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Abstract—Epileptic seizure prediction has steadily evolved from
its conception in the 1970s, to proof-of-principle experiments in
the late 1980s and 1990s, to its current place as an area of vig-
orous, clinical and laboratory investigation. As a step toward prac-
tical implementation of this technology in humans, we present an
individualized method for selecting electroencephalogram (EEG)
features and electrode locations for seizure prediction focused on
precursors that occur within ten minutes of electrographic seizure
onset. This method applies an intelligent genetic search process to
EEG signals simultaneously collected from multiple intracranial
electrode contacts and multiple quantitative features derived from
these signals. The algorithm is trained on a series of baseline and
preseizure records and then validated on other, previously unseen
data using split sample validation techniques. The performance of
this method is demonstrated on multiday recordings obtained from
four patients implanted with intracranial electrodes during eval-
uation for epilepsy surgery. An average probability of prediction
(or block sensitivity) of 62.5% was achieved in this group, with an
average block false positive (FP) rate of 0.2775 FP predictions/h,
corresponding to 90.47% specificity. These findings are presented
as an example of a method for training, testing and validating a
seizure prediction system on data from individual patients. Given
the heterogeneity of epilepsy, it is likely that methods of this type
will be required to configure intelligent devices for treating epilepsy
to each individual’s neurophysiology prior to clinical deployment.

Index Terms—Epileptic seizure prediction, feature selection, ge-
netic algorithms, multiple channels and features.
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I. INTRODUCTION

I N humans, epilepsy is the second most common neu-
rological disorder, next to stroke, affecting 50 million

people worldwide. Of these individuals, 25% do not respond
to available therapies [1]. There is currently an explosion
of interest in predicting epileptic seizures from intracranial
electroencephalogram (IEEG) that has its roots in experimental
and theoretical work first published in the 1970s. Despite over
40 years of investigation into the physiology of epilepsy, it still
is not possible to explain how and over what time spontaneous
clinical seizures emerge from the relatively normal brain state
observed between them [2].

An exciting application of seizure prediction technology is
its potential for use in therapeutic epilepsy devices to trigger
intervention to prevent seizures before they begin. Since the
early 1970s, approximately 22 patents addressing epileptic
seizures have been filed. [3]–[18]. Most are open loop or
triggered open loop systems addressing stimulation for pre-
venting clinical seizures after seizure detection, while seven
claim seizure prediction. To date, the vagus nerve stimulator
Neurocybernetic Prosthesis is the only device that has been
FDA approved for implantation to treat partial onset seizures.
This device is an open loop system that operates blindly based
on the amplitude and duration of stimulation set by the medical
doctor [19]. More intelligent “closed loop” devices based upon
seizure detection or prediction are under development, as are
the appropriate algorithms to drive them. Fig. 1 provides bar
graphs depicting the number of patents related to epilepsy and
seizure prediction publications since the early 1970s addressing
seizure prediction.

Seizure prediction has been investigated by type to include
prediction by studying preictal features, prediction by fast detec-
tion, prediction by classification, and prediction by probability
estimation. Only research involving multiple channels and mul-
tiple features will be identified here, since a synergy of mul-
tiple channels and multiple feature prediction is the heart of
this work. The technical community’s exponentially growing
interest in epilepsy applications is clear. One reason for this
surge in interest over the past 5 years is the realization that
epilepsy surgery is unlikely to benefit more than a minority of
patients who cannot be adequately treated by medication, and
that progress in engineering and neuroscience is making thera-
peutic epilepsy devices more realizable.
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Fig. 1. (a) Bar graph of patent literature addressing epileptic seizures. (b) Bar
graph of journal publications.

Studies in seizure prediction vary widely in their theoretical
approaches to the problem, validation of results, and the amount
of data analyzed. Some relative weaknesses in this literature are
the lack of extensive testing on baseline data free from seizures,
the lack of technically rigorous validation and quantification
of algorithm performance in many studies, and the absence of
methods for distilling multichannel and multifeature data into its
most useful components for prediction. In the study presented,
preictal data segments and 40 h of baseline data were reserved
for testing to demonstrate the feasibility of the approach. Since
the research is limited ethically by the requirements for presur-
gical analysis, it is not possible to test the resultant feature on
data gathered months or years later from the same subject. As
new developments are pushing forward in this field, it is ex-
pected that in the future, the availability of implantable devices
will allow prospective studies on seizure prediction where an
individualized feature set can be validated over months or years
on the same subject.

Some studies, such as those of Petrosian, report seizure
prediction after analyzing one channel of electroencephalo-
gram (EEG) from an intracranial depth electrode in one patient
[20]–[22]. In these studies, using univariate techniques no
analysis of baseline data far removed from the seizure was
undertaken. A potential pitfall of conclusions based upon
such limited data is that quantitative changes identified prior
to seizure onset may not be specific to the preseizure period,

but may occur at other times as well, unrelated to epileptic
events. Validation of prediction algorithms on long, continuous
sets of clinical data, representing all states of awareness, is an
important part of more recent seizure prediction studies.

