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Abstract—Epileptic seizure prediction has steadily evolved from I. INTRODUCTION
its conception in the 1970s, to proof-of-principle experiments in . .
the late 1980s and 1990s, to its current place as an area of vig- | N humans, epilepsy is the second most common neu-
orous, clinical and laboratory investigation. As a step toward prac- rological disorder, next to stroke, affecting 50 million
tical implementation of this technology in humans, we present an people worldwide. Of these individuals, 25% do not respond
individualized method for selecting electroencephalogram (EEG) tq gvailable therapies [1]. There is currently an explosion

features and electrode locations for seizure prediction focused on . - : e T : . .
precursors that occur within ten minutes of electrographic seizure of interest in predicting epileptic seizures from intracranial

onset. This method applies an intelligent genetic search process to€leéctroencephalogram (IEEG) that has its roots in experimental
EEG signals simultaneously collected from multiple intracranial and theoretical work first published in the 1970s. Despite over
electrode contacts and multiple quantitative features derived from 40 years of investigation into the physiology of epilepsy, it still

these signals. The algorithm is trained on a series of baseline andig not possible to explain how and over what time spontaneous

preseizure records and then validated on other, previously unseen . . . . .
data using split sample validation techniques. The performance of clinical seizures emerge from the relatively normal brain state

this method is demonstrated on multiday recordings obtained from OPserved between them [2].

four patients implanted with intracranial electrodes during eval- An exciting application of seizure prediction technology is
uation for epilepsy surgery. An average probability of prediction its potential for use in therapeutic epilepsy devices to trigger
(or block sensitivity) of 62.5% was achieved in this group, with an jntervention to prevent seizures before they begin. Since the

average block false positive (FP) rate of 0.2775 FP predictions/h, . : . :
corresponding to 90.47% specificity. These findings are presented early 1970s, approximately 22 patents addressing epileptic

as an example of a method for training, testing and validating a S€izures have been filed. [3]-{18]. Most are open loop or
seizure prediction system on data from individual patients. Given triggered open loop systems addressing stimulation for pre-
the heterogeneity of epilepsy, it is likely that methods of this type venting clinical seizures after seizure detection, while seven
will be required to configure intelligent devices for treating epilepsy  ¢laim seizure prediction. To date, the vagus nerve stimulator
to each individual's neurophysiology prior to clinical deployment. Neurocybernetic Prosthesis is the only device that has been
Index Terms—Epileptic seizure prediction, feature selection, ge- FDA approved for implantation to treat partial onset seizures.
netic algorithms, multiple channels and features. This device is an open loop system that operates blindly based
on the amplitude and duration of stimulation set by the medical

doctor [19]. More intelligent “closed loop” devices based upon
seizure detection or prediction are under development, as are

the appropriate algorithms to drive them. Fig. 1 provides bar
graphs depicting the number of patents related to epilepsy and
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Mumber of Epilepsy Device Patents by ¥ ear Filed but may occur at other times as well, unrelated to epileptic
events. Validation of prediction algorithms on long, continuous
sets of clinical data, representing all states of awareness, is an
important part of more recent seizure prediction studies.

3 A number of promising quantitative features derived from the
EEG, each with different theoretical bases, have demonstrated
2 utility for seizure prediction. lasemidis and Sackellares were
the first group to apply nonlinear dynamical techniques, par-
I J Il ticularly methods based upon the principal Lyapunov exponent

(PLE), for predicting seizures beginning in the late 1980s. This
group has demonstrated evidence of seizure precursors in a va-
riety of data sets, ranging from one to multiple channels and
@) epochs spanning minutes to hours [23]-[27]. In their research,
Nurnber of Seizure Prediction Publications per ¥ ear seizure onset prediction was reported from one to sixty minutes
B Aboiars prior to electrographic seizure onset in some data sets. Since
I E ook Sections the mid 1990s, Lehnertz and Elget al. have expanded work
an Conference Proc. in nonlinear dynamics and seizure prediction to larger data sets,
Joumal Papers - . . .
BEB Theses greater numbers of patients, and a variety of epilepsy types, uti-
Other lizing parameters based upon the correlation dimension. They
report distinguishable preseizure patterns from 4.25 — 25 min-
utes prior to seizure onset [28]-[32] in some studies and evi-
10 T _ dence of what is likely to be preseizure synchronization of ac-
AL tivity up to hours before seizure onset [33]. More recently, Le
Van Quyen and Baulagt al. have anticipated seizures using a
nonlinear parameter they call dynamical similarity [34]-[36].
Starting with just a few patients, this group has steadily ex-

1965 1970 1975 1980 1985 1990 1995 2000

- ”ﬂl Z mz] z panded the number of patients they have analyzed and the length
1965 1970 1975 1980 1085 1990 1995 2000 . i RO
of data for each patient. Approximate prediction times agree
(®) with those of the previous two groups, suggesting that they may
Fig. 1. (a) Bar graph of patent literature addressing epileptic seizures. (b) Bg& observing similar or the same physiological phenomena in
graph of journal publications. different ways.

