
1

1

UPPAAL tutorial
•  What’s inside UPPAAL

•  The UPPAAL input languages
 (i.e. TA and TCTL in UPPAAL)

2

Timed Automata in UPPAAL

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

clock natural number “and”

Clock guards

Data guards

Clock Assignments

Variable Assignments

Location Invariants

2

3

Timed Automata in UPPAAL

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

clock natural number “and”

Clock guards

Data guards

Clock Assignments

Variable Assignments

Location Invariants

Actions:
•  “a” name of action
•  a! or a?
•  one or zero per edge

4

Networks of Timed Automata

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….

Two-way synchronization
on complementary actions.

Closed Systems!

3

5

UPPAAL modeling language
•  Networks of Timed Automata with Invariants

+ urgent action channels,
+ broadcast channels,
+ urgent and committed locations,
+ data-variables (with bounded domains),
+ arrays of data-variables,
+ constants,
+ guards and assignments over data-variables and
 arrays…,
+ templates with local clocks, data-variables, and
 constants
+ C subset

6

Declarations in UPPAAL

•  The syntax used for declarations in UPPAAL is similar to
the syntax used in the C programming language.

•  Clocks:
–  Syntax:

clock x1, …, xn ;

–  Example:
–  clock x, y; Declares two clocks: x and y.

4

7

Declarations in UPPAAL (cont.)

•  Data variables
–  Syntax:

int n1, … ; Integer with “default” domain.
int[l,u] n1, … ; Integer with domain from “l” to “u”.
int n1[m], … ; Integer array w. elements n1[0] to

 n1[m-1].

–  Example;
–  int a, b;
–  int[0,1] a, b[5];

8

Declarations in UPPAAL (cont.)

•  Actions (or channels):
–  Syntax:

chan a, … ; Ordinary channels.
urgent chan b, … ; Urgent actions (described later)

–  Example:
–  chan a, b[2];
–  urgent chan c;

5

9

Declarations UPPAAL (const.)

•  Constants
–  Syntax:

const int c1 = n1;

–  Example:
–  const int[0,1] YES = 1;
–  const bool NO = false;

10

Declarations in UPPAAL

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

6

11

Templates in UPPAAL

•  Templates may be parameterised:

int v; const min; const max

int[0,N] e; const id

•  Templates are instantiated to form
processes:

P:= A(i,1,5);
Q:= A(j,0,4);

Train1:=Train(el, 1);

Train2:=Train(el, 2);

12

Urgent Channels: Example 1

•  Suppose the two edges in
automata P and Q should be
taken as soon as possible.

•  I.e. as soon as both automata
are ready (simultaneously in
locations l1 and s1).

•  How to model with invariants if
either one may reach l1 or s1
first?

a! a?

l1

l2

s1

s2

P: Q:

7

13

Urgent Channels: Example 1

•  Suppose the two edges in
automata P and Q should be
taken as soon as possible

•  I.e. as soon as both automata
are ready (simultaneously in
locations l1 and s1).

•  How to model with invariants if
either one may reach l1 or s1
first?

•  Solution: declare action “a” as
urgent.

a! a?

l1

l2

s1

s2

P: Q:

14

Urgent Channels

urgent chan hurry;

Informal Semantics:
• There will be no delay if transition with urgent action can be
taken.

Restrictions:
• No clock guard allowed on transitions with urgent actions.
• Invariants and data-variable guards are allowed.

8

15

Urgent Channel: Example 2

•  Assume i is a data variable.
•  We want P to take the transition

from l1 to l2 as soon as i==5.

i==5

l1

l2

P:

16

Urgent Channel: Example 2

•  Assume i is a data variable.
•  We want P to take the transition

from l1 to l2 as soon as i==5.
•  Solution: P can be forced to take

transition if we add another
automaton:

where “go” is an urgent channel,
and we add “go?” to transition l1l2
in automaton P.

i==5

l1

l2

P:

s1 go!
go?

9

17

Broadcast Synchronisation

broadcast chan a, b, c[2];

•  If a is a broadcast channel:
a! = Emmision of broadcast
a? = Reception of broadcast

•  A set of edges in different processes can synchronize if one is
emitting and the others are receiving on the same b.c. channel.

•  A process can always emit.
•  Receivers must synchronize if they can.
•  No blocking.

18

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
•  No delay in urgent location.

Note: the use of urgent locations reduces the number of clocks
in a model, and thus the complexity of the analysis.

10

19

Urgent Location: Example

•  Assume that we model a simple
media M:

that receives packages on channel a
and immediately sends them on
channel b.

•  P models the media using clock x.

M a b a?
x:=0

l1

P:

x==0
b!

l2

l3

x≤0

20

Urgent Location: Example

•  Assume that we model a simple
media M:

that receives packages on channel a
and immediately sends them on
channel b.

•  P models the media using clock x.
•  Q models the media using urgent

location.
•  P and Q have the same behavior.

M a b a?
x:=0

l1

P:

x==0
b!

l2

l3

x≤0

a?

l1

Q:

b!

l2

l3

urgent

11

21

Committed Location

Click “Committed” i State Editor.

Informal Semantics:
•  No delay in committed location.
•  Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of
interleaving in state space exploration (and also the number of
clocks in a model), and thus allows for more space and time efficient
analysis.

22

Committed Location: Example 1
•  Assume: we want to model a process

(P) simultaneously sending message a
and b to two receiving processes
(when i==0).

