Handling sporadic tasks 
• convert each sporadic task into a periodic one: periodic server (p, e, d) 

• set aside time in minor cycles for execution of sporadic tasks 
– does not guarantee worst case 

E 

deadline 

d tm 

min time between arrival 

p = min (tm, d - e +1) -  
too pessimistic - guarantees worst case 

performance by giving max time to the task 
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Priority-driven algorithms 

• A class of algorithms that never leave the processor(s) idle 
intentionally 

• Also known as greedy algorithms and list algorithms 
• Can be implemented as follows:  (preemptive) 

– Assign priorities to tasks 
– Scheduling decisions are made 

o when any task becomes ready, 
o when a processor becomes idle, 
o when the priorities of tasks change 

– At each scheduling decision time, the ready task with the 
highest priority is executed 

• If non-preemptive, scheduling decisions are made only when 
a processor becomes idle. 

• The algorithm is static if priorities are assigned to tasks 
once for all time, and is dynamic if they change. Static if   
fixed. 

1/27/09 Intro Real-Time Scheduling 20 

Example 

T1 

T1 

T1 

T1 

T2 

T2 

T2 

T2 

T2 

T3 

T3 

T3 

T3 

0 

non preemptive EDF, FIFO 

preemptive EDF 

non preemptive, not priority-driven 

10 

14 

11 

3 

2 

6 

4 

4 

0 3 9 13 
missed  

deadline 

4 

4 

0 3 8 

0 3 8 14 

13 

intentional idle time 
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T1 : 3 T2 : 2 T3 : 2 T4 : 2 

T9 : 9 T5 : 4 T6 : 4 T7 : 4 T8 : 4 

L = (T1, T2, T3, T4, T5, T6, T7, T8, T9) 

T1 

T2 

T3 

T4 

T9 

T5 T7 

T6 T8 

P1 

P2 

P3 

t 

Unexpected behavior of priority-driven 

scheduling algorithm 
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Unexpected behavior of priority-driven  

scheduling algorithm (cont.) 
• Suppose that we have 4 processors: 

• Suppose that execution times are 
2, 1, 1, 1, 3, 3, 3, 3, 8 

• Suppose that T4 < T5 and T4 < T6 are removed 

P1 

P2 

P3 

P4 
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Anomalies of Priority-Driven 

Systems 

• Given J1,J2,J3,J4 
• Priority:  

– J1 > J2 > J3 > J4 
• Preemption but no 

job migration 
• Two processors P1 

and P2 
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Cases: e2 = 6 and e2 = 2 
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Cases: e2 = 3 and e2 = 5 
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Validation Problem 

• Scheduling anomalies make validation hard 
• Can anomalies exist even on single processor 

systems? 
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Schedulability Analysis of 

Periodic Tasks 

• Main problem: 
– Given a set of periodic tasks, can they meet their 

deadlines? 
– Depends on scheduling policy 

• Solution approaches 
– Utilization bounds (Simplest) 
– Exact analysis (NP-Hard) 
– Heuristics 

• Two most important scheduling policies 
– Earliest deadline first (Dynamic) 
– Rate monotonic (Static) 

Utilization Bounds 

• Intuitively:  
– The lower the processor utilization, U, the easier it 

is to meet deadlines. 
– The higher the processor utilization, U, the more 

difficult it is to meet deadlines. 
• Question: is there a threshold Ubound such that 

– When U < Ubound deadlines are met 
– When U > Ubound deadlines are missed  
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An example: schedule (2, 0.9) (5, 2.3) on 

one processor 
• Rate monotone, shortest period first 

• Earliest deadline first 

Static priority assignment  Vs 
Dynamic priority assignment 

(2, 0.9) 

(5, 2.3) 

(2, 0.9) 

(5, 2.3) 
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Schedule (2,1) (5, 2.5) 

• Rate-monotone 

• Earliest deadline first 

• Shortest slack time first 

(2, 1) 

(5, 2.5) 

missed deadline 

(2, 1) 

(5, 2.5) 

(2, 1) 

(5, 2.5) 
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EDF (Earliest Deadline First) 
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 Optimality of EDF 

Optimality of the earliest deadline first algorithm 
for preemptive scheduling on one processor: 

feasible schedule = one in which all release time and 
deadline constraints are met 

Given a task system T, if the EDF algorithm fails to 
find a feasible schedule, then T has no feasible 
schedule. 

d1 

d1 

d2 

d2 

r1 , r2 

r1 , r2 

T2’s deadline T1’s deadline 

T1 T2 

T2 T1 T2 

can always be transform to 
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Schedulable Utilization 

• Utilization of a periodic task (p, , d) 
 u = /p    the fraction of time the task keeps the 

    processor busy 
 U , total utilization of task system 
  T = {(pi, i , di )}  contains n tasks 

• A system of n tasks with di = pi can be feasibly 
scheduled if and only if U  1 
– If U >1 , the total demand of processor in the time interval (0, 

p1, p2 … pn) is  p2 p3 … pn 1 + p1 p3 … pn 2 + … p1 p2 … pn-1 n > p1 p2 … 
pn 
clearly, no feasible schedule exists. 