Using an approach based upon physiologic changes in the

Studies in seizure prediction vary widely in their theoreticdEG usually associated with epilepsy, such as spikes, slowing,
approaches to the problem, validation of results, and the amosabclinical seizures and increased energy in the signal, our re-
of data analyzed. Some relative weaknesses in this literature sgarch team postulated that seizure generation is composed of a
the lack of extensive testing on baseline data free from seizureascade of EEG events that develop over hours in temporal lobe
the lack of technically rigorous validation and quantificatioepilepsy. This conclusion was based upon findings that accumu-
of algorithm performance in many studies, and the absencelatied signal energy, the rate of subclinical seizure-like bursts and
methods for distilling multichannel and multifeature data into itsursts of long-term energy all increased as seizures approached
most useful components for prediction. In the study present¢d]. In addition, we found patient-specific seizure onset and
preictal data segments and 40 h of baseline data were reseqpeseizure patterns, suggesting that algorithms tailored to in-
for testing to demonstrate the feasibility of the approach. Sind&idual patients may offer some advantage for seizure predic-
the research is limited ethically by the requirements for presuien. Again, prediction horizons were similar to those described
gical analysis, it is not possible to test the resultant feature agsing nonlinear techniques, giving further credible evidence that
data gathered months or years later from the same subject.qisntitative measures that appear to anticipate EEG onset of
new developments are pushing forward in this field, it is exseizures are unlikely to be artifact.
pected that in the future, the availability of implantable devices The successful “proof-of-principle” demonstration of a pre-
will allow prospective studies on seizure prediction where aeizure period, validated by multiple research groups and tech-
individualized feature set can be validated over months or yeaigues has moved research in this area on to more in-depth
on the same subject. studies exploring the temporal and spatial characteristics of the

Some studies, such as those of Petrosian, report seizpreseizure period, as well as its underlying mechanisms. Re-
prediction after analyzing one channel of electroencephaleent collaborative discussions between groups working in this
gram (EEG) from an intracranial depth electrode in one patiemtea have identified several important related areas of investi-
[20]-[22]. In these studies, using univariate techniques mation. First, in order to be able to assess and compare seizure
analysis of baseline data far removed from the seizure wa®diction methods, acceptable performance metrics for these
undertaken. A potential pitfall of conclusions based upampes of studies must be agreed upon. In a recent published
such limited data is that quantitative changes identified primrork on seizure prediction [37], investigators in the field cau-
to seizure onset may not be specific to the preseizure peritidned against overstating performance results of seizure pre-
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Fig. 2. Schematic drawing of the hybrid genetic and classifier based feature selection process for epileptic seizure prediction.

diction algorithms, and advised that rigorous reporting of sete validate this approach. The features and electrode sites se-
sitivity and specificity, among other performance criteria, adected were not meant to provide the best features for seizure
necessary to validate the utility of different experimental aprediction, but to provide a potential solution on a patient-spe-
proaches. Second, the need for analyzing long epochs of deafec basis to the problem of predicting seizures in the minutes
free from seizures was emphasized. Without this work, eveprior to their onset on the IEEG (a 10-min “prediction horizon”).
tually leading to prospective, on-line trials of prediction algothis prediction horizon was chosen as a reasonable beginning
rithms, the specificity of seizure precursors to the preictal perigdeseizure interval that would allow time for preemptive inter-
will always remain suspect. Finally, great interest has been stigention and straightforward validation. We also chose to study
ulated by findings that seizure precursors appear to spread spzantitative IEEG features that could be related to neurophysi-
tially in the temporal lobe over time, even crossing to “entraindlogy, and potentially the mechanisms underlying seizure gen-
the contralateral temporal region as temporal lobe seizures aption.

proach. These factors, as well as the need for a method to tailoffo investigate whether a hybrid genetic- and classifier-based
algorithms to specific patients to achieve more optimized réeature selection process could reveal features capable of pre-
sults prompted this study, in which we demonstrate that patiefitting epileptic seizures, after data were collected; we imple-
specific combinations of multiple channels and multiple quamented the steps shown in Fig. 2.

titative features can predict seizures with reasonable accuracy

after supervised training on appropriate preseizure, seizure a\dpata Generation

baseline data.
1) Subjects:Patients ranged in age from 21-53, had sus-

pected mesial temporal lobe epilepsy, were implanted with bi-
lateral amygdalo-hippocampal depth electrodes, subdural strip
The objective of this study was to conduct a preliminary eva¢lectrodes, and were hospitalized for 3- to 14-days for con-
uation based on quantitative EEG analysis to determine if a geruous video-EEG monitoring during evaluation for epilepsy
netic search process is capable of identifying appropriate @aHgery. Most of the patients whose data were analyzed were ta-
tient specific features and electrode sites for predicting seizupered off of their antiepileptic drugs during the hospital stay to
from a large set of candidate features and intracranial electradduce seizures. Some or all of the intracranial electrode con-
recording sites. Numerous candidate features revealed in thets identified in Fig. 3 were monitored for each patient. Pa-
literature were considered, including those from time domaiients were selected consecutively from a database of patients
analysis, frequency domain analysis, and nonlinear dynamiagose clinical and neurophysiological information were stored
From these features, a subset was selected as potentially udefuanalysis.
for seizure prediction. The transformation of potentially rele- 2) Recording ProceduresWe collected data on a standard
vant features was approached heuristically, based on previtlisolet 5000 video EEG acquisition system utilizing a 12-bit
research, expert visual assessment, and analysis of processadog-to-digital converter and sampled at a rate of 200 Hz with
signals. The genetic search process was applied to a portioftbahdpass filter settings of 0.1-100 Hz. Synchronization of video
available preictal and baseline data, while the remaining praad EEG was achieved and stored for offline analysis of clin-
ictal records and 40 h of consecutive baseline data were useal onsets on SVHS video tapes. EEG data were downloaded to