A number of promising quantitative features derived from the
EEG, each with different theoretical bases, have demonstrated
utility for seizure prediction. Iasemidis and Sackellares were
the first group to apply nonlinear dynamical techniques, par-
ticularly methods based upon the principal Lyapunov exponent
(PLE), for predicting seizures beginning in the late 1980s. This
group has demonstrated evidence of seizure precursors in a va-
riety of data sets, ranging from one to multiple channels and
epochs spanning minutes to hours [23]–[27]. In their research,
seizure onset prediction was reported from one to sixty minutes
prior to electrographic seizure onset in some data sets. Since
the mid 1990s, Lehnertz and Elgeret al. have expanded work
in nonlinear dynamics and seizure prediction to larger data sets,
greater numbers of patients, and a variety of epilepsy types, uti-
lizing parameters based upon the correlation dimension. They
report distinguishable preseizure patterns from 4.25 – 25 min-
utes prior to seizure onset [28]–[32] in some studies and evi-
dence of what is likely to be preseizure synchronization of ac-
tivity up to hours before seizure onset [33]. More recently, Le
Van Quyen and Baulacet al. have anticipated seizures using a
nonlinear parameter they call dynamical similarity [34]–[36].
Starting with just a few patients, this group has steadily ex-
panded the number of patients they have analyzed and the length
of data for each patient. Approximate prediction times agree
with those of the previous two groups, suggesting that they may
be observing similar or the same physiological phenomena in
different ways.

Using an approach based upon physiologic changes in the
EEG usually associated with epilepsy, such as spikes, slowing,
subclinical seizures and increased energy in the signal, our re-
search team postulated that seizure generation is composed of a
cascade of EEG events that develop over hours in temporal lobe
epilepsy. This conclusion was based upon findings that accumu-
lated signal energy, the rate of subclinical seizure-like bursts and
bursts of long-term energy all increased as seizures approached
[2]. In addition, we found patient-specific seizure onset and
pre-seizure patterns, suggesting that algorithms tailored to in-
dividual patients may offer some advantage for seizure predic-
tion. Again, prediction horizons were similar to those described
using nonlinear techniques, giving further credible evidence that
quantitative measures that appear to anticipate EEG onset of
seizures are unlikely to be artifact.

The successful “proof-of-principle” demonstration of a pre-
seizure period, validated by multiple research groups and tech-
niques has moved research in this area on to more in-depth
studies exploring the temporal and spatial characteristics of the
preseizure period, as well as its underlying mechanisms. Re-
cent collaborative discussions between groups working in this
area have identified several important related areas of investi-
gation. First, in order to be able to assess and compare seizure
prediction methods, acceptable performance metrics for these
types of studies must be agreed upon. In a recent published
work on seizure prediction [37], investigators in the field cau-
tioned against overstating performance results of seizure pre-
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Fig. 2. Schematic drawing of the hybrid genetic and classifier based feature selection process for epileptic seizure prediction.

diction algorithms, and advised that rigorous reporting of sen-
sitivity and specificity, among other performance criteria, are
necessary to validate the utility of different experimental ap-
proaches. Second, the need for analyzing long epochs of data
free from seizures was emphasized. Without this work, even-
tually leading to prospective, on-line trials of prediction algo-
rithms, the specificity of seizure precursors to the preictal period
will always remain suspect. Finally, great interest has been stim-
ulated by findings that seizure precursors appear to spread spa-
tially in the temporal lobe over time, even crossing to “entrain”
the contralateral temporal region as temporal lobe seizures ap-
proach. These factors, as well as the need for a method to tailor
algorithms to specific patients to achieve more optimized re-
sults prompted this study, in which we demonstrate that patient
specific combinations of multiple channels and multiple quan-
titative features can predict seizures with reasonable accuracy
after supervised training on appropriate preseizure, seizure and
baseline data.

II. M ETHODS

The objective of this study was to conduct a preliminary eval-
uation based on quantitative EEG analysis to determine if a ge-
netic search process is capable of identifying appropriate pa-
tient specific features and electrode sites for predicting seizures
from a large set of candidate features and intracranial electrode
recording sites. Numerous candidate features revealed in the
literature were considered, including those from time domain
analysis, frequency domain analysis, and nonlinear dynamics.
From these features, a subset was selected as potentially useful
for seizure prediction. The transformation of potentially rele-
vant features was approached heuristically, based on previous
research, expert visual assessment, and analysis of processed
signals. The genetic search process was applied to a portion of
available preictal and baseline data, while the remaining pre-
ictal records and 40 h of consecutive baseline data were used

to validate this approach. The features and electrode sites se-
lected were not meant to provide the best features for seizure
prediction, but to provide a potential solution on a patient-spe-
cific basis to the problem of predicting seizures in the minutes
prior to their onset on the IEEG (a 10-min “prediction horizon”).
This prediction horizon was chosen as a reasonable beginning
preseizure interval that would allow time for preemptive inter-
vention and straightforward validation. We also chose to study
quantitative IEEG features that could be related to neurophysi-
ology, and potentially the mechanisms underlying seizure gen-
eration.

To investigate whether a hybrid genetic- and classifier-based
feature selection process could reveal features capable of pre-
dicting epileptic seizures, after data were collected; we imple-
mented the steps shown in Fig. 2.

A. Data Generation

1) Subjects:Patients ranged in age from 21–53, had sus-
pected mesial temporal lobe epilepsy, were implanted with bi-
lateral amygdalo-hippocampal depth electrodes, subdural strip
electrodes, and were hospitalized for 3- to 14-days for con-
tinuous video-EEG monitoring during evaluation for epilepsy
surgery. Most of the patients whose data were analyzed were ta-
pered off of their antiepileptic drugs during the hospital stay to
induce seizures. Some or all of the intracranial electrode con-
tacts identified in Fig. 3 were monitored for each patient. Pa-
tients were selected consecutively from a database of patients
whose clinical and neurophysiological information were stored
for analysis.

