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Abstract—The fractal dimension of a waveform represents a
powerful tool for transient detection. In particular, in analysis of
electroencephalograms and electrocardiograms, this feature has
been used to identify and distinguish specific states of physiologic
function. A variety of algorithms are available for the computation
of fractal dimension. In this study, the most common methods of
estimating the fractal dimension of biomedical signals directly
in the time domain (considering the time series as a geometric
object) are analyzed and compared. The analysis is performed
over both synthetic data and intracranial electroencephalogram
data recorded during presurgical evaluation of individuals
with epileptic seizures. The advantages and drawbacks of each
technique are highlighted. The effects of window size, number
of overlapping points, and signal-to-noise ratio are evaluated for
each method. This study demonstrates that a careful selection of
fractal dimension algorithm is required for specific applications.

Index Terms—Fractal dimension, fractal dimension algorithm
comparison, transient detection.

I. INTRODUCTION

T HE term “fractal dimension” refers to a noninteger or frac-
tional dimension of a geometric object. Fractal dimen-

sion (FD) analysis is frequently used in biomedical signal pro-
cessing, including EEG analysis [1]–[8]. Applications of FD in
this setting include two types of approaches, those in the time
domain and the ones in the phase space domain. The former
approaches estimate the FD directly in the time domain or orig-
inal waveform domain, where the waveform or original signal is
considered a geometric figure. Phase space approaches estimate
the FD of an attractor in state–space domain. Calculating the
FD of waveforms is useful for transient detection, with the ad-
ditional advantage of fast computation. It consists of estimating
the dimension of a time-varying signal (waveform) directly in
the time domain, which allows significant savings in program
run-time. The phase space representation of a nonlinear, au-
tonomous, dissipative system can contain one or more attractors
with generally fractional dimension. This attractor dimension is
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invariant, even under different initial conditions. This explains
why the FD of attractors has been used widely for system char-
acterization. However, estimating the FD of these attractors in-
volves a large computational burden. An embedding system has
to be constructed from the original time-domain signal, based on
the method of delays [9], [10], and the attractor of this system
has to be untangled before estimating its FD. At present, the al-
gorithms developed to assess the FD of the attractor are very
slow, due to a considerable requirement for preprocessing. The
most popular method for doing this is the algorithm from Grass-
berger and Proccacia [11], which estimates the correlation di-
mension ( ) or FD of the attractor. Many other algorithms
for estimating the FD of the attractor have been proposed [12],
but their computational requirements are expensive. Three of
the most prominent methods for computing the FD of a wave-
form [1], [2], [5] have been applied to the analysis of EEG,
other biomedical signals, and a variety of engineering systems.
Though our study focuses on experimental signals derived from
intracranial EEG (IEEG), its results are widely applicable to any
type of signal.

II. FRACTAL DIMENSION ALGORITHMS ANALYZED

A. Higuchi’s Algorithm

Consider the time sequence to be an-
alyzed. Construct new time series as

for

where indicates the initial time value, indicates the discrete
time interval between points (delay), and means integer part
of . For each of the curves or time series constructed, the
average length is computed as

(1)
where is the total length of the data sequenceand

is a normalization factor. An average length
is computed for all time series having the same delay (or scale)

, as the mean of the lengths for .
This procedure is repeated for eachranging from 1 to ,
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Fig. 1. Weierstrauss cosine function for FDs equal to 1.5 and 1.2.

yielding an sum of average lengths for each as indicated
in (2)

(2)

The total average length for scale, , is proportional to
, where is the FD by Higuchi’s method. In the curve of

versus , the slope of the least squares linear
best fit is the estimate of the fractal dimension [1].

B. Katz’s Algorithm

In contrast to Petrosian’s method (to be described in Sec-
tion II-C), Katz’s FD calculation [2] is slightly slower, but it
is derived directly from the waveform, eliminating the prepro-
cessing step of creating a binary sequence. The FD of a curve
can be defined as

(3)

where is the total length of the curve or sum of distances
between successive points, andis the diameter estimated as the
distance between the first point of the sequence and the point of
the sequence that provides the farthest distance. Mathematically,

can be expressed as

distance (4)

Considering the distance between each point of the sequence
and the first, point is the one that maximizes the distance with
respect to the first point.

The FD compares the actual number of units that compose
a curve with the minimum number of units required to repro-
duce a pattern of the same spatial extent. FDs computed in this
fashion depend upon the measurement units used. If the units
are different, then so are the FDs. Katz’s approach solves this

problem by creating a general unit or yardstick: the average step
or average distance between successive points,. Normalizing
distances in (3) by this average results in

(5)

Defining as the number of steps in the curve, then ,
and (5) can be written as

(6)

Expression (6) summarizes Katz’s approach to calculate the FD
of a waveform.