Il. METHODS
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at the following times and identified the corresponding loca-
tions: 1) thefocus channelthe spatial location of the earliest
seizure onset on IEEG, or if multiple channels were involved
at onset, the focus channel was the electrode measuring max-
imal onset; 2) the unequivocal electrographic onset (UEO): this
marked the time at which an EEG pattern typically associated
with seizures first became unquestionably clear and could be
identified independent of knowing a seizure followed; and 3)
the earliest electrographic change (EEC): this point in time was
found by identifying unequivocal electrical seizure onset on the
Fig. 3. Intracranial electrode contacts monitored for each patient. LT: Le EG_ and then mov'_”g backward in time to th.e point at which
temporal lobe; LIF: left inferior frontal lobe; LAT: left anterior temporal lobe; tNe first clear, sustained change from the patient's EEG base-
RT: right temporal lobe; RIF: right inferior frontal lobe; RAT: right anteriorline prior to the seizure was detected. The unequivocal clinical
temporal lobe; RIH: right inferior hippocampal formation. onset was marked when visual evidence indicating the presence
of a seizure became evident. In this research, the clinical onset

compact disk for quantitative analysis. Sleep-wake cycles, mé¥as identified by the expert epileptologist visually reviewing
ication administration, and pertinent patient behaviors were &€ video tapes after the data were gathered.
viewed and catalogued for each patient over the entire hospital
stay. B. Preprocessing
3) Data Selection:We analyzed four patients, comprising

. . 0 minimize the common mode artifact while maintaining the
46 preictal records, and 160 h of baseline data. An average g

) . . 296 Rbgrity of the si nal, data were analyzed in a “bipolar mon-
70% of all available preictal lead seizures were used for tra'n"}%gg”zwhich thegsignals from spatiallglladjacent chgnnels were

while testing included both the remaining 30% of available P'&Uptracted to obtain the differential mode signal. After removing

ictal records and artificially generated preseizure records. L common mode artifact, a 60-Hz digital notch filter was used
seizures were defined as seizures that were separated by at [east | 1\« |ine noise '

4 h from the end or beginning of another seizure. This distinc-
tion was made based upon evidence that seizures originating.in
the temporal lobe may influence the IEEG within this period of"
time [2]. Approximately 4 h of baseline data/patient were used Processing utilized a three-step approach that included ex-
for training, while 40 h/patient were used for testing. We clippetiacting first-level features from the raw data, extracting second-
10-min data epochs before each seizure onset from all IEESel features from first-level features, and extracting third-level
channels from the original raw data during training to addrefsatures from second-level features. Candidate features were se-
the short 10-min prediction horizon. Data epochs were consideted based on criteria described in [38], expertise, observa-
ered “baselines” if they were spaced at least 4 h away from ttiens, and our understanding of EEG signal characteristics. To
onset or ending of an electrographic seizure. evaluate most features, it is important to maintain stationarity
4) Artificially Generated Preseizure Record8aseline data of the data segment. Statistical tests reveal quasi-stationarity of
comprised the overwhelming majority of data in this research. the EEG signal anywhere from 1 s (200 points) to several min-
the available data set, there were an adequate number of recaoitds [51]. Because seizures spread so quickly, a displacement as
for each patient for training and testing. However, the numbemall as possible that does not provide too much variability is
of preictal samples available for each patient ranged betwedgsired. We experimented with values ranging from 0.25sto 5
two and four records for training and two or three records ferand observed that a displacement of 500 points (2.5 s) and the
testing. Artificially generated surrogate data sets were obtain@thdow length to 2000 points (10 s) provided reasonable prop-
to increase the available test set for validation. The use of suremation resolution of seizure precursors and the ability of mul-
gate data is useful to validate results obtained from experimertiahannel analysis to effect prediction. These values were used
data when no theoretical basis is available. for the first-level feature extraction for all tests and agree with
A new form of jittering based on a uniform distribution withthe definition of stationarity found in the literature and prelim-
an adaptive range was used to obtain the preictal surrogateary prediction results. For the second- and third-level feature
Surrogate samples were obtained by randomly selecting daxdraction a 24 point (1 min) window and a displacement of 1
from samples in the test set while maintaining the time index pbint (2.5 s) were used.
the preictal recording. Surrogate samples were chosen randomliumerous features revealed in the literature were consid-
with replacement and were obtained from the uniform distribered from time domain analysis, frequency domain analysis,
tion of numbers between the range of values in the availal@ded nonlinear dynamics. From those features considered, a
samples. Samples were randomly selected among data fromgbeof features was selected as potentially useful for seizure
same awareness state. Using this technique, the probability demediction that had computational requirements reasonable for
sity function (PDF) was adaptive, depending on the data.  real-time implementation. While this list of features was not
5) Terminology: In this research, an expert epileptologist viconsidered to be exhaustive, it was chosen to be sufficient for
sually reviewed the EEG for each seizure before quantitatipeoof of principle for the multifeature method. This method
analyses of these data were conducted, and marked each sejto@ides a structure based upon multiple quantitative features

LATL

LIH1

Patient Electrode contacts

Processing
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and multiple electrode sites that can be used to optimiZée moving average of the energy defined above is with zero
seizure prediction for a particular group of features. As notederlap. If an overlap oD points is allowed, then the average
above, the transformation of potentially relevant features wasergy becomes
approached heuristically, based on previous research, expert n(N=D)+D
visual assessment and analysis of processed signals. Ep[n] = 1 w(i)? 3)

Selected features were also chosen to be computationally ef-
ficient and have potential for on-line implementation in low-
power, implantable environments. The six selected first-lev¥
quantitative features derived from the intracranial EEG for th
analysis are described below.