2) Recording Procedures:We collected data on a standard
Nicolet 5000 video EEG acquisition system utilizing a 12-bit
analog-to-digital converter and sampled at a rate of 200 Hz with
bandpass filter settings of 0.1–100 Hz. Synchronization of video
and EEG was achieved and stored for offline analysis of clin-
ical onsets on SVHS video tapes. EEG data were downloaded to
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Fig. 3. Intracranial electrode contacts monitored for each patient. LT: Left
temporal lobe; LIF: left inferior frontal lobe; LAT: left anterior temporal lobe;
RT: right temporal lobe; RIF: right inferior frontal lobe; RAT: right anterior
temporal lobe; RIH: right inferior hippocampal formation.

compact disk for quantitative analysis. Sleep-wake cycles, med-
ication administration, and pertinent patient behaviors were re-
viewed and catalogued for each patient over the entire hospital
stay.

3) Data Selection:We analyzed four patients, comprising
46 preictal records, and 160 h of baseline data. An average of
70% of all available preictal lead seizures were used for training,
while testing included both the remaining 30% of available pre-
ictal records and artificially generated preseizure records. Lead
seizures were defined as seizures that were separated by at least
4 h from the end or beginning of another seizure. This distinc-
tion was made based upon evidence that seizures originating in
the temporal lobe may influence the IEEG within this period of
time [2]. Approximately 4 h of baseline data/patient were used
for training, while 40 h/patient were used for testing. We clipped
10-min data epochs before each seizure onset from all IEEG
channels from the original raw data during training to address
the short 10-min prediction horizon. Data epochs were consid-
ered “baselines” if they were spaced at least 4 h away from the
onset or ending of an electrographic seizure.

4) Artificially Generated Preseizure Records:Baseline data
comprised the overwhelming majority of data in this research. In
the available data set, there were an adequate number of records
for each patient for training and testing. However, the number
of preictal samples available for each patient ranged between
two and four records for training and two or three records for
testing. Artificially generated surrogate data sets were obtained
to increase the available test set for validation. The use of surro-
gate data is useful to validate results obtained from experimental
data when no theoretical basis is available.

A new form of jittering based on a uniform distribution with
an adaptive range was used to obtain the preictal surrogates.
Surrogate samples were obtained by randomly selecting data
from samples in the test set while maintaining the time index of
the preictal recording. Surrogate samples were chosen randomly
with replacement and were obtained from the uniform distribu-
tion of numbers between the range of values in the available
samples. Samples were randomly selected among data from the
same awareness state. Using this technique, the probability den-
sity function (PDF) was adaptive, depending on the data.

5) Terminology: In this research, an expert epileptologist vi-
sually reviewed the EEG for each seizure before quantitative
analyses of these data were conducted, and marked each seizure

at the following times and identified the corresponding loca-
tions: 1) thefocus channel: the spatial location of the earliest
seizure onset on IEEG, or if multiple channels were involved
at onset, the focus channel was the electrode measuring max-
imal onset; 2) the unequivocal electrographic onset (UEO): this
marked the time at which an EEG pattern typically associated
with seizures first became unquestionably clear and could be
identified independent of knowing a seizure followed; and 3)
the earliest electrographic change (EEC): this point in time was
found by identifying unequivocal electrical seizure onset on the
EEG and then moving backward in time to the point at which
the first clear, sustained change from the patient’s EEG base-
line prior to the seizure was detected. The unequivocal clinical
onset was marked when visual evidence indicating the presence
of a seizure became evident. In this research, the clinical onset
was identified by the expert epileptologist visually reviewing
the video tapes after the data were gathered.

B. Preprocessing

To minimize the common mode artifact while maintaining the
integrity of the signal, data were analyzed in a “bipolar mon-
tage,” in which the signals from spatially adjacent channels were
subtracted to obtain the differential mode signal. After removing
the common mode artifact, a 60-Hz digital notch filter was used
to remove line noise.

C. Processing

Processing utilized a three-step approach that included ex-
tracting first-level features from the raw data, extracting second-
level features from first-level features, and extracting third-level
features from second-level features. Candidate features were se-
lected based on criteria described in [38], expertise, observa-
tions, and our understanding of EEG signal characteristics. To
evaluate most features, it is important to maintain stationarity
of the data segment. Statistical tests reveal quasi-stationarity of
the EEG signal anywhere from 1 s (200 points) to several min-
utes [51]. Because seizures spread so quickly, a displacement as
small as possible that does not provide too much variability is
desired. We experimented with values ranging from 0.25 s to 5
s and observed that a displacement of 500 points (2.5 s) and the
window length to 2000 points (10 s) provided reasonable prop-
agation resolution of seizure precursors and the ability of mul-
tichannel analysis to effect prediction. These values were used
for the first-level feature extraction for all tests and agree with
the definition of stationarity found in the literature and prelim-
inary prediction results. For the second- and third-level feature
extraction a 24 point (1 min) window and a displacement of 1
point (2.5 s) were used.

Numerous features revealed in the literature were consid-
ered from time domain analysis, frequency domain analysis,
and nonlinear dynamics. From those features considered, a
set of features was selected as potentially useful for seizure
prediction that had computational requirements reasonable for
real-time implementation. While this list of features was not
considered to be exhaustive, it was chosen to be sufficient for
proof of principle for the multifeature method. This method
provides a structure based upon multiple quantitative features
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and multiple electrode sites that can be used to optimize
seizure prediction for a particular group of features. As noted
above, the transformation of potentially relevant features was
approached heuristically, based on previous research, expert
visual assessment and analysis of processed signals.

