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Abstract

The paper discusses dynamic real-time scheduling in the con-
text of model predictive control (MPC). Dynamic schedul-
ing in this setting is motivated by the highly varying execu-
tion times associated with MPC controllers. Premature tez-
mination of the optimization algorithm is exploited to trade
off prolonged computations versus computational delay. A
feedback scheduling strategy for muitiple MPC controllers
is also proposed, where the scheduler allocates CPU time to
the tasks according to the current values of the cost func-
tions. Simulated examples show how the overall control per-
formance may benefit from the application of the proposed
schemes.

1. Introduction

Model predictive control (MPC), see, e.g., {7, 12], has re-
ceived increased industrial acceptance during recent years,
mainly because of its ability to handle constraints explic-
itly and the natural way in which it can be applied to multi-
variable processes. The computational requirements of MPC,
where typically a quadratic optimization problem is solved
on-line in every sample, has previously prohibited its applica-
tion in areas where fast sampling is required. Therefore MPC
has traditionally only been applied to slow processes, mainly
in the chemical industry, However, the advent of faster com-
puters and the development of more efficient optimization al-
gorithms, see, €.g., [4], has led to applications of MPC to pro-
cesses governed by faster dynamics. In [6] MPC is applied to
a high-performance flight control experiment.

However, much still remains to be done to develop efficient
real-time implementations of MPC, and this paper focuses
on dynamic approaches in this area. The work is mainly mo-
tivated by the long and non-trivial execution times associated
with MPC controllers. From practical experience reported in
this paper it is shown that the computation time of an MPC
task varies a lot from sample to sample. A factor of 50 or
more is not uncommon. To cope with this, an increased level
of flexibility is required in the real-time implementation.
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Controller tasks are often implemented as tasks on a micro-
processor using a real-time kernel or a real-time operating
system (RTOS). The real-time kemel or OS uses multipro-
gramming to multiplex the execution of the tasks on the CPU.
The CPU time, hence, constitutes a shared resource which the
tasks compete for. To guarantee that the time requirements
and time constraints of the individual tasks are all met, it is
necessary to schedule the usage of the shared resource. Dur-
ing the last two decades, scheduling of CPU time has been a
very active research area and a number of different schedul-
ing models and methods have been developed [3, 10]. The
most common, and simplest, model used within the real-time
scheduling community assumes that the tasks are periodic, or
can be transformed to periodic tasks, with a fixed period, T;,
a known worst-case bound, (7;, on the execution time, and a
hard deadline, D;, The latter implies that it is imperative that
the tasks always meet their deadlines, i.e., that the actual ex-
ecution time is always less or equal to the deadline, for each
invocation of the task, :

However, the large variation in execution time for MPC tasks
makes a real-time design based on worst-case bounds very
conservative and gives an unnecessary long sampling period.
Hence, more flexible implementation schemes are needed,
where it is sometimes allowed for a deadline to be missed.
In feedback scheduling, [1, 5], the CPU time is viewed as a
resource that is distributed dynamically between the different
tasks based on, e.g., feedback from CPU usage and quality-
of-service {QoS). For controller tasks the quality-of-service
corresponds to the control performance.

The highly varying execution times also introduce delays
which are hard to compensate for. The longer time spent on
optimization the larger the latency, i.e. the delay between the
sampling and the control signal generation. The latency has
the same effect as an input time delay, and if it is not prop-
erly compensated for it will affect the control performance
negatively. However, since the optimization algorithins used
in MPC are iterative in nature, and, typically, reduce the
quadratic cost for each iteration step, it may be possible to
abort the optimization before it has reached the optimum, and
still achieve an acceptable control signal. In the paper, this
suboptimal approach is utilized to reduce the computational
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delay and improve the overall control performance. Subop-
timal MPC is discussed in, e.g., [13], where it is shown that
feasibility of the solution rather than optimality is a sufficient
condition for stability provided that a terminal constraint is
added in the MPC formulation.

The main idea proposed in this paper is to use feedback in-
formation from the optimization algorithm to determine (a)
when to terminate the optimization and output the control
signal, and (b) which of several MPCs that should be sched-
uled at a given time. In the present paper, a simulation study
is performed, where the new feedback scheduling approach
is compared to conventional scheduling techniques. The re-
sults show that improvements in control performance can be
achieved by more dynamic scheduling.

The rest of the paper is organized as follows. Section 2 de-
scribes an MPC controller for a quadruple-tank process, and
the execution time characteristics of the controller are given.
Section 3 discusses dynamic scheduling of MPC controllers
and simulation results are given, both in the case of a single
MPC controller and when two MPC controllers are sched-
uled on the same CPU. A feedback scheduling mechanism is
introduced for scheduling of multiple MPC controllers. Sec-
tion 4 contains a discussion of future research, and the con-
clusions are given in Section 5.