1) First-Level Features:

a) Curve length: An in depth theoretical fractal dimen- i :

sion (FD) analysis was conducted by Esteller, yielding th(éotman [43] all u_sed Teé‘gers algorithm to an_alyze EEG
fractal dimension algorithm proposed by Katz as the mogllgnals: Esteller with the intent to detect the seizure onset;

promising for detecting unequivocal seizure onset on IEEéfWerl to observe how the seizure propagates after the ictal

and in some cases even predicting it [39]. FD meets tRaset; and Gotman and Agarwal to provide indicators as to the

computational requirements for real time implementatioﬁpECtral content of the signal. This algorithm was presented by

however, the computational burden can be further reduced Iﬁ@iser wh_o was searching for a measure of energy propor_tional
eliminating the logarithmic computations and analyzing thQ bIOth signal .amdplltucie ar|1.d frequency ”[4;']' This glghorlthrr
curve length of the signal defined by the sum of the Iengtl’1 also recognized as mnonlinear energy  because It has also
of the line segments between successive samples of a sigﬁ pwn to pe useful fordetermmmgth_e instantaneous frequency
This feature was originally introduced by Olsen in [11] as th@nd amphtude envelope Of,AM'FM signals [45]. . .
“line length” prior to being described as the “curve length” in Zaveri used bqth Teggers algorlthm and the classical defini-
[4]. The mathematical representation of the curve length in itl'Qn_ of energy t9 investigate propagation. He found Teager's al-
discrete form is gorithm to provide more favorable results. Gotman and Agarwal
n(N—D)+D found the nonlinear energy operator useful for providing an in-
. . dication as to the spectral content of the signal since it is sensi-
CLn] = z(i—1) — z(: 1) = ) . Lo
[n] Z 2@ = 1) =2 ()] @ tive to spectral changes. For the input sign@l), in its discrete
form, the nonlinear energy (NE) operator is represented by

i=1+(n—1)(N=D)
pereED is the average energy or moving average of the power
ith D points of overlap. An overlap of 1500 points was used in

this paper at the first level of feature extraction while an overlap
of 23 points was used at levels two and three.

¢) Nonlinear Energy:Esteller [41], Zaveri [42], and

ik=1+(n—1)(N—D)

whereC L[n] is the running curve length of the time serig%), )
N is the length of the sliding observation window expressed NE[n] =2"(n) —2z(n-1)z(n+1). (4)

in number of pointsy is the discrete time index, an® IS The NE is an instantaneous feature, such that it provides one
the overlap. The curve length provides results nearly equivalgli e for each value of original data. After the NL is obtained,
to the Katz FD algorithm, while providing less computationghe feature is weighted with a Hanning window; then the mean
burden. The curve length is useful for observing amplitude aggihe windowed datay £,, [n], is taken over the desired sliding

frequency changes and dimensionality of the signal. In additiqRinqow. After windowing, the average nonlinear energy is then
the fractal dimension adds nonlinearities and may yield negative

numbers not found in the curve length [40].

b) Energy: The accumulated energy (AE) provided
promising results for seizure prediction in all the patients
analyzed in [41] and in [2] using the focus channel. Howeveihere:
unless AE is converted to a resetting AE, where it is initialized ANE[k]  average NE at timé;

k(N—D)+D
ANE = + > NEy[n] (5)
n=1+(k—1)(N—D)

blind to the seizure onset, it is not a practical feature for an N desired window length;
online pattern recognition system. Consequently, energy isD oyerlap In nur_nber of points;
considered as a first-level feature and subsequent feature levels discrete time index equal t© 2,3, . ..

are expected to provide predictive preseizure indicators. L€ algorithm is sensitive to both amplitude and frequency
the sequence(n) be a preprocessed and fused input signathanges, and is computationally efficient, and simple to calcu-
then the instantaneous energyagh) is given byz2(n). Con- late.

sidering that a sliding window is used, the energy of the signal d) Spectral Entropy (SE)The main objective of entropic
becomes the average power over the window mathematicdigture analysis is to quantify regularity and order in the signal.

defined as Researchers focusing on prediction generally limit their anal-
N ysis to the bipolar focus channel since this channel appears to
Eln] = 1 Z (i) ) proyidg the most gvidence regarding t.he.seizure. However, a

N (TN preliminary analysis of the SE feature indicates that the focus

channel may present a constant exhibition of abnormal activity,

where thereby compromising the analysis. This finding, presented in

N  size of the sliding window expressed in number di6], has prompted the investigation of all channels for pre-
points; diction indicators. This phenomenon also was observed in the

n setl, 2,3, ... (the discrete time index). chaotic domain as measured by the PLE by lasenaith& [47].
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This group found that the ipsilateral side of the brain carries diivhereS P(n) is the running sixth power of the time serig@:),
ferent chaotic properties than the side contralateral to the focdsis the length of the sliding observation window, and the

In 1979, Powell and Percival introduced the concept of SHiscrete time index.
based on the peaks of the Fourier spectrum, as a measure of reg-f) Energy of the Wavelet Packetén Esteller’'s work, the
ularity [48]. In 1991, Inouyeet al.applied SE to surface EEG to“absolute value of the fourth Daubechies (daub4) wavelet coef-
compare the surface EEG signals during rest with those durifigjent averaged” provided promising results for detecting UEO
mental arithmetic to analyze the degree of EEG regularity. SingElL]. The decision to use the daub4 wavelet as a potential feature
the spectrum of irregular EEG tends to be 1/f while the spearas made by conducting a visual screening of sample IEEG sig-
trum of rhythmic EEG has a peak in the power spectrum, Imals to determine which mother wavelet would provide the best
ouye claimed that the SE is a useful means for observing theparation between classes. In another experiment [50], Pet-
degree of EEG irregularity [49]. The information theory conrosian selected the daub4 as the mother wavelet for his study
cept of entropy introduced by the late Claude Shannon in 1948 predicting seizures using a recurrent neural network and the
is represented by high-pass and low-pass decompositions of the daub4 wavelet
because it has good localizing properties in the time and fre-