Selected features were also chosen to be computationally ef-
ficient and have potential for on-line implementation in low-
power, implantable environments. The six selected first-level
quantitative features derived from the intracranial EEG for this
analysis are described below.

1) First-Level Features:
a) Curve length: An in depth theoretical fractal dimen-

sion (FD) analysis was conducted by Esteller, yielding the
fractal dimension algorithm proposed by Katz as the most
promising for detecting unequivocal seizure onset on IEEG,
and in some cases even predicting it [39]. FD meets the
computational requirements for real time implementation;
however, the computational burden can be further reduced by
eliminating the logarithmic computations and analyzing the
curve length of the signal defined by the sum of the lengths
of the line segments between successive samples of a signal.
This feature was originally introduced by Olsen in [11] as the
“line length” prior to being described as the “curve length” in
[4]. The mathematical representation of the curve length in its
discrete form is

(1)

where is the running curve length of the time series ,
is the length of the sliding observation window expressed

in number of points, is the discrete time index, and is
the overlap. The curve length provides results nearly equivalent
to the Katz FD algorithm, while providing less computational
burden. The curve length is useful for observing amplitude and
frequency changes and dimensionality of the signal. In addition,
the fractal dimension adds nonlinearities and may yield negative
numbers not found in the curve length [40].

b) Energy: The accumulated energy (AE) provided
promising results for seizure prediction in all the patients
analyzed in [41] and in [2] using the focus channel. However,
unless AE is converted to a resetting AE, where it is initialized
blind to the seizure onset, it is not a practical feature for an
online pattern recognition system. Consequently, energy is
considered as a first-level feature and subsequent feature levels
are expected to provide predictive preseizure indicators. Let
the sequence be a preprocessed and fused input signal,
then the instantaneous energy of is given by . Con-
sidering that a sliding window is used, the energy of the signal
becomes the average power over the window mathematically
defined as

(2)

where
size of the sliding window expressed in number of
points;
set (the discrete time index).

The moving average of the energy defined above is with zero
overlap. If an overlap of points is allowed, then the average
energy becomes

(3)

where: is the average energy or moving average of the power
with points of overlap. An overlap of 1500 points was used in
this paper at the first level of feature extraction while an overlap
of 23 points was used at levels two and three.

c) Nonlinear Energy:Esteller [41], Zaveri [42], and
Gotman [43] all used Teager’s algorithm to analyze EEG
signals: Esteller with the intent to detect the seizure onset;
Zaveri to observe how the seizure propagates after the ictal
onset; and Gotman and Agarwal to provide indicators as to the
spectral content of the signal. This algorithm was presented by
Kaiser who was searching for a measure of energy proportional
to both signal amplitude and frequency [44]. This algorithm
is also recognized as “nonlinear energy” because it has also
shown to be useful for determining the instantaneous frequency
and amplitude envelope of AM-FM signals [45].

Zaveri used both Teager’s algorithm and the classical defini-
tion of energy to investigate propagation. He found Teager’s al-
gorithm to provide more favorable results. Gotman and Agarwal
found the nonlinear energy operator useful for providing an in-
dication as to the spectral content of the signal since it is sensi-
tive to spectral changes. For the input signal , in its discrete
form, the nonlinear energy (NE) operator is represented by

(4)

The NE is an instantaneous feature, such that it provides one
value for each value of original data. After the NL is obtained,
the feature is weighted with a Hanning window; then the mean
of the windowed data, , is taken over the desired sliding
window. After windowing, the average nonlinear energy is then

(5)

where:
average NE at time;
desired window length;
overlap in number of points;
discrete time index equal to

The algorithm is sensitive to both amplitude and frequency
changes, and is computationally efficient, and simple to calcu-
late.

d) Spectral Entropy (SE):The main objective of entropic
feature analysis is to quantify regularity and order in the signal.
Researchers focusing on prediction generally limit their anal-
ysis to the bipolar focus channel since this channel appears to
provide the most evidence regarding the seizure. However, a
preliminary analysis of the SE feature indicates that the focus
channel may present a constant exhibition of abnormal activity,
thereby compromising the analysis. This finding, presented in
[46], has prompted the investigation of all channels for pre-
diction indicators. This phenomenon also was observed in the
chaotic domain as measured by the PLE by Iasemidiset al.[47].
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This group found that the ipsilateral side of the brain carries dif-
ferent chaotic properties than the side contralateral to the focus.

In 1979, Powell and Percival introduced the concept of SE,
based on the peaks of the Fourier spectrum, as a measure of reg-
ularity [48]. In 1991, Inouyeet al.applied SE to surface EEG to
compare the surface EEG signals during rest with those during
mental arithmetic to analyze the degree of EEG regularity. Since
the spectrum of irregular EEG tends to be 1/f while the spec-
trum of rhythmic EEG has a peak in the power spectrum, In-
ouye claimed that the SE is a useful means for observing the
degree of EEG irregularity [49]. The information theory con-
cept of entropy introduced by the late Claude Shannon in 1948
is represented by

(6)

and

(7)

where is the expectation with respect to, is the self-in-
formation, and is the discrete probability distribution func-
tion (PDF). To find the SE, first the discrete-time form of the
spectrum is found from