2. An MPC Controller

An MPC controller for a quadruple-tank process [9] will be
described. The tank set-up is shown in Figure 1, and the goal
is to control the level of the two lower tanks, y; and g2, using
the two pumps, %, and us,

The flow from pump 1 is divided such that a fraction ~y; enters
tank 1 and 1 — < enters tank 4. Likewise, the flow from
pump 2 is divided such that a fraction 2 enters tank 2 and
1 — v enters tank 3. A nonlinear model of the process is
given by

) S a2 VB + B

dt
dza(t k
_j( ) = 22 ool + % Egma® + 22un(s)
t Az Az As
1- k-
) _ % gt + L)
dr4(t) g (1 ~m)k1
= ——1/2 t — t
3 s 9T4(t) + A u1(t)

yi(t) = keri(t)
ya(t) = Fkeza(t)

where z; is the level, A; is the cross-section, and q; is the
outlet hole cross-section of tank 2.

The process is linearized around a stationary point, and then
sampled with the interval A = 1 s. This gives a standard
discrete time state-space model of the process to be used as
the internal model by the MPC controlter. In the following yf,
¥5, u¢, and u§ denote deviations from the equilibrium point.

Figure 1: The quadruple-tank laboratory process. From [9].

2.1 MPC Formulation

A standard receding horizon MPC formulation based on [11]
is used. The function to minimize at time k is

Hp H,-1
Vik) =3 llitk +ilk) —rtk+ D5+ > lAalk+ilk)iE
i=l =0

. 1
where § is the predicted output, r is the current level set-
point, i is the predicted contro! signal, H, is the prediction
horizon, H,, is the control horizon, ) and R are weighting
matrices, and Au(k) = u{k) — u(k — 1). It is assumed that
H, < H, and that 4(k+4¢) = i{k+H,—1) for i > H,,. Together
with constraints on the control signals, uf < uf < uf, this
formulation leads to a convex linear-inequality constrained
quadratic programming problem (LICQP) to be solved each
sample. The problem can be written in matrix form as

min V (k) = AUTHAU — AUTG

subject to
QAU < w.

In accordance with the receding horizon principle, only the
first element in the control trajectory is applied to the process.
In the next sample, new measurements are available and the
optimization procedure is repeated.

2.2 Real-Time Properties

Throughout the examples given below, the simulation sce-
nario will be the one shown in Figure 2. Attime t=30s, a
step reference change is commanded in %{. At the same time
a step load disturbance enters in y5. The reference value for
%5 is zero througheut the simulation. The result of an ideal
simulation is shown by the solid curves. The control perfor-
mance is optimal and is obtained by letting the optimization
algorithm run to termination in each sample and setting the
computational delay to zero in the simulation.
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Figure 2: Comparison of control performance in the single MPC case for different implementations. The solid curve shows the ideal control
performance with full optimization and zero execution time. If the computational time is accounted for the performance degrades
(dashed). By prematurely aborting the optimization the control performance may improve. However, too early abortion (dotted)
gives really bad performance.. Best performance is obtained by a dynamic stop criterion (dash-dotted), exploiting the trade-off
between delay and continued optimization. The horizontal dotted lines in the control signal plots show the saturation limits.
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Figure 3; Execution time measurement for the MPC algorithm in
the specific simulation scenario given by Figure 2.

A Java-implementation of the MPC controller was used to
measure the execution time in the described simulation sce-
nario. The result is shown in Figure 3. A considerable dif-
ference in execution time can be noticed between different
operating conditions. During steady-state operation the re-
quired computation time is negligible, whereas during the
transient it may become well above the period of the con-
troller. The execution time variations depend on a number of
factors: the state of the plant, the current and future reference
values, the disturbances acting on the plant, the number of
active constraints on control signals and outputs, etc. Based
on this measurements, the execution time for each iteration of
the optimization algorithm in the following simulations was
set to 40 ms.

Figure 4 shows a close-up of how the objective function (1}
decreases for each iteration during one of the samples when
the execution time is long. The predicted cost decreases with
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Figure 4: The sclid curve shows a close-up of how the objective
function (1) decreases for each iteration during a sample
when the execution time is long. It is seen that the
required execution time for full optimization is well
above the pericd of one second.

each new iteration of the QP-solver, but it is also expected
that the true control performance will gradually degrade be-
cause of the additional delay (indicated by the dotted curve).
If the time required to search for a proper control signal se-
quence is too long, control performance may actually im-
prove by prematurely terminating the optimization in order
to reduce the delay.