H(z) = E, {i(x)} ®)  quency domains,
and Using the daub4 wavelet, there ar& Rvavelet packets
and 2"~! combinations. We use a five-level decomposition,
E, {i(z)} = - Z p(z) log, p(z) (7) vyielding 32 wavelet packets. The wavelet packet decomposition
z€X should be a useful feature since the EEG is a combination of the

heref. is th tati ith t0i(2) is th i numerous processes occurring in the brain; the results of the in-
¥V eret. = 1SIhe expgcﬂ;’:t 'z.n Wi trespgcgﬁé(ﬁ)' ":’ .bet.se ]:m' dividual processes often are lost in the sum of all combinations.
ormation, andy(x) is the discrete probability distribution UNCThe wavelet packet decomposition will decompose the signal

tion (PDF). To find the SE, first the discrete-time form of th?nto 32 frequency bands between 0 and 100 Hz. Splitting the
spectrum is found from

signal into the separate bands should reveal hidden details not

P(k) = 1 TX ()| ®) evident in the original signal. The GA evaluates each wavelet
NT packet separately, and the best packet is selected from the 32
and resultant outputs.
Nt 2) Second- and Third-Level Feature3he second-level fea-
O —j27kn tures were selected after visually observing the focus channel
X (k) = 2_:0 @ [n] exp < N ) ©) of a random sample of first-level feature plots and class condi-

tional PDFs representing seizures from five patients. The visual
whereX (k) is the discrete Fourier transforffi,is the sampling analysis identified characteristics of the 10 min prior to UEO
interval, andl is the length of the sliding observation windowthat, if extracted from the first-level features, may provide pre-

The SE then is expressed as diction indicators. The second- and third-level features found
m(N—D)+D useful from this screening include:
SE(m) = — > P (k)log, P (k) (10) eminimum emaximum emedian
m=1+(k—1)(N—D) emean evariance estd. deviation

eskewness ekurtosis  eslope

whereS E(m) is the running SE of the time serief], N is the ; -
eintegral  ederivative esum

length of the sliding observation window, andis the discrete
time index. This analysis complements visual EEG analysis Byl seizures and all patients did not necessarily exhibit poten-
an expert epileptologist and may provide further insight into th&l prediction indicators identified above; however, all potential
underlying mechanisms of ictogenesis. second-level features are considered in this research for devel-
e) Sixth Power: The sixth power indicator calculates theoping the objective feature vector.
sixth power of the signal and we have found it to be empiri-
cally useful for observing small amplitude differences in thB. Feature Selection
IEEG, though no comparison with other exponents has beenyy Genetic Feature SelectiorA hybridization of genetic
undertaken. The sixth power was selected over lower powesy classifier based feature selection was employed in this
because it more effectively emphasized the amplitude changes,qr 1o address multiple feature and multiple channel analysis.
when compared with the lower powers and this was confirmgghe first phase of the approach reduced the possible 25872
over a preliminary evaluation using a sample of data fromgayyres to one feature in each of the six first-level feature fam-
subset of patients in the database. Magnitude differences argjigs. A “family” is defined here as any feature transformation
creased with the power of the signal, since small signals incregaggiyed from that particular first-level feature. The feed forward
less than signals with larger amplitudes. The sixth power is thg5roach then was applied using the best feature in each family.

sixth power of each data point and is expressed as Genetic algorithms (GAs) are smart search processes inspired
1 n(N—D)+D by biological evolution [52]. Precisely, each possible solution
SPpn] = N Z x(7)° (11) isrepresented by a coded string of bits or a “chromosome.” The

i=1+(n—1)(N—D) GA chromosome used in this paper is shown in Fig. 4. A novel
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Genetic Algorithm Chromosome

C channels . :,- _ﬁ!?_l_e}fgl_f_"}@t}l_l‘_%__‘: _secand level features ! I__tl}_il:q_ll_!\_'gl_t_'qqtp_rg_s_i
$ } 3 $
{____adaptive . i 3bits i i 4bits DL A4bits :

000 Chl 000 CL 0000 min, 0000 min

001 Ch2 001 EN 0001 max 0001 max

010 Ch3 010 NLE 0010 med 0010 med

011 Ch4 011 SIX 0011 mean 0011 mean

100 Ch5s 100 SE 0100 var. 0100 var.

101 Ché 101 ENWP 0101 std. 0101 std.

110 Ch7 110 0110 Kur. 0110 kur.

111 Ch8 111 0111 skew. 0111 skew.
1000 geomean 1000 geomean
1001 trapz 1001 trapz
1010 slope 1010 slope
1011 sum 1011 sum
1100 harmmean 1100 harmmean
1101 mad 1101 mad
1110 first level 1110 first level
1111 1111 second level

Fig. 4. GA chromosome representing the binary representation used to select electrode contacts and features for evaluation.

adaptive chromosome is applied to identify reasonable featuthe average FDR values served as the objective value for each
to serve as inputs to the classifier based selection procedsannel/feature combination.
Each chromosome is comprised of a string of bits or “genes” After the “fitness” was calculated for each solutionpnew
whose content is called an “allele.” There are four “genesblution setvas pseudorandomly generated from the original set
in this paper: 1) electrode contacts or channels; 2) first-lewelth higher fitness solutions given preference. The evolutionary
features; 3) second-level features; and 4) third-level featuresncept was mimicked since the less fit solutions did not survive
The chromosome is represented by a string of bits as showrthie future generations. The process was repeated until a solution
the figure. The number of bits required for the number of chademinated the population. Ideally, the dominant solution was
nels is patient dependent, while the other “genes” have fixeéar the globally optimal solution.
bit lengths. The effectiveness or “fitness” of each individual The resultant chromosomes were weighted based on their
feature is measured using Fisher’s discriminant ratio (FDR) titness values, and th®ulette wheel selection (RW8jethod
evaluate the preseizure and the no-preseizure classes. It i8ag used to select surviving features. The probability of
statistical rank method that determines feature effectivenessdogssoverremained constant at 70%, and the probability of
computing a value based on the mean and standard deviatiomoftationat 10%. A constrained crossover approach permitted
the two classes compared. FDR is an ideal measure to use wbssover within each gene, and prohibited crossover across
classes are Gaussian and uncorrelated [38] and was selegemes. That is, for each iteration, only one element within the
after it was determined that it could adequately describe the diest, third, or fourth genes could crossover at a time. $tap
rived feature combinations. The objective function could hawgiterion was set to the maximum number of generations which
been any quantitative or qualitative measure that adequatelgs set equal to the population size. The population size was
described the data. FDR was chosen as a proof-of-concept. €neal to three times the length of the chromosome. Therefore,
FDR between two data sets is found as follows: a larger chromosome would mean there would be more feature
combinations to try, and the population size and number of