(8)

and

(9)

where is the discrete Fourier transform,is the sampling
interval, and is the length of the sliding observation window.
The SE then is expressed as

(10)

where is the running SE of the time series , is the
length of the sliding observation window, andis the discrete
time index. This analysis complements visual EEG analysis by
an expert epileptologist and may provide further insight into the
underlying mechanisms of ictogenesis.

e) Sixth Power:The sixth power indicator calculates the
sixth power of the signal and we have found it to be empiri-
cally useful for observing small amplitude differences in the
IEEG, though no comparison with other exponents has been
undertaken. The sixth power was selected over lower powers
because it more effectively emphasized the amplitude changes
when compared with the lower powers and this was confirmed
over a preliminary evaluation using a sample of data from a
subset of patients in the database. Magnitude differences are in-
creased with the power of the signal, since small signals increase
less than signals with larger amplitudes. The sixth power is the
sixth power of each data point and is expressed as

(11)

where is the running sixth power of the time series ,
is the length of the sliding observation window, andis the

discrete time index.
f) Energy of the Wavelet Packets:In Esteller’s work, the

“absolute value of the fourth Daubechies (daub4) wavelet coef-
ficient averaged” provided promising results for detecting UEO
[41]. The decision to use the daub4 wavelet as a potential feature
was made by conducting a visual screening of sample IEEG sig-
nals to determine which mother wavelet would provide the best
separation between classes. In another experiment [50], Pet-
rosian selected the daub4 as the mother wavelet for his study
on predicting seizures using a recurrent neural network and the
high-pass and low-pass decompositions of the daub4 wavelet
because it has good localizing properties in the time and fre-
quency domains.

Using the daub4 wavelet, there are 2wavelet packets
and 2 combinations. We use a five-level decomposition,
yielding 32 wavelet packets. The wavelet packet decomposition
should be a useful feature since the EEG is a combination of the
numerous processes occurring in the brain; the results of the in-
dividual processes often are lost in the sum of all combinations.
The wavelet packet decomposition will decompose the signal
into 32 frequency bands between 0 and 100 Hz. Splitting the
signal into the separate bands should reveal hidden details not
evident in the original signal. The GA evaluates each wavelet
packet separately, and the best packet is selected from the 32
resultant outputs.

2) Second- and Third-Level Features:The second-level fea-
tures were selected after visually observing the focus channel
of a random sample of first-level feature plots and class condi-
tional PDFs representing seizures from five patients. The visual
analysis identified characteristics of the 10 min prior to UEO
that, if extracted from the first-level features, may provide pre-
diction indicators. The second- and third-level features found
useful from this screening include:

minimum maximum median
mean variance std. deviation
skewness kurtosis slope
integral derivative sum

All seizures and all patients did not necessarily exhibit poten-
tial prediction indicators identified above; however, all potential
second-level features are considered in this research for devel-
oping the objective feature vector.

D. Feature Selection

1) Genetic Feature Selection:A hybridization of genetic
and classifier based feature selection was employed in this
paper to address multiple feature and multiple channel analysis.
The first phase of the approach reduced the possible 25 872
features to one feature in each of the six first-level feature fam-
ilies. A “family” is defined here as any feature transformation
derived from that particular first-level feature. The feed forward
approach then was applied using the best feature in each family.

Genetic algorithms (GAs) are smart search processes inspired
by biological evolution [52]. Precisely, each possible solution
is represented by a coded string of bits or a “chromosome.” The
GA chromosome used in this paper is shown in Fig. 4. A novel
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Fig. 4. GA chromosome representing the binary representation used to select electrode contacts and features for evaluation.

adaptive chromosome is applied to identify reasonable features
to serve as inputs to the classifier based selection process.
Each chromosome is comprised of a string of bits or “genes”
whose content is called an “allele.” There are four “genes”
in this paper: 1) electrode contacts or channels; 2) first-level
features; 3) second-level features; and 4) third-level features.
The chromosome is represented by a string of bits as shown in
the figure. The number of bits required for the number of chan-
nels is patient dependent, while the other “genes” have fixed
bit lengths. The effectiveness or “fitness” of each individual
feature is measured using Fisher’s discriminant ratio (FDR) to
evaluate the preseizure and the no-preseizure classes. It is a
statistical rank method that determines feature effectiveness by
computing a value based on the mean and standard deviation of
the two classes compared. FDR is an ideal measure to use when
classes are Gaussian and uncorrelated [38] and was selected
after it was determined that it could adequately describe the de-
rived feature combinations. The objective function could have
been any quantitative or qualitative measure that adequately
described the data. FDR was chosen as a proof-of-concept. The
FDR between two data sets is found as follows:

(12)

where
FDR for the th feature;
number of classes (two in the present research);
mean of the th feature for theth class;
is the standard deviation of theth feature for the
th class.

First, the feature was calculated for each preseizure training
record and was compared with each baseline training record and

the average FDR values served as the objective value for each
channel/feature combination.

After the “fitness” was calculated for each solution, anew
solution setwas pseudorandomly generated from the original set
with higher fitness solutions given preference. The evolutionary
concept was mimicked since the less fit solutions did not survive
the future generations. The process was repeated until a solution
dominated the population. Ideally, the dominant solution was
near the globally optimal solution.