– If U 1 , the EDF algorithm can always find a feasible schedule. 
To show this statement is true, we suppose that the EDF 
algorithm fails to find a feasible schedule. And, then show U >1, 
which is a contradiction to U 1  
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Behavior of earliest deadline 

algorithm 
• Schedule (2, 1) (5, 3) with U = 1.1 

• Schedule (2, 0.8) (5, 3.5) with U = 1.1 

Which deadline will be missed  
as U increases cannot be predicted 

(2, 1) 

(5, 3) 

(2, 0.8) 

(5, 3.5) 
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RM (Rate Monotonic) 
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Fixed (static) Priority Scheduling 
 T1 = (50, 50, 25, 100)   u1 = 0.5 
 T2 = (0, 62.5, 10, 50)   u2 = 0.16 
 T3 = (0, 125.0, 25, 75)   u3 = 0.2           

     U = 0.86 
Rate- monotone schedule  (L = T1, T2, T3) 

T1 

T2 

T3 

0 

0

0 

10 

10 

50 75 

75 85 

100 125 

125 135 

150 175 

187.5 
197.5 

200 225 250 
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Fixed (static) Priority Scheduling 

(cont.) 

Deadline-monotone schedule (L = T2, T3, T1) 

Rate- monotone  =  deadline-monotone when di = pi 
for all i 

T1 

T2 

T3 

0 

0

0 

10 

10 

50 75 

75 85 

100 125 

125 135 

150 175 

187.5 
197.5 

200 225 250 
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T1 

T2 

T3 

0 

0

0 

10 

10 
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150 175 

187.5 197.5 

200 225 250 

T1 

T2 

T3 

0 

0

0 

10 

10 

50 75 

75 85 

100 125 

125 135 

150 175 

187.5 
197.5 

200 225 250 
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Advantages of Rate-Monotone (and 

deadline-monotone) algorithm 

• Priorities being fixed, the algorithms are easy to implement. 
• The resultant schedules have predictable behavior: 

– Lower priority tasks are executed as background of higher 
priority tasks!!! 

– There are known sufficient conditions which can be used to 
determine whether a task system is schedulable. 

o A system of K tasks with di = pi and total utilization U is 
schedulable by the rate-monotone algorithm if  
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1 

ln 2 = 0.693 

U* 

0.828 

1 2 4 3 

0.780 
0.756 

K 
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A Conceptual View of 

Schedulability 

Utilization 

Task Set 

Schedulable 
Unschedulable 

• Modified Question: is there a threshold Ubound such that 
– When U < Ubound deadlines are met 
– When U > Ubound deadlines may or may not be missed  

? 

All green area (schedulable) 
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Advantages (cont.) 

• Û is called the worst case schedulability bound 
– In general, a task system with di = pi for all i, is schedulable  

if 

– Task systems with total utilization larger than the worst-case 
schedulability bound are often schedulable by rate-monotone 
algorithm. Average  schedulability bound is closer to 1. 

– To check whether all requests in T1, T2 … Tn meet there 
deadlines, where p1 < p2 < … < pn, examine a rate-monotone 
schedule with b1 = b2= … =bn = 0; all deadlines in Tn are met if 
the first request of Tn meets its deadline 

– if pi = kpj for some integer k , for all i, j = 1, 2, … , n the task 
system containing such n tasks is schedulable by the rate-
monotone algorithm if and only if U  1.
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Critical Instants 

• A critical instant of task T is a time instant such 
that the job in T released at the instant has the 
maximum response time of all jobs in T 
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Harmonic Periods 

• A task system is said to be in phase if the time of 
the first requests are all equal to 

   zero, i.e. , b1 = b2= … =bk = 0 
Otherwise, it is said to have arbitrary phase 

• The system is simply periodic (or harmonic) if 
  pi = kpj   for some integer k 

or 
  pi = kijpj  for integers  kij 

for all i  and j. 
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An Example 
Given (1, 2 ), (1, 2 ), … , (1, 2 ), (1+ , 1), schedule them on n 

processors using the rate-monotone algorithm 

Unacceptable performance 
Solution: assign tasks to processors, and schedule tasks on each 

processor independently of tasks on other processors. 