) N2
N N (/I/z — Mi) maximum generations would be increased to compensate. The
FDR, =Y > AR (12)  maximum number of generations could be increased without
i=1j=i+1 (0})" + (Ui) significant loss in computation time since the GA was designed

to remember values computed in the past. Therefore, the GA
had the tendency to go from generation to generation rather
quickly toward the final generations.

where
FDR; FDR for thek th feature;

N number of classes (two in the present research); ~ 2) Classifier Based Feature Selectiofhe forward sequen-

[ mean of thekth feature for theth class; tial approach was applied to the surviving features found in

o} is the standard deviation of thieth feature for the the first feature selection phase. The GA selected features in
ith class. each domain were tested with a probabilistic neural network

(PNN) to obtain the best performing feature to which the for-
First, the feature was calculated for each preseizure trainiwgrd sequential approach would be applied to obtain the best
record and was compared with each baseline training record gdforming feature vector. The following figure of merit (FOM)
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TABLE |
FINAL FEATURES SELECTED AND PERFORMANCE FORFEATURE SELECTION

Table !l  Final features selected and performance for seizure prediction.

IEEG Selected IEEG Prob Avg. False
Patient  Focus featurefchannel ~ Specificity  Sensitivity Error Prediction  positives
Channel for prediction Time (min)  per hour
raean of redian
A RT5-6 of curve length 100.00% 75.00% 001 5.56 0
channel (LIF3-4)
max. of mean abs.
B RT2-3 deviation 85.00% 62.50% 013 325 036
of energy
channel (RT4-5)
rain. of median
C RIF2-3 of curve length 90.63% 62.50% 0.13 181 04
channel (LT1-2)
rainimura of sum
D LIT1-2 of energy 86.25% 50.00% 009 32 035
channel (LIT3-4)
AVERAGE VALUES 90.47% 62.50% 009 3455 02775

was developed to determine surviving features to which the fatata stream is greater than or equal to the length of a true

ward sequential approach would be applied positive (TP) record. A record is considered a true negative
(TN) if the classifier output correctly identifies the record
FOM — 0.55(TP —FN) = 0.45(TN — FP) (13) as a baseline data segment. The integration of decisions [53]
= TP+FN TN + FP concept is applied for defining the classification lengths for the
test data. Precisely, a TP is declared if the record is 0.9 times
where the length of the shortest TP in the training data.
TP  number of true positives or correct “preseizure” clas-
sifications; E. Classification
FN  number of false negatives or incorrect “preseizure” ahe classifier stage, the probabilistic neural network (PNN)
classifications; . ~ classifier assigns the output of the feature vector into the class
TN number of of frue negatives or correct “no preseizuré aseizure” or “no-preseizure.” The PNN is used in this paper
classifications; - _ ~since the decision regions observed in the one and two dimen-
FP number of false positives or incorrect “no preseizurgliong| scatter plots are often nonlinear and not explicitly de-
classifications. fined. We expect the decision regions to ultimately converge to

~ The FOM is designed to select surviving feature combingse optimal decision regions for the selected feature vector by
tions based on performance of the training set. The FOM is [fsing the PNN.

pirically derived and involves intermediary judgments in addi- Split sample or “hold-out” techniques are used for the val-
tion to the quantitative decision. Since the number of baselingstion stage. To use split-sample validation, a representative
and seizures varies among patients, these proportions are takefh|e (test set) of the data is randomly selected and not used
into account in the FOM. The FOM yields values ranging from, any way during training. After training, the network is run on

—1to 1, with the best values being those closest to “1". Corregls test set, which represented approximately 30% of available
preseizure classifications are equally weighted, while the “Ryi3 in this study.

preseizure” or baseline classifications are equally weighted, but
given less weight than the preictal classifications.

A true positive (TP) is declared in the training data if the
longest data segment where the classifier correctly classifiedlable | provides a summary of the results obtained in this
the preictal data stream is greater than or equal to the aver&tigly. An average probability of prediction or block sensitivity
length of all correct preictal classifications and all incorre®@f 62.5% was achieved with an average block false positive
baseline classifications in the training records. A false negatikgte of 0.2775 FP predictions/h, corresponding to 90.47%
(FN) is declared in the training data if the longest data segmeaftecificity. The focus channel, historically used for evaluation
where the classifier correctly classified the preictal data stream seizure-prediction research, was not selected as the best
is less than the length of the shortest possible TP. The numbbannel for predicting seizures in any patient. In all patients a
of training records used to calculate the average value is egsiaigle third-level feature was determined to be the final feature
to the number of preictal and baseline training records usédector” necessary to predict seizures. In two patients, the
A record is considered a false positive (FP) if the longest dagaalysis selected an energy-based feature to predict seizures
segment where the classifier incorrectly classified the baseliwgile two other patients yielded a curve length-based feature.

