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UPPAAL tutorial 
•  What’s inside UPPAAL 

•  The UPPAAL input languages  
    (i.e. TA and TCTL in UPPAAL) 
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Timed Automata in UPPAAL 
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Timed Automata in UPPAAL 
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Clock guards 
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Actions: 
•  “a” name of action 
•   a! or a? 
•   one or zero per edge 
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Networks of Timed Automata 
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…………. 

Two-way synchronization 
on complementary actions. 

Closed Systems! 
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UPPAAL modeling language 
•  Networks of Timed Automata with Invariants 

+ urgent action channels, 
+ broadcast channels, 
+ urgent and committed locations, 
+ data-variables (with bounded domains), 
+ arrays of data-variables,  
+ constants,  
+ guards and assignments over data-variables and 
   arrays…, 
+ templates with local clocks, data-variables, and 
   constants 
+ C subset 
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Declarations in UPPAAL 

•  The syntax used for declarations in UPPAAL is similar to 
the syntax used in the C programming language. 

•  Clocks: 
–  Syntax: 

clock x1, …, xn ; 

–  Example:  
–  clock x, y;   Declares two clocks: x and y. 
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Declarations in UPPAAL (cont.) 

•  Data variables 
–  Syntax: 

int n1, … ;   Integer with “default” domain. 
int[l,u] n1, … ;  Integer with domain from “l” to “u”. 
int n1[m], … ;   Integer array w. elements n1[0] to 

      n1[m-1]. 

–  Example; 
–  int a, b; 
–  int[0,1] a, b[5]; 
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Declarations in UPPAAL (cont.) 

•  Actions (or channels): 
–  Syntax: 

chan a, … ;    Ordinary channels. 
urgent chan b, … ;   Urgent actions (described later) 

–  Example: 
–  chan a, b[2]; 
–  urgent chan c; 
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Declarations UPPAAL (const.) 

•  Constants 
–  Syntax: 

const int c1 = n1; 

–  Example: 
–  const int[0,1] YES = 1; 
–  const bool NO = false; 
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Declarations in UPPAAL 

Constants 
Bounded integers 
Channels 
Clocks 
Arrays 

Templates 
Processes 
Systems 
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Templates in UPPAAL 

•  Templates may be parameterised: 

int v; const min; const max 

int[0,N] e; const id 

•  Templates are instantiated to form 
processes: 

P:= A(i,1,5); 
Q:= A(j,0,4); 

Train1:=Train(el, 1); 

Train2:=Train(el, 2); 
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Urgent Channels: Example 1 

•  Suppose the two edges in 
automata P and Q should be 
taken as soon as possible. 

•  I.e. as soon as both automata 
are ready (simultaneously in 
locations l1 and s1). 

•  How to model with invariants if 
either one may reach l1 or s1 
first? 

a! a? 

l1 

l2 

s1 

s2 

P: Q: 
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Urgent Channels: Example 1 

•  Suppose the two edges in 
automata P and Q should be 
taken as soon as possible 

•  I.e. as soon as both automata 
are ready (simultaneously in 
locations l1 and s1). 

•  How to model with invariants if 
either one may reach l1 or s1 
first? 

•  Solution: declare action “a” as 
urgent. 

a! a? 

l1 

l2 

s1 

s2 

P: Q: 
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Urgent Channels 

urgent chan hurry; 

Informal Semantics: 
• There will be no delay if transition with urgent action can be 
taken. 

Restrictions: 
• No clock guard allowed on transitions with urgent actions. 
• Invariants and data-variable guards are allowed. 
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Urgent Channel: Example 2 

•  Assume i is a data variable. 
•  We want P to take the transition 

from l1 to l2  as soon as i==5. 

i==5 

l1 

l2 

P: 
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Urgent Channel: Example 2 

•  Assume i is a data variable. 
•  We want P to take the transition 

from l1 to l2  as soon as i==5. 
•  Solution: P can be forced to take 

transition if we add another 
automaton:  

where “go” is an urgent channel, 
and we add “go?” to transition l1l2 
in automaton P. 

i==5 

l1 

l2 

P: 

s1 go! 
go? 
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Broadcast Synchronisation 

broadcast chan a, b, c[2]; 

•  If a is a broadcast channel: 
a! = Emmision of broadcast 
a? = Reception of broadcast 

•  A set of edges in different processes can synchronize if one is 
emitting and the others are receiving on the same b.c. channel.   