C. Petrosian’s Algorithm

Petrosian uses a quick estimate of the FD [5]. However, this
estimate is really the FD of a binary sequence as originally de-
fined by Katz [2]. Since waveforms are analog signals, a binary
signal is derived following four different methods denoted with
the letters , , , and , in [5], respectively. A fifth method is
also included in [5], but it is the same aswith an adjustable pa-
rameter. Method generates the binary sequence by assigning
ones when the waveform value if greater than the mean of the
data window under consideration, and zero when it is lower than
the mean. In method, the binary sequence is formed by as-
signing one each time the waveform value is outside the band of
the mean plus and minus the standard deviation, and assigning
zero otherwise. Methodconstructs the binary sequence by sub-
tracting consecutive samples on the waveform record. From this
sequence of subtractions, the binary sequence is created by as-
signing or depending on whether the result of the sub-
traction is positive or negative respectively. In method, the
differences between consecutive waveform values are given the
value of one or zero depending on whether their difference ex-
ceeds or not a standard deviation magnitude. A variation of this
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Fig. 2. FD by each method versus theoretical FD of synthetic signal for different number of points (N ). (a) By Higuchi’s method,+++N = 150, - - -N = 250,
. . .N = 500, N = 750, -.-N = 1000, N = 2000; (b) By Katz’s method, -.-.-N = 150, N = 250, . . .N = 500, N = 750,
- - - N = 1000,+++N = 2000; (c) By Petrosian’s method “c,” N = 150, - - - N = 250, -.-.-N = 500, N = 750,+++N = 1000, . . .
= 2000; and (d) By Petrosian’s method “d,” N = 150, - - - N = 250, -.-.-N = 500, N = 750,+++N = 1000, . . .N = 2000.

method consists of utilizing ana priori chosen threshold mag-
nitude different from the standard deviation, is denoted by Pet-
rosian as method. The FD of any of the previous binary se-
quences is then computed as

(7)

where is the length of the sequence (number of points), and
- - is the number of sign changes (number of dissimilar pairs)
in the binary sequence generated.

III. M ETHODS

We tested these algorithms with respect to reliability, ef-
ficiency (computational time), noise sensitivity, and record

length. Each of the algorithms described above was imple-
mented in MATLAB and tested on synthetic signals with known
FD, and on experimental data derived from intracranial EEG
signals of epileptic patients.

Synthetic data were produced using the deterministic Weier-
strauss cosine function [13], given as follows:

(8)

where , and we fixed and . The fractal
dimension of this signal is given by equals . A set of
100 sequences, each with different FD, was generated using (8).
Fig. 1 shows two of the sequences generated.

The FD of the experimental signals was computed using a
sliding window approach. A total of 16 seizure records from
epileptic patients was analyzed. As the sliding window moved
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Fig. 3. Effect of noise on the FD estimate (SNR= 10 db) by (a) Higuchi’s; (b) Katz’s; (c) Petrosian’s method “c”; and Petrosian’s method “d.” (Symbols for
each window length are the same used on Fig. 2.)

over the data, the FD was computed for each set of points that
lay inside the window. A sliding window of 1.25 s was used to
promote stationarity in each segment analyzed, considering that
our EEGs were sampled at 200 Hz; the sliding window was 250
points. An overlap of 0.45 s or equivalently a displacement of
160 points was used.

IV. RESULTS

FDs of synthetic signals ranged from 1.001 to 1.991.
Fig. 2(a)–(d) shows the FD values obtained by each of the anal-
ysis methods plotted against the known FDs of the synthetic
data. Note that perfect reproduction of the known FDs should
yield a straight line of slope equal to one. Higuchi’s algorithm
[Fig. 2(a)] provides the most accurate estimates of the FD.
Katz’s method [Fig. 2(b)] is less linear. Its calculated FDs are

exponentially related to the known FDs. Petrosian’s algorithm
[Fig. 2(c) and (d)] is relatively linear and demonstrated the least
dynamic range for the estimated FD (approximately between
1.01 and 1.055). Similar results are obtained for the other
variations of Petrosian’s method described in Section II. The
FD estimates with Higuchi’s method improve as the window
length increases. No window length effect is observed in the
range of 150 to 2000 points for Petrosian’s method. In Katz’s
method the window length affects the dynamic range of the
estimated FD yielding a dynamic range between 1 and 1.2 for
window lengths greater than 750 points, and between 1 and 1.3
for window lengths lower than 250 points. The curve that is
closest to the ideal straight line of slope one was obtained for a
window size of 250 points.

The FD results obtained with experimental EEG data reveal
that even though Higuchi’s method is the most accurate of
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Fig. 4. FD of EEG signals for (a) Higuchi’s method, (b) Katz’s method, (c) Petrosian’s method “c,” and (d) Petrosian’s method “d.”

the three; Katz’s method yielded the most consistent results
regarding discrimination between states of brain function.
Specifically, when considering the distinction between the
period before an epileptic seizure (preictal period) and the
seizure period (ictal period), Katz’s technique provided the
most repeatable and discriminative results between preictal and
ictal phases over 16 EEG records analyzed [7], [8].