Ill. RESULTS
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Patient A, Preictal test data, Block TP=1 point
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The processing time required for the implementation c.

the entire methodology over a 10 minute data segment using (b)
MATLAB ® 5.3 on a stand-alone 450-MHz Pentium Ill rangeelig. 6. Classifier output and normalized signals for patient A. (a) Plots
from 3.41 — 3.89 s, averaging 3.56 s for all four patientspresenting the preictal test data, up to 8 min before UEO. Three preictal test

. . . . . ords were available and five surrogate preictal records were created for this
analyzed' This processing included the prOIar anaIySIS' nOt;ﬁﬁient. One feature data point was required to predict a seizure for this patient.

filtering, three levels of processing, and classification. Thighe block length required for prediction varied from patient to patient and was
processing time is far below that required for real time inflependent on the training data outputs. The 0" and "1" values ory takis

plementation. The processing time reported here is the ti o 'g?)tlit: R,%S,?';,nsewf;g ggg;ée“d?ﬁstﬂ{'scgggg’mr,gstggfg\sg‘ (b) Baseline test
required after off-line selection of the final feature vector for
prediction. o

Fig. 6 provides the results from the output of the classifier f§¥@s followed by the onset of 20-25 Hz activity in the focus re-
the preictal and baseline test data for this patient. Three preidign. then rhythmic spiking. One seizure was followed by late
test records were available and five surrogate preictal recof§¥ival of this activity in the left temporal region, but this was
were created for this patient. One feature data point was requiftf" the right temporal seizure had mostly subsided. Finally, an
to predict a seizure for this patient. The block length required fiteresting resultis that the "best” channel for prediction for this
prediction varied from patient to patient and was dependent gatient was actually contr_alateral (on the other side of the brain)
the training data outputs. to the focus channel, while the best feature was a curve length

based feature.

A. Patient A

The epileptologist found that this patient's seizures all arofe Patient B
from the right hippocampus, in the more posterior contacts (RT5Patient B is the only patient of the four patients who was clas-
and RT6). Most seizures began with 3-7 s of generalized flaified as having independent, bilateral seizure onsets. Three of
tening and loss of background, followed by slow, semi-regulétis patient's seizures arose from left temporal and left ante-
rhythmic delta & 4 Hz) activity over the right temporal re- rior temporal electrodes, and one arose from the right temporal
gion, particularly in the focus contacts. The rhythmic activitglectrodes. The best channel for seizure prediction was actually
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contralateral to the left temporal lobe where three of the fobefore UEO should be evaluated to address the ten minute pre-
seizures originated. The best feature for this patient was an diction horizon. The prediction horizon addressed in this man-
ergy based feature. uscript was minutes before UEO.

C. Patient C IV. CONCLUSION

All implanted IEEG electrode contacts monitored were used

Patient C's seizures all seemed to begin on the right siqg, this study. In all four patients the electrode contact most
somewhere between the right temporal and inferior frontal rgmsely associated with the majority of seizures was not selected
gion. The epileptologist suspected that the electrodes may ggtihe “best” overall channel. The bilateral patient results (pa-
have been positioned directly in the ictal onset zone, becausegbft C) yielded a channel associated with the UEO for pre-
EEC associated with seizures was not well localized to a sing{%ting 25% of this patient's seizures. The method presented
or distinct small group of electrodes. The pattern from seizufgoks not for absolute preseizure changes, but rather changes in
to seizure was consistent, even when clusters of seizures #fe preseizure EEG compared with remote baseline EEG. Since
curred. Long periods of left temporal spiking stopped and thefige EEG in the epileptic focus is abnormal at baseline, it is pos-
was suppression of the EEG background of a second or th|e that the change from baseline is smaller minutes prior to
followed by a burst of higher amplitude, rhythmic theta (4—7.8ejzure onset than the change from a “normal” brain region that
Hz for approximately 5-s durations) activity over the RT2 and “entrained” just prior to seizure onset. In this way it is still
RIF 2—4 electrodes. In most seizures this was followed by a fey¥ssible that the absolute preseizure change may be greatest in
seconds of focal beta activity in the posterior hippocampal elage epileptic focus, but the relative change from baseline may
trodes on the right (RT4-6) then rhythmic activity that spreagk greatest elsewhere. The fact that the “best” channel for pre-
rapidly throughout the right temporal, inferior frontal and infegjction in three of the four patients was actually contralateral to
rior temporal areas at the time of EEC. It was difficult to seleghe focus channel may indicate that the cascade of events that
an ictal onset zone (I0Z) channel for this patient. It was esfkads to seizure onset may somehow require activation of con-
mated to be somewhere between the RT2 or RT4-6, RIF2—-4 apglateral and/or deep structures (e.g., thalamus) before actual
RIT2-4 electrodes. A volume of tissue in this region was likelyeijzyre initiation can occur.
responsible for these findings. The heterogeneity of epilepsy makes identification of a neu-

Patient Cyielded a best channel contralateral to the focugg|ogical origin of seizures difficult to generalize. Although the
After the third level of feature extraction is achieved, clear digpca| channel is the optimal channeldetectthe electrographic
tinguishability between the preictal and baseline records is eyset of seizures, the selection of channels other that the focal
dent in the best channel, while the preictal awake and baselgMannel for seizureprediction is consist with the findings
asleep records appear indistinguishable in the focus changg)m other investigators [26], [54], [55]. The manifestation
These results are similar fmatient Aresults. The best featureqf seizures is largely dependent on the location of the brain

for this patient was a curve length based feature. region(s) involved and the extent to which neuronal connec-
tions are damaged and interacting with normal brain tissue and
D. Patient D excitability. No two patients exhibit identical seizure patterns,

but generally seizures of individual patients exhibit similar

The expert epileptologist noted that the first cluster giatterns. This is an important finding, as it may give hints to
seizures was very focal, short, and did not spread outside of fiteysiological mechanisms underlying seizure generation.
left temporal lobe. The UEO for all seizures was exhibited in In patient D, the “best” channel for prediction in this time
the left temporal and left inferior temporal electrode contactsorizon was on the anterior surface of the ipsilateral temporal
Of note, the “best” channel for prediction in this time horizon imegion. This may be somehow related to the location and pat-
this patient was not contralateral to the epileptic focus. Rathern of spread of this subject’s seizure precursors and seizures
it was on the anterior surface of the ipsilateral temporal regiaiemselves. In this patient, seizures originated in the left infe-
The best feature for this patient was an energy based featureior temporal neocortex, where they stayed for a short time prior