•  A process can always emit.   
•  Receivers must synchronize if they can.  
•  No blocking. 
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Urgent Location 

Click “Urgent” in State Editor. 

Informal Semantics: 
•  No delay in urgent location. 

Note: the use of urgent locations reduces the number of clocks  
in a model, and thus the complexity of the analysis. 
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Urgent Location: Example 

•  Assume that we model a simple 
media M: 

that receives packages on channel a 
and immediately sends them on 
channel b. 

•  P models the media using clock x. 

M a b a? 
x:=0 

l1 

P: 

x==0 
b! 

l2 

l3 

x≤0 
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Urgent Location: Example 

•  Assume that we model a simple 
media M: 

that receives packages on channel a 
and immediately sends them on 
channel b. 

•  P models the media using clock x. 
•  Q models the media using urgent 

location.  
•  P and Q have the same behavior. 

M a b a? 
x:=0 

l1 

P: 

x==0 
b! 

l2 

l3 

x≤0 

a? 

l1 

Q: 

b! 

l2 

l3 

urgent 
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Committed Location 

Click “Committed” i State Editor. 

Informal Semantics: 
•  No delay in committed location. 
•  Next transition must involve automata in committed location.  

Note: the use of committed locations reduces the number of 
interleaving in state space exploration (and also the number of 
clocks in a model), and  thus allows for more space and time efficient  
analysis. 
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Committed Location: Example 1 
•  Assume: we want to model a process 

(P) simultaneously sending message a 
and b to two receiving processes 
(when i==0).  

•  P’ sends “a” two times at the same 
time instant, but in location “n” other 
automata, e.g. Q may interfear 

a!b! 

l1 

l2 

P: 

a! 

l1 

P’: 

b! 

n 

l2 

urgent i:=1 

i==0 
i==0 

i:=1 
k1 k2 

i==0 Q: 
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Committed Location: Example 1 
•  Assume: we want to model a process 

(P) simultaneously sending message 
(a) to two receiving processes (when 
i==0).  

•  P’ sends “a” two times at the same 
time instant, but in location “n” other 
automata, e.g. Q may interfear: 

•  Solution: mark location n “committed” 
in automata P’ (instead of “urgent”). 

a!b! 

l1 

l2 

P: 

a! 

l1 

P’: 

b! 

n 

l2 

committed i:=1 

i==0 
i==0 

i:=1 k1 k2 
i==0 b! Q: 
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Committed Locations  
(example: atomic sequence in a network) 

x:=x+1; 
y:=y+1 

If the sequence becomes too long, you can split it ... 
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Committed Locations  
 (example: atomic sequence in a network) 

C 

x:=x+1 

y:=y+1 

Semantics: the time spent on C-location should be zero ! 
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Committed Locations  
 (example: atomic sequence in a network) 

C 

x:=x+1 

y:=y+1 

Semantics: the time spent on C-location should be zero ! 
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Committed Locations  
 (example: atomic sequence in a network) 

C 

x:=x+1 

y:=y+1 

Semantics: the time spent on C-location should be zero ! 

Now, only the committed (red) transition can be taken! 
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Committed Locations  
 (example: atomic sequence in a network) 

C 

x:=x+1 

y:=y+1 



15 

29 

Committed Locations 

•  A trick of modeling (e.g. to model multi-way synchronization using 
handshaking)  

•  More importantly, it is a simple and efficient mechanism for state-space 
reduction! 
In fact, it is a simple form of ’partial order reduction’ 

•  It is used to avoid  intermediate states, interleavings:  
Committed states are not stored in the passed list 
Interleavings of any state with a committed location will not be explored 
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Committed Location: Example 2 

•  Assume: we want to pass 
the value of integer ”k” from 
automaton P to variable ”j” in 
Q.  