The resultant chromosomes were weighted based on their
fitness values, and theroulette wheel selection (RWS)method
was used to select surviving features. The probability of
crossoverremained constant at 70%, and the probability of
mutationat 10%. A constrained crossover approach permitted
crossover within each gene, and prohibited crossover across
genes. That is, for each iteration, only one element within the
first, third, or fourth genes could crossover at a time. Thestop
criterion was set to the maximum number of generations which
was set equal to the population size. The population size was
equal to three times the length of the chromosome. Therefore,
a larger chromosome would mean there would be more feature
combinations to try, and the population size and number of
maximum generations would be increased to compensate. The
maximum number of generations could be increased without
significant loss in computation time since the GA was designed
to remember values computed in the past. Therefore, the GA
had the tendency to go from generation to generation rather
quickly toward the final generations.

2) Classifier Based Feature Selection:The forward sequen-
tial approach was applied to the surviving features found in
the first feature selection phase. The GA selected features in
each domain were tested with a probabilistic neural network
(PNN) to obtain the best performing feature to which the for-
ward sequential approach would be applied to obtain the best
performing feature vector. The following figure of merit (FOM)
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TABLE I
FINAL FEATURESSELECTED AND PERFORMANCE FORFEATURE SELECTION

was developed to determine surviving features to which the for-
ward sequential approach would be applied

(13)

where
TP number of true positives or correct “preseizure” clas-

sifications;
FN number of false negatives or incorrect “preseizure”

classifications;
TN number of of true negatives or correct “no preseizure”

classifications;
FP number of false positives or incorrect “no preseizure”

classifications.
The FOM is designed to select surviving feature combina-

tions based on performance of the training set. The FOM is em-
pirically derived and involves intermediary judgments in addi-
tion to the quantitative decision. Since the number of baselines
and seizures varies among patients, these proportions are taken
into account in the FOM. The FOM yields values ranging from

1 to 1, with the best values being those closest to “1”. Correct
preseizure classifications are equally weighted, while the “no
preseizure” or baseline classifications are equally weighted, but
given less weight than the preictal classifications.

A true positive (TP) is declared in the training data if the
longest data segment where the classifier correctly classified
the preictal data stream is greater than or equal to the average
length of all correct preictal classifications and all incorrect
baseline classifications in the training records. A false negative
(FN) is declared in the training data if the longest data segment
where the classifier correctly classified the preictal data stream
is less than the length of the shortest possible TP. The number
of training records used to calculate the average value is equal
to the number of preictal and baseline training records used.
A record is considered a false positive (FP) if the longest data
segment where the classifier incorrectly classified the baseline

data stream is greater than or equal to the length of a true
positive (TP) record. A record is considered a true negative
(TN) if the classifier output correctly identifies the record
as a baseline data segment. The integration of decisions [53]
concept is applied for defining the classification lengths for the
test data. Precisely, a TP is declared if the record is 0.9 times
the length of the shortest TP in the training data.

E. Classification

At the classifier stage, the probabilistic neural network (PNN)
classifier assigns the output of the feature vector into the class
“preseizure” or “no-preseizure.” The PNN is used in this paper
since the decision regions observed in the one and two dimen-
sional scatter plots are often nonlinear and not explicitly de-
fined. We expect the decision regions to ultimately converge to
the optimal decision regions for the selected feature vector by
using the PNN.

Split sample or “hold-out” techniques are used for the val-
idation stage. To use split-sample validation, a representative
sample (test set) of the data is randomly selected and not used
in any way during training. After training, the network is run on
the test set, which represented approximately 30% of available
data in this study.

III. RESULTS

Table I provides a summary of the results obtained in this
study. An average probability of prediction or block sensitivity
of 62.5% was achieved with an average block false positive
rate of 0.2775 FP predictions/h, corresponding to 90.47%
specificity. The focus channel, historically used for evaluation
in seizure-prediction research, was not selected as the best
channel for predicting seizures in any patient. In all patients a
single third-level feature was determined to be the final feature
“vector” necessary to predict seizures. In two patients, the
analysis selected an energy-based feature to predict seizures
while two other patients yielded a curve length-based feature.
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Fig. 5. Electrode contact regions where focus channels and selected prediction
channels are located.

A prediction could be declared an average of 3.45 min before
UEO. Each patient’s results are described separately. A picto-
rial representation of the results for each patient is shown in
Fig. 5

The processing time required for the implementation of
the entire methodology over a 10 minute data segment using
MATLAB ® 5.3 on a stand-alone 450-MHz Pentium III ranged
from 3.41 – 3.89 s, averaging 3.56 s for all four patients
analyzed. This processing included the bipolar analysis, notch
filtering, three levels of processing, and classification. This
processing time is far below that required for real time im-
plementation. The processing time reported here is the time
required after off-line selection of the final feature vector for
prediction.

Fig. 6 provides the results from the output of the classifier for
the preictal and baseline test data for this patient. Three preictal
test records were available and five surrogate preictal records
were created for this patient. One feature data point was required
to predict a seizure for this patient. The block length required for
prediction varied from patient to patient and was dependent on
the training data outputs.