The QP-solver uses an active set method, and it can be
seen that the cost function decreases monotonically but not
smoothly by each iteration as the number of active constraints
changes. A further discussien regarding proper choices of
QP-solvers is given in Section 4.1.
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Figure 5: Scheduling two MPC tasks for two identical quadruple-tank processes. The solid curve shows the optimal performance,
corresponding to full optimization, no interference and zero execution times. The other curves show a comparison of control
performance obtained by fixed-priority scheduling (dashed), EDF scheduling (dotted), and feedback scheduling (dash-dotted). The
introduction of the feedback scheduler, using feedback from the cost functions, improves the control performance considerably.

3. Examples of Dynamic Scheduling

The following simulation examples will involve two separate

- cases; first the case of a single MPC controller and then
the case where two MPC controllers are competing for
computing resources on the same CPU.

The MATLAB/Simulink-based simulator TRUETIME [8] is
used to simulate controller task execution in a real-time
kernel in paralle] with the continuous-time dynamics of the

guadruple-tank processes. The detailed co-simulation makes _

it possible to study the effect of different scheduling policies
and execution scenarios on the control performance.

3.1 A Single Quadruple-tank Controller

The MPC task is implemented using a standard task model,
where the task is released periodically and a new instance
may not start to execute until the previous instance has
completed. The sampling is performed within a separate
high-priority task, and the control signal is actuated as soon
as the task has completed.

In a first attempt, the optimization algorithm is allowed to
run to termination in each instance. Because of the execution
time characteristics, there will be considerable output jitter
and delays. The result is degraded control performance,
as shown by the dashed curves in Figure 2. An obvious
alternative would be to terminate the optimization at the
end of the period. In this example, however, this turns out
to render even worse performance, as shown by the dotted
curves in Figure 2. Obviously, the optimization is sometimes
terminated too early in this case. In a third attempt, a dynamic
stop criterion is used, where the optimization is terminated if
it has not finished within two periods. The value of the delay

limit was found by extensive simulations. The result is better
performance, as shown by the dash-dotted curve in Figure 2.

The simulations indicate that dynamic scheduling, where the
MPC controller is sometimes allowed to miss a deadline, can
give better results than terminating the optimization at the
deadline or allowing the task to run to completion.

3.2 Two Quadruple-tank Controllers

Now consider scheduling of two MPC controllers for two
identical quadruple tank processes on the same CPU. Both
controllers are designed with the same control and prediction
horizons, sampling intervals and weighting matrices. This
makes it straightforward to compare the values of the respec-
tive cost functions. '

The simulation scenario for the first MPC controller is the
same as before, whereas the reference change and step load
disturbance occur ten seconds later for the second MPC -
controller. The solid curves in Figure 5 show the result of an
ideal simulation, with full optimization, no interference and
the execution times set to zero.

Traditional Scheduling The two MPC controller tasks are
first scheduled using standard fixed-priority scheduling. The
tasks are implemented as two separate periodic tasks, with
MPC 2 given the highest priority. No termination of the
optimization algorithms is performed in this simulation.

In addition to the delays caused by the long executicn times,
MPC 1 will now also experience delay due to preemption
from the high-priority task, as seen in the computer schedule
in Figure 6. The results are given by the dashed curves in
Figure 5, and the control performance for MPC 1 is poor.

1328

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 2, 2009 at 11:11 from IEEE Xplore. Restrictions apply.



Computer schedute F
{high=running, medium=p ping)

T

e

MPC 2

MPC 1 EF

i

30 35 40

Tir:'?e5 81 0 % g0
Figure 6: Close-up of the schedule under fixed-priority scheduling.
The low-priority controller task (MPC 1} is preempted

during significant amounts of time with resulting poor
control performance.

As a comparison the tasks are also scheduled using earliest
deadline first (EDF) scheduling [10], where the task with
the shortest remaining time to its deadline will be given
highest priority. This scheduling policy gives a more fair
distribution of the computing resources, and the somewhat
improved control performance is shown by the dotted curves
in Figure 5.

Feedback Scheduling The main problem with traditional
scheduling approaches is that the (possibly dynamic) priori-
ties of the MPC tasks do not reflect their computational de-
mand nor their relative importance at each point in time. In
order to improve the control performance further a feedback
scheduler is introduced, which uses the current values of the
cost functions to dynamically schedule the MPC tasks. The
pseudo-code for the feedback scheduler looks like this:

do forever {
for (each active MPC task i) {
if (delay_i > MAXDELAY_ i} !
abort optimization:;
actuate plant;
}
¥
determine MPC task i with highest cost;
let task 1 perform one iteration;
if loptimum i) {
actuate plant;
}

To guarantee at least nominal stability of the controllers,
a controller which does not have a feasible solution yet is
associated with an infinite cost (this is typically achieved
within the first iteration). The sampling is performed within
a separate high-priority task, and when an MPC task has just
received new samples, it is also associated with an infinite
cost. This ensures that the cost function will become properly
updated as soon as possible to reflect current situation in the
controlled process.