•  The value of k can is passed 
using a global integer 
variable ”t”.  

•  Location “n” is committed to 
ensure that no other automat 
can assign “t” before the 
assignment “j:=t”. 

a? 

l1 

l2 

Q: l1 

P: 

a! 

n 

l2 

j:=t 

t:=k 

committed 
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More Expressions 
•  New operators (not clocks):  

–  Logical:  
•  && (logical and), || (logical or), ! (logical negation),  

–  Bitwise:  
•  ^ (xor), & (bitwise and), | (bitwise or),  

–  Bit shift:  
•  << (left), >> (right)  

–  Numerical:  
•  % (modulo), <? (min), >? (max)  

–  Compound Assignments:  
•  +=, -=, *=, /=, ^=, <<=, >>= 

–  Prefix or Postfix:  
•  ++ (increment), -- (decrement)  
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More on Types 

•  Multi dimensional arrays 
e.g. int b[2][3]; 

•  Array initialiser: 
e.g. int b[2][3] := { {1,2,3}, {4,5,6} }; 

•  Arrays of channels, clocks, constants.  
e.g.  
–   chan a[3]; 
–  clock c[3]; 
–  const k[3] { 1, 2, 3 }; 

•  Broadcast channels. 
e.g. broadcast chan a; 
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Extensions 

Select statement 

•  Models non-deterministic 
choise 

•  x : int[0,42] 

Types 

•  Record types 
•  Type declarations 
•  Meta variables: 

not stored with state 
meta int x; 

Forall / Exists Expressions 

•  forall (x:int[0,42]) 
expr 
true if expr is true for all values in 
[0,42] of x 

•  exists (x:int[0,4]) expr 
true if expr is true for some 
values in [0,42] of x 

Example: 
forall 
(x:int[0,4])array[x]; 
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Advanced Features 

•  Priorities on channels  
  chan a,b,c,d[2],e[2];  
  chan priority a,d[0] < default < b,e  

•  Priorities on processes 
  system A < B,C < D;  

•  Functions 
  C-like functions with return values 
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UPPAAL specification language 
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TCTL Quantifiers in UPPAAL 

•  E     - exists a path ( “E” in UPPAAL). 
•  A     - for all paths ( “A” in UPPAAL). 
•  G     - all states in a path ( “[]” in UPPAAL). 
•  F     - some state in a path ( “<>” in UPPAAL). 

You may write the following queries in UPPAAL:  
•   A[]p,  A<>p,  E<>p,  E[]p  and  p --> q 

AG p 
AF p EF p 

EG p 

p and q are ”local properties” 
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“Local Properties” 

A[]p, A<>p, E<>p, E[]p, p-->p 
where p is a local property 

p::= a.l | gd | gc | p and p | 
     p or p | not p | p imply p | 
     ( p ) 

clock guard data guard 
automaton location 

process/ name 
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E<>p – “p Reachable” 

•  E<> p – it is possible to reach a state in which p is 
satisfied. 

•  p is true in (at least) one reachable state. 

p 
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A[]p – “Invariantly p” 

•  A[] p – p holds invariantly. 

•  p is true in all reachable states. 

p 

p 

p 

p 

p p 
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A<>p – “Inevitable p” 

•  A<> p – p will inevitable become true, the automaton is 
guaranteed to eventually reach a state in which p is true. 

•  p is true in some state of all paths. 

p 

p p 
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E[ ] p – “Potentially Always p” 

•  E[] p – p is potentially always true. 

•  There exists a path in which p is true in all states. 

p 

p 

p 
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p --> q– “p lead to q” 

•  p --> q – if p becomes true, q will inevitably become true.  
               same as A[]( p imply A<> q ) 

•  In all paths, if p becomes true, q will inevitably become 
true. 

p 

q 

q 