A. Patient A

The epileptologist found that this patient’s seizures all arose
from the right hippocampus, in the more posterior contacts (RT5
and RT6). Most seizures began with 3–7 s of generalized flat-
tening and loss of background, followed by slow, semi-regular
rhythmic delta ( 4 Hz) activity over the right temporal re-
gion, particularly in the focus contacts. The rhythmic activity

(a)

(b)

Fig. 6. Classifier output and normalized signals for patient A. (a) Plots
representing the preictal test data, up to 8 min before UEO. Three preictal test
records were available and five surrogate preictal records were created for this
patient. One feature data point was required to predict a seizure for this patient.
The block length required for prediction varied from patient to patient and was
dependent on the training data outputs. The “0” and “1” values on they axis
indicate a baseline and preictal classification, respectively. (b) Baseline test
data plots. No FPs were reported for this patient’s test data.

was followed by the onset of 20-25 Hz activity in the focus re-
gion, then rhythmic spiking. One seizure was followed by late
revival of this activity in the left temporal region, but this was
after the right temporal seizure had mostly subsided. Finally, an
interesting result is that the “best” channel for prediction for this
patient was actually contralateral (on the other side of the brain)
to the focus channel, while the best feature was a curve length
based feature.

B. Patient B

Patient B is the only patient of the four patients who was clas-
sified as having independent, bilateral seizure onsets. Three of
this patient’s seizures arose from left temporal and left ante-
rior temporal electrodes, and one arose from the right temporal
electrodes. The best channel for seizure prediction was actually
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contralateral to the left temporal lobe where three of the four
seizures originated. The best feature for this patient was an en-
ergy based feature.

C. Patient C

Patient C’s seizures all seemed to begin on the right side,
somewhere between the right temporal and inferior frontal re-
gion. The epileptologist suspected that the electrodes may not
have been positioned directly in the ictal onset zone, because the
EEC associated with seizures was not well localized to a single
or distinct small group of electrodes. The pattern from seizure
to seizure was consistent, even when clusters of seizures oc-
curred. Long periods of left temporal spiking stopped and there
was suppression of the EEG background of a second or two,
followed by a burst of higher amplitude, rhythmic theta (4–7.5
Hz for approximately 5-s durations) activity over the RT2 and
RIF 2–4 electrodes. In most seizures this was followed by a few
seconds of focal beta activity in the posterior hippocampal elec-
trodes on the right (RT4–6) then rhythmic activity that spread
rapidly throughout the right temporal, inferior frontal and infe-
rior temporal areas at the time of EEC. It was difficult to select
an ictal onset zone (IOZ) channel for this patient. It was esti-
mated to be somewhere between the RT2 or RT4–6, RIF2–4 and
RIT2–4 electrodes. A volume of tissue in this region was likely
responsible for these findings.

Patient Cyielded a best channel contralateral to the focus.
After the third level of feature extraction is achieved, clear dis-
tinguishability between the preictal and baseline records is evi-
dent in the best channel, while the preictal awake and baseline
asleep records appear indistinguishable in the focus channel.
These results are similar topatient Aresults. The best feature
for this patient was a curve length based feature.

D. Patient D

The expert epileptologist noted that the first cluster of
seizures was very focal, short, and did not spread outside of the
left temporal lobe. The UEO for all seizures was exhibited in
the left temporal and left inferior temporal electrode contacts.
Of note, the “best” channel for prediction in this time horizon in
this patient was not contralateral to the epileptic focus. Rather
it was on the anterior surface of the ipsilateral temporal region.
The best feature for this patient was an energy based feature.

The time for the classifier to identify a correct classification
ranged from 2.48 s (1 data point) to 5.74 min (139 data points)
over the four patients. Generally, the shorter the time required
by the classifier to provide a true output, the better the perfor-
mance of the predictor. Since patient A only required one point
to declare a true positive, the average prediction performance
for this patient exceeded the performance of the other three pa-
tients. Patient C required the classifier to declare a true posi-
tive consecutively for 5.74 min. Consequently, since only 8 min
were available after three levels of feature extraction, a predic-
tion horizon of less than 3 min was possible with this patient.
The required block lengths were not known until the final stages
of this research. These results show that approximately 20 min

before UEO should be evaluated to address the ten minute pre-
diction horizon. The prediction horizon addressed in this man-
uscript was minutes before UEO.

IV. CONCLUSION

All implanted IEEG electrode contacts monitored were used
in this study. In all four patients the electrode contact most
closely associated with the majority of seizures was not selected
as the “best” overall channel. The bilateral patient results (pa-
tient C) yielded a channel associated with the UEO for pre-
dicting 25% of this patient’s seizures. The method presented
looks not for absolute preseizure changes, but rather changes in
the preseizure EEG compared with remote baseline EEG. Since
the EEG in the epileptic focus is abnormal at baseline, it is pos-
sible that the change from baseline is smaller minutes prior to
seizure onset than the change from a “normal” brain region that
is “entrained” just prior to seizure onset. In this way it is still
possible that the absolute preseizure change may be greatest in
the epileptic focus, but the relative change from baseline may
be greatest elsewhere. The fact that the “best” channel for pre-
diction in three of the four patients was actually contralateral to
the focus channel may indicate that the cascade of events that
leads to seizure onset may somehow require activation of con-
tralateral and/or deep structures (e.g., thalamus) before actual
seizure initiation can occur.

The heterogeneity of epilepsy makes identification of a neu-
rological origin of seizures difficult to generalize. Although the
focal channel is the optimal channel todetectthe electrographic
onset of seizures, the selection of channels other that the focal
channel for seizureprediction is consist with the findings
from other investigators [26], [54], [55]. The manifestation
of seizures is largely dependent on the location of the brain
region(s) involved and the extent to which neuronal connec-
tions are damaged and interacting with normal brain tissue and
excitability. No two patients exhibit identical seizure patterns,
but generally seizures of individual patients exhibit similar
patterns. This is an important finding, as it may give hints to
physiological mechanisms underlying seizure generation.