The time for the classifier to identify a correct classificatioto spreading to mesial temporal and other regions. This discrete
ranged from 2.48 s (1 data point) to 5.74 min (139 data point®)cality and neocortical onset may have recruited other neurons
over the four patients. Generally, the shorter the time requireda different pattern than in other patients. This difference from
by the classifier to provide a true output, the better the perfdhe other patients also provides an interesting opportunity for
mance of the predictor. Since patient A only required one poifutrther study.
to declare a true positive, the average prediction performanceRelated to the above explanation, several investigators
for this patient exceeded the performance of the other three pave reported that there is “recruitment,” “entrainment,” or
tients. Patient C required the classifier to declare a true po$icreased coherence” between activity in both temporal lobes
tive consecutively for 5.74 min. Consequently, since only 8 migrior to seizure onset in temporal lobe epilepsy [26], [54], [55].
were available after three levels of feature extraction, a pred8ince these regions may be more “normal” than the epileptic
tion horizon of less than 3 min was possible with this patierfiocus in their baseline function, pre-ictal changes in these
The required block lengths were not known until the final stag@arts of the “epileptogenic zone” may appear more dramatic
of this research. These results show that approximately 20 neimmpared with baseline, and be more robust, than those that
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appear in the focus area minutes prior to seizure onset. Thisary for accurate seizure prediction. The results were further
is an important reason why the best regions for predictingfined by applying a PNN classifier to obtain a true assessment
seizures in this study were outside the of the ictal onset zookperformance. Using the PNN after the GA to assess perfor-
in 3 patients, as the method used for seizure prediction did moance provided a direct assessment of classification errors. In
look for absolute changes, but rather changes in the minusdkfour patients, classifier based performance did not select the
prior to seizure onset compared with baselines far removighture with the highest theoretical performance measure. Fur-
from seizures. Activity in the ictal onset zone is abnormal #lhermore, the feed forward approach did not result in a feature
baseline, and may not change from baseline as much sevemaitor representing multiple channels. Only one derived feature
minutes prior to seizure onset, as the more normal contralatesals selected to effect prediction in each case. These results may
regions that are entrained prior to seizures. The regions seledieddue, in part, to prediction being a more complex and ambi-
outside of the ictal onset zone, however, may not demonstréitais goal than detection, or as a product of the method. More
changes that occur much earlier, for example hours prior tesearch needs to be performed to determine exactly how much
seizure onset [2]. Itis also possible that our results may identid§ the multilevel feature extraction may be required for this ap-
important regions whose recruitment may be necessary pmication. This paper provides a good starting point for future
to seizure onset. Patient D, in whom the “best” channel wassearch in this area. Itis clear that channels other than the focus
on the same side but in a different region than the epileptibannel could predict seizures on a patient specific basis. What
focus, may have different physiology, due to the location of thig not clear, but worthy of further investigation, is methods other
epileptic focus. than unilateral combinations for selecting multiple features and
To date, acommon set of features across individuals that givdgnnels. Reducing the feature space as described in this study
adequate performance has not been found. To identify suchpaavided somewhat redundant features, but no complementarity
optimal feature set, an exhaustive search should be conductd#deatures and channels to predict seizures. Another disadvan-
however, if a suboptimal solution can be obtained from a rege of reducing the feature space is that computational con-
sonable feature set that yields prediction sufficient for clinicakraints may have limited the selection of optimal features.
application, such an exhaustive search may not be required. DuAt a minimum, this paper should help pave the way for im-
to the heterogeneity of epilepsy, we believe that it is likely thatroving currently available technology. As features researched
patient specific features will be found to be more useful fan this paper were chosen with an eye toward real-time imple-
seizure prediction over a large subset of patients. While the fementation, even this early implementation of a multichannel,
ture vector selected for each patient in this study is the bestltifeature method has the potential to be applied in prototype
possible solution among the possible solutions presented by ittmg@lantable devices for treating epilepsy. As this work matures,
general feature set, based on the application of classifier batieete are many important issues to consider, such as longer pre-
performance metrics, it is unlikely that our findings represent atiction horizons, longer duration and more continuous training
optimal solution. records, and other approaches to combining features, to name a
These results demonstrate the utility of a hybrid genetic afelv. We currently are investigating other methods for combining
classifier based feature selection process for selecting a reasrannels and features to address multivariate feature prediction
able set of features for predicting seizures. These results aral alternative classifier based performance metrics for the GA
promising, but may still far short of the performance requireobjective function. Ultimately, an automated approach to fea-
for an implantable device. The next step in this research istire and electrode contact selection is envisioned.
perform this analysis over a very large number of patients with The Vagal Nerve Stimulator, currently the only commercially
sufficient training and test data to determine if there is a teavailable technology used to control epileptic seizures, is an
dency for particular features and feature vectors to be selecte@psn loop system that provides adjunctive therapy by applying
optimal. A large number of similar results could provide inforstimulation on average for 30 s every 5 min, achieving less than
mation to limit the number of preselected features in the searth% efficacy. If a system could be developed to predict over
space, thereby providing more opportunity for examining p&0% of seizures with performance at the level reported in this
tential objective functions and GA techniques. Further itergaper, significant improvement would be realized.
tions of the technique may provide methods for “fusing”, or de-
riving other types of artificial features that take advantage of ACKNOWLEDGMENT
the best predictive aspects of each individual feature. In addi-
tion, looking to other areas of neuro or computational science The authors would like to express their gratitude to L. Finkel,
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