Fig. 3(a)–(d) presents the FD estimated for each method
when the synthetic signal is contaminated with white noise,
yielding a signal to noise ratio (SNR) of 10 db. Higuchi’s
and Petrosian’s algorithm with binary sequence established
by method “ ” [Fig. 3(a) and (c)] are severely affected by
this level of noise. However, Katz’s method is influenced by
the noise, but not as much as the other methods, and it turns
out that its dynamic range is enhanced with the presence of
noise. Another interesting observation is that when Petrosian’s
algorithm is used with the binary sequence obtained by the
other preprocessing methods, , , and proposed in [5], the
results present even less sensitivity to the noise than Katz’s; but
still maintain their reduced dynamic range. When comparing

Fig. 2(c) and (d) with Fig. 3(c) and (d), respectively, it becomes
clear that the noise sensitivity in Petrosian’s method depends
highly on the type of binary sequence used. Furthermore, all
the binary sequences proposed by Petrosian except the one in

assign the digital value of one, once a threshold or threshold
band is exceeded; while the binary sequence defined in method

changes from one to zero every time there is a slope sign
change disregarding the magnitude of the slope sign change.
Logically, when white noise is added to the synthetic signal,
the variability of the signal increases and slope sign changes
occur more frequently, creating a high sensitivity to the noise.
Analyzes for different SNRs demonstrated that Higuchi’s and
Petrosian’s algorithm when used with the slope sign change
binary sequence in method, deteriorate for low SNRs; while
Katz’s algorithm and Petrosian’s method when used with the
threshold-based binary sequences are the most immune to the
noise effects.

Fig. 4(a)–(d) presents as example four records analyzed
from one epileptic patient by the three FD methods introduced
earlier. Equivalent results were obtained for all the records
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TABLE I
COMPARISON OFCOMPUTATIONAL BURDEN AND RUN-TIME

studied. Time labeled as zero corresponds to the beginning of
the ictal period. The better performance of Katz’s algorithm
over Higuchi’s can be explained by two reasons. One is the
exponential characteristic observed in Fig. 2(b). Because of
this exponential relationship to known FDs, Katz’s method
emphasizes the higher FDs, which presumably contribute the
most to discriminating different states of brain function with
respect to seizures. In this case, it appears that the true value of
the FD is not as important as the changes in FD associated with
different brain states, a feature that may be desirable in other
systems or applications. The other reason can be explained from
Fig. 3(a) where the high noise sensitivity of Higuchi’s method
is evident. Note that the function represented in this figure
has lost the one-to-one relationship between the estimated and
the real FD of the synthetic signal, due to the effect of noise
added. For window lengths greater than 150 points, most of the
estimated FD values are the image of two different FD values.
This can explain the low distinguishability of the FD over time
in Fig. 4(a), conjecturing that different EEG segments with
different FD values, in the presence of noise, can yield the same
FD estimate when Higuchi’s method is used. In Petrosian’s
method, the slope-sign-change binary sequence yielded the
least distinguishability between the preictal (preseizure) and
ictal (seizure) stages as is observed in Fig. 4(c). On the other
hand, the threshold band-based binary sequence as defined
by method “ ” yielded the most distinguishability between
the preictal and ictal stages [Fig. 4(d)] among all the other
threshold based binary sequences defined by Petrosian.

A comparison of computational burden between the methods
for different window lengths is presented on Table I. Of note is
that the algorithms were reprogrammed for faster running pro-
ducing an enhancement with respect to the results presented in
[14]. Petrosian’s algorithm was evaluated with all its different
binary sequences, but only the one described in method “” is
presented in Table I, since it is the one that exhibit the greatest
distinguishability between the pre-seizure and seizure stages.
When Petrosian’s algorithm was used with the other binary
sequences proposed, the running times and the floating point
operations were smaller. Katz method has the highest number
of floating point operations (flops), around twice the flops of
Higuchi’s and one fourth more than Petrosian’s method “”;
however, it is computationally faster for small data records.
For records of 2000 points length, run-times for Katz’s and
Higuchi’s are in the same order of magnitude, and Petrosian’s
with method “ ” is faster. If the record length is increased
further to 8000 points, then Higuchi’s algorithm becomes
slightly faster than Petrosian’s and faster than Katz’s.

With respect to the fastest method (Petrosian’s for window
lengths between 500 and 4000 points), Katz’s lags by 35.2%
and Higuchi’s by 66.4%, when using a window length of 500
points. This is not a problem since the total record length ana-
lyzed is 12 min long; therefore, all three methods can be run in
real time. If the window length increases up to 8000 points, then
Higuchi’s performance improves and becomes 3.7% faster than
Petrosian’s.

V. CONCLUSION

Our results show that Katz’s algorithm is the most consis-
tent method for discrimination of epileptic states from the IEEG,
likely due to its exponential transformation of FD values and rel-
ative insensitivity to noise. Higuchi’s method, however, yields
a more accurate estimation of signal FD, when tested on syn-
thetic data, but is more sensitive to noise. Petrosian’s method
performance depends on the type of binary sequence used. If
a binary sequence based on slope-sign-changes is utilized then
this method becomes less suitable for analog signal analysis,
given its high sensitivity to noise and its poor reproducibility of
dynamic range of synthetic FDs. This study demonstrates that a
careful selection of FD algorithm is required for specific appli-
cations. Factors such as knowledge of possible FD range, noise
level, and window length must be considered to achieve the best
results.
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