Computer schedule (high=running, low=waiting}
Feedoack ] ! I : {
Scheduler I I 1 . : {

]

MPC 2 : :
£ Optimization aborted
: : : : :\ :
wor | LTI TR
FTRRY: e prys “s 4s
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Figure 7: Close-up of the schedule under feedback scheduling. The
feedback scheduler distributes the computing resources
on a per-iteration basis based on feedback from the cost
functions. When the delay exceeds a certain limit the
optimization is aborted.

Simulation resuits using the proposed scheme are given by
the dash-dotted curves in Figure 5. It can be seen that
the control performance has improved, especially for MPC
controller 1. A close-up of the distribution of computing
resources in the sample between 44 and 45 seconds is shown
in Figure 7. Here it is seen how the execution is divided
between the MPC tasks on a per-iteration basis. In the
simulation, one scheduling decision is assumed to take I ms.

4. Discussion

The simuiation resuits indicate that dynamic scheduling
based on feedback from cost fuactions may be a successful .
way of dealing with the problem.of limited computational
time when implementing MPCs. However, to be able to apply
the suggested scheme in a more general setting several issues
have to be addressed.

4.1 Choice of QP-Salver

There exist two major families of methods for solving
LICQP, see, e.g., [11]. The traditionally most used is the Ac-
tive Set method, which was used in the examples in this pa-
per. In this algorithm an active set, the set of active inequality
constraints, is introduced. At each iteration a solution to a
linear-equality constrained quadratic programming problem
(LECQP) is obtained. As the algorithm proceeds, constraints
are added and removed from the active set until the optimal
solution is found, A drawback with this method, as seen in
Figure 4, is that the cost function decreases very irregularly
which makes it difficult 10 know how close the optimum is
and whether it will pay off to optimize further.

In recent years Interior Point methods have won widespread
use as an alternative to active set methods. Interior point
methods usually maintain a strictly feasible solution at each
iteration, see, e.g., [14]. Interior point methods may also be
more suitable in a dynamic setting, in that the cost typically
decreases more smoothly by each iteration. It is then easter
to estimate how much it will pay off to optimize further—
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the scheduler could look at the time derivatives of the cost
functions to decide which MPC controller that should run.

A particularly attractive method int the interior point category
is the primal-dual interior point method. For convex opti-
mization problems, the algorithm computes the duality gap
exactly at each iteration. This is a useful feature, since it gives
an indication of how close to the optimal point the solution
at hand is, and may be used to decide whether to terminate
the algorithm or not. This could be a better indication to the
scheduler of what MPC controller that needs attention than
just looking at the current cost.

As described above, premature termination of an optimiza-
tion run in one MPC controller may be justified in order to
improve the overall control performance. Given that the algo-
rithm at hand has found a feasible solution (this is considered
as a requirement), any of the LICQP algorithms may be ter-
minated before the optimum is found. The guality of the so-
lution then depends on: how close to the optimum the solution
is. Potentially, this means that the primal-dual interior-point
method is preferable, since it offers an estimation of how far
off from the optimal value a solution at a given iteration is. It
is also expected that the variations in execution time would
be less using an interior point method, see, e.g., [2].

4.2 Computational Delay

In the MPC formulation used in this paper the computational
delay was not accounted for. Standard practice is to include
a one-sample delay in the process description and then
synchronize the writing of the outputs with the reading of
the inputs to enforce this. The computational delay, however,
could vary from a very small fraction of the sampling
interval up to several sampling intervals. Compensating for
the maximum delay may become very pessimistic and lead to
decreased obtainable perfermance. In the dynamic schemes
presented in the paper, the control signal was actuated as soon
as the optimization terminated, not to induce any unnecessary
delay that degrades the performance. Ideally, this should be
combined with an adjustment of the prediction matrices in
the next sample according to the actual delay.

4.3 Comparing Cost Functions

When scheduling several MPC controllers, the strategy sug-
gested in this paper was to give priority to the controller with
the highest current value of its cost function. However, com-
paring cost functions directly may not be appropriate when
the controllers have different sampling intervals, prediction
horizons, magnitude of disturbances, etc. In those cases, it
would be necessary to scale the cost functions to obtain a fair
comparison. The scheduling could also use feedback from
the derivatives of the cost functions, as well as the relative
deadlines of the different controllers.

5. Conclusions

The paper has discussed dynamic scheduling of model pre-
dictive controllers. The trade-off between optimization and
input-output delay was investigated, and it was shown that
early termination of the optimization algorithm can improve
overall control performance when computing resources are
scarce. In the multi-MPC case a feedback scheduling scheme
was introduced, where computing resources were distributed
based on feedback from cost functions. The potential of the
suggested scheme was illustrated by simulations, and a num-
ber of future research directions were discussed.
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