•  P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear

a!b!

l1

l2

P:

a!

l1

P’:

b!

n

l2

urgent i:=1

i==0
i==0

i:=1
k1 k2

i==0 Q:

12

23

Committed Location: Example 1
•  Assume: we want to model a process

(P) simultaneously sending message
(a) to two receiving processes (when
i==0).

•  P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear:

•  Solution: mark location n “committed”
in automata P’ (instead of “urgent”).

a!b!

l1

l2

P:

a!

l1

P’:

b!

n

l2

committed i:=1

i==0
i==0

i:=1 k1 k2
i==0 b! Q:

24

Committed Locations
(example: atomic sequence in a network)

x:=x+1;
y:=y+1

If the sequence becomes too long, you can split it ...

13

25

Committed Locations
 (example: atomic sequence in a network)

C

x:=x+1

y:=y+1

Semantics: the time spent on C-location should be zero !

26

Committed Locations
 (example: atomic sequence in a network)

C

x:=x+1

y:=y+1

Semantics: the time spent on C-location should be zero !

14

27

Committed Locations
 (example: atomic sequence in a network)

C

x:=x+1

y:=y+1

Semantics: the time spent on C-location should be zero !

Now, only the committed (red) transition can be taken!

28

Committed Locations
 (example: atomic sequence in a network)

C

x:=x+1

y:=y+1

15

29

Committed Locations

•  A trick of modeling (e.g. to model multi-way synchronization using
handshaking)

•  More importantly, it is a simple and efficient mechanism for state-space
reduction!
In fact, it is a simple form of ’partial order reduction’

•  It is used to avoid intermediate states, interleavings:
Committed states are not stored in the passed list
Interleavings of any state with a committed location will not be explored

30

Committed Location: Example 2

•  Assume: we want to pass
the value of integer ”k” from
automaton P to variable ”j” in
Q.

•  The value of k can is passed
using a global integer
variable ”t”.

•  Location “n” is committed to
ensure that no other automat
can assign “t” before the
assignment “j:=t”.

a?

l1

l2

Q: l1

P:

a!

n

l2

j:=t

t:=k

committed

16

31

More Expressions
•  New operators (not clocks):

–  Logical:
•  && (logical and), || (logical or), ! (logical negation),

–  Bitwise:
•  ^ (xor), & (bitwise and), | (bitwise or),

–  Bit shift:
•  << (left), >> (right)

–  Numerical:
•  % (modulo), <? (min), >? (max)

–  Compound Assignments:
•  +=, -=, *=, /=, ^=, <<=, >>=

–  Prefix or Postfix:
•  ++ (increment), -- (decrement)

32

More on Types

•  Multi dimensional arrays
e.g. int b[2][3];

•  Array initialiser:
e.g. int b[2][3] := { {1,2,3}, {4,5,6} };

•  Arrays of channels, clocks, constants.
e.g.
–  chan a[3];
–  clock c[3];
–  const k[3] { 1, 2, 3 };

•  Broadcast channels.
e.g. broadcast chan a;

17

33

Extensions

Select statement

•  Models non-deterministic
choise

•  x : int[0,42]

Types

•  Record types
•  Type declarations
•  Meta variables:

not stored with state
meta int x;

Forall / Exists Expressions

•  forall (x:int[0,42])
expr
true if expr is true for all values in
[0,42] of x

•  exists (x:int[0,4]) expr
true if expr is true for some
values in [0,42] of x

Example:
forall
(x:int[0,4])array[x];

34

Advanced Features

•  Priorities on channels
 chan a,b,c,d[2],e[2];
 chan priority a,d[0] < default < b,e

•  Priorities on processes
 system A < B,C < D;

•  Functions
 C-like functions with return values

18

35

UPPAAL specification language

36

TCTL Quantifiers in UPPAAL

•  E - exists a path (“E” in UPPAAL).
•  A - for all paths (“A” in UPPAAL).
•  G - all states in a path (“[]” in UPPAAL).
•  F - some state in a path (“<>” in UPPAAL).

You may write the following queries in UPPAAL:
•  A[]p, A<>p, E<>p, E[]p and p --> q

AG p
AF p EF p

EG p

p and q are ”local properties”

19

37

“Local Properties”

A[]p, A<>p, E<>p, E[]p, p-->p
where p is a local property

p::= a.l | gd | gc | p and p |
 p or p | not p | p imply p |
 (p)

clock guard data guard
automaton location

process/ name

38

E<>p – “p Reachable”

•  E<> p – it is possible to reach a state in which p is
satisfied.

•  p is true in (at least) one reachable state.

p

20

39

A[]p – “Invariantly p”

•  A[] p – p holds invariantly.

•  p is true in all reachable states.

p

p

p

p

p p

40

A<>p – “Inevitable p”

•  A<> p – p will inevitable become true, the automaton is
guaranteed to eventually reach a state in which p is true.

•  p is true in some state of all paths.

p

p p

21

41

E[] p – “Potentially Always p”

•  E[] p – p is potentially always true.

•  There exists a path in which p is true in all states.

p

p

p

42

p --> q– “p lead to q”

•  p --> q – if p becomes true, q will inevitably become true.
 same as A[](p imply A<> q)

•  In all paths, if p becomes true, q will inevitably become
true.

p

q

q