In patient D, the “best” channel for prediction in this time
horizon was on the anterior surface of the ipsilateral temporal
region. This may be somehow related to the location and pat-
tern of spread of this subject’s seizure precursors and seizures
themselves. In this patient, seizures originated in the left infe-
rior temporal neocortex, where they stayed for a short time prior
to spreading to mesial temporal and other regions. This discrete
focality and neocortical onset may have recruited other neurons
in a different pattern than in other patients. This difference from
the other patients also provides an interesting opportunity for
further study.

Related to the above explanation, several investigators
have reported that there is “recruitment,” “entrainment,” or
“increased coherence” between activity in both temporal lobes
prior to seizure onset in temporal lobe epilepsy [26], [54], [55].
Since these regions may be more “normal” than the epileptic
focus in their baseline function, pre-ictal changes in these
parts of the “epileptogenic zone” may appear more dramatic
compared with baseline, and be more robust, than those that
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appear in the focus area minutes prior to seizure onset. This
is an important reason why the best regions for predicting
seizures in this study were outside the of the ictal onset zone
in 3 patients, as the method used for seizure prediction did not
look for absolute changes, but rather changes in the minutes
prior to seizure onset compared with baselines far removed
from seizures. Activity in the ictal onset zone is abnormal at
baseline, and may not change from baseline as much several
minutes prior to seizure onset, as the more normal contralateral
regions that are entrained prior to seizures. The regions selected
outside of the ictal onset zone, however, may not demonstrate
changes that occur much earlier, for example hours prior to
seizure onset [2]. It is also possible that our results may identify
important regions whose recruitment may be necessary prior
to seizure onset. Patient D, in whom the “best” channel was
on the same side but in a different region than the epileptic
focus, may have different physiology, due to the location of the
epileptic focus.

To date, a common set of features across individuals that gives
adequate performance has not been found. To identify such an
optimal feature set, an exhaustive search should be conducted;
however, if a suboptimal solution can be obtained from a rea-
sonable feature set that yields prediction sufficient for clinical
application, such an exhaustive search may not be required. Due
to the heterogeneity of epilepsy, we believe that it is likely that
patient specific features will be found to be more useful for
seizure prediction over a large subset of patients. While the fea-
ture vector selected for each patient in this study is the best
possible solution among the possible solutions presented by the
general feature set, based on the application of classifier based
performance metrics, it is unlikely that our findings represent an
optimal solution.

These results demonstrate the utility of a hybrid genetic and
classifier based feature selection process for selecting a reason-
able set of features for predicting seizures. These results are
promising, but may still far short of the performance required
for an implantable device. The next step in this research is to
perform this analysis over a very large number of patients with
sufficient training and test data to determine if there is a ten-
dency for particular features and feature vectors to be selected as
optimal. A large number of similar results could provide infor-
mation to limit the number of preselected features in the search
space, thereby providing more opportunity for examining po-
tential objective functions and GA techniques. Further itera-
tions of the technique may provide methods for “fusing”, or de-
riving other types of artificial features that take advantage of
the best predictive aspects of each individual feature. In addi-
tion, looking to other areas of neuro or computational science
for other features to be placed into the search space may be of
great utility. These features might also include some promising
features from nonlinear dynamics found useful for prediction by
other groups, as improvements in their computational efficiency
allows.

The results presented here emphasize the “short-term” pre-
diction horizon, minutes before the UEO of the seizure. The
features selected by the GA were different for each patient an-
alyzed, suggesting that a patient specific system may be nec-

essary for accurate seizure prediction. The results were further
refined by applying a PNN classifier to obtain a true assessment
of performance. Using the PNN after the GA to assess perfor-
mance provided a direct assessment of classification errors. In
all four patients, classifier based performance did not select the
feature with the highest theoretical performance measure. Fur-
thermore, the feed forward approach did not result in a feature
vector representing multiple channels. Only one derived feature
was selected to effect prediction in each case. These results may
be due, in part, to prediction being a more complex and ambi-
tious goal than detection, or as a product of the method. More
research needs to be performed to determine exactly how much
of the multilevel feature extraction may be required for this ap-
plication. This paper provides a good starting point for future
research in this area. It is clear that channels other than the focus
channel could predict seizures on a patient specific basis. What
is not clear, but worthy of further investigation, is methods other
than unilateral combinations for selecting multiple features and
channels. Reducing the feature space as described in this study
provided somewhat redundant features, but no complementarity
of features and channels to predict seizures. Another disadvan-
tage of reducing the feature space is that computational con-
straints may have limited the selection of optimal features.

At a minimum, this paper should help pave the way for im-
proving currently available technology. As features researched
in this paper were chosen with an eye toward real-time imple-
mentation, even this early implementation of a multichannel,
multifeature method has the potential to be applied in prototype
implantable devices for treating epilepsy. As this work matures,
there are many important issues to consider, such as longer pre-
diction horizons, longer duration and more continuous training
records, and other approaches to combining features, to name a
few. We currently are investigating other methods for combining
channels and features to address multivariate feature prediction
and alternative classifier based performance metrics for the GA
objective function. Ultimately, an automated approach to fea-
ture and electrode contact selection is envisioned.

The Vagal Nerve Stimulator, currently the only commercially
available technology used to control epileptic seizures, is an
open loop system that provides adjunctive therapy by applying
stimulation on average for 30 s every 5 min, achieving less than
41% efficacy. If a system could be developed to predict over
60% of seizures with performance at the level reported in this
paper, significant improvement would be realized.
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