1 

2 

3 

n 

0 2  1 1+  

n - 1 

missed deadline 

...

...

Processor 
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Practical Questions 

• When to do mode change: mode change protocol. 
(by Sha, Rajkumar, Lehoczky and Ramamritham, 
Journal of RTS, vol 1, 1989) 

• What is the context switching overhead and its 
effect on schedulability? 

• What is the effect of variations in processing 
time? 

• What is the effect of limited priority levels? 
• How to schedule aperiodic tasks together with 

periodic ones? 
• How to handle synchronization of tasks? 
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Priority Inversion Problem:  

An Anomaly of Priority-Driven 

systems 
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Modified Workload Model 

• The system contains 
– processor (s) 
– m types of serially reusable resource, R1, R2, … , Rm. There are 

Ni units of resource (resources) of type Ri.  
• An execution of a task requires 

– a processor for  units of time (processing time) 
– some resources for exclusive use 

• Every resource can be allocated to one task at a time and, 
once allocated, is held by the task until it is no longer 
needed. 

• Examples of resources are 
semaphores, read/write locks, servers. 
– A resource that has one unit but can be shared by many tasks is 

modeled as a type of resource with many units. 
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Modified Workload Model (cont.) 

• To use a resource of type Ri, a task executes Lock(Ri). 
– To use k resources it executes Lock(Ri,k) 
– In examples, we use L(Ri) or L(Ri,k) 

• After a resource is allocated to a task, the task holds the 
resource until the task executes an Unlock(Ri) (or in the case 
of multi-units, Unlock(Ri,k)) to release it. 
– In examples, we use U(Ri) or U(Ri,k) 

• If the OS takes back a resource allocated to a task before 
the task releases the resource, some work done by the task 
is undone. 

 Resources are allocated on nonpreemptive basis. 
• A task holding resources release them in Last-in-First-out 

order. 
– Overlapping critical sections are properly nested. 
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Example 

Lock(A) 

Lock(X,3) 

Lock(Y,4) 

T1 

Unlock(Y,4) 

Unlock(X,3) 

Unlock(A) 

T2 

Lock(B) 

Lock(C) 

Unlock(C) 

Unlock(B) 

T3 

Lock(C) 

Lock(B) 

Unlock(B) 

Unlock(C) 

Terms: critical sections, outmost critical section,  duration of (outmost) critical sec

Lock(D) 

Unlock(D) 
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Scheduling anomaly 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 

6 fails 

L(R) L(R) L(R) 

L(R) 

L(R) 

L(R) 

fails 

L(R) 

fails 

U(R) 

U(R) 

U(R) 

U(R) 

T1 = (8, 5) , T2 = (22, 7) , T3 = (26, 6) 

1/27/09 Intro Real-Time Scheduling 52 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 

6 

T1 

T2 

T3 

fails 

L(R) L(R) L(R) 

L(R) 

L(R) 

L(R) 

fails 

L(R) 

fails 

U(R) 

U(R) 

U(R) 

U(R) 

T1 = (8, 5) , T2 = (22, 7) , T3 = (26, 6) 
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 

6 

T1 

T2 

T3 

L(R) L(R) 

L(R) 

L(R) 

U(R) 

U(R) 

U(R) 

missed deadline 

T1 = (8, 5) , T2 = (22, 7) , T3 = (26, 4.5) 

14 

How to predict such behavior? 
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Preemption of tasks in critical 

sections can cause priority inversion 

• Can occur when synchronization mechanisms such as Ada 
rendezvous, semaphores or monitors are used 

• Affect schedulability and predictability if uncontrolled 
• Such schedules are allowed by the traditional resource 

management algorithms, such as the Banker’s algorithm, 
which try to decouple resource management decisions from 
scheduling decisions. 

in
creasin

g
 

p
rio

rities 

T1 

T2 

T0 

time 

blocked 

(attempt 

to lock S) 

S locked 

S locked 

S unlocked 
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Direct blockage 

• A task T is directly blocked when it executes Lock(Ri,k), but 
there are less than k units of resource of type Ri available, 
i.e., not allocated to some task(s). 

• The scheduler grants the lock request, i.e., allocates the 
requested resources, to task T, according to resource 
allocation rules, as soon as the resources become available. 

• T’ directly blocks T if T’ holds some resources for which T 
has requested but not allocated 

Priority Inheritance: A basic strategy for controlling priority 
inversion: 
If the priority of T’, ’, is lower than the priority of T, , (i.e., ’ < 

), the priority of T’ is raised to  whenever T’ directly blocks 
T. 

Other form(s) of blocking may be introduced by the resource 
management policy to control priority inversion or/and 
prevent deadlock. 
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