
988 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 9, SEPTEMBER 2002

Time-Frequency Spectral Estimation of Multichannel
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Abstract—In this paper, we apply a new time-frequency spec-
tral estimation method for multichannel data to epileptiform elec-
troencephalography (EEG). The method is based on the smooth lo-
calized complex exponentials (SLEX) functions which are time-fre-
quency localized versions of the Fourier functions and, hence, are
ideal for analyzing nonstationary signals whose spectral properties
evolve over time. The SLEX functions are simultaneously orthog-
onal and localized in time and frequency because they are obtained
by applying a projection operator rather than a window or taper.
In this paper, we present the Auto-SLEX method which is a sta-
tistical method that 1) computes the periodogram using the SLEX
transform, 2) automatically segments the signal into approximately
stationary segments using an objective criterion that is based on log
energy, and 3) automatically selects the optimal bandwidth of the
spectral smoothing window. The method is applied to the intracra-
nial EEG from a patient with temporal lobe epilepsy. This analysis
reveals a reduction in average duration of stationarity in preseizure
epochs of data compared to baseline. These changes begin up to
hours prior to electrical seizure onset in this patient.

Index Terms—Electroencephalography, spectral analysis,
stochastic processes, time-frequency analysis.

I. INTRODUCTION

E LECTROENCEPHALOGRAPHY (EEG) has been used
as a clinical diagnostic tool for more than 70 years, since

its introduction by Hans Berger in 1929. To record EEG, elec-
trodes are placed either on the scalp or implanted intracranially,
and the electrical activity of the brain, which results from the
summed activity of thousands of neurons in the vicinity of the
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electrode, is monitored. The electroencephalographer makes di-
agnoses of brain dysfunction against empirical observations of
normal electrographic recording using, in part, the language of
frequency content of the electrical signal. It is for this reason
that spectral analysis is a natural tool for analytically studying
the time varying activity of EEG.

The state of the brain is in continual change, with the EEG
having different spectral properties depending on the behavioral
state of the organizm (i.e., sleep/wake) and cognitive tasks being
undertaken. The EEG signal then is taken to be nonstationary, its
spectrum changing with time. In fact, as is the case with most
biological processes, we assume that the spectral characteris-
tics of the EEG are changing continuously and slowly. Such a
signal can be approximated as piecewise stationary, a series or
sequence of independent stationary signals [1]. The spectrum of
piecewise stationary processes, however, change abruptly over
time, presenting problems when analyzing signals that change
slowly and continuously. Ombaoet al. [2] introduced blended
stationary processes that are more general than piecewise sta-
tionary processes. Under this model, one can form an interval
around each time point that is approximately stationary.

The field of spectral analysis has been dominated by use of
the Fourier transform. Because they are perfectly localized in
frequency and are periodic, the Fourier basis functions are ideal
for representing stationary signals, i.e., signals whose spectral
properties do not change with time. For such stationary signals,
the Fourier transform has the additional property, through Par-
seval’s relation, that the signal energy can be completely re-
covered from the transform coefficients. This property gives the
spectrum a desirable physical interpretation and makes spectral
analysis easy to relate to that part of the electroencephalogra-
pher’s interpretive language that deals with frequency content of
the EEG. Energy conservation, however, is dependent upon the
transform being an expansion of an orthonormal and complete
set of basis functions. The Fourier functions do not adequately
represent nonstationary signals. To alleviate this time localiza-
tion problem, smooth windows with compact support have been
applied to the Fourier functions [3] giving the short time Fourier
transform (STFT). Windowed Fourier functions, however, are
generally no longer orthogonal. In fact, the Balian–Low theorem
states that there does not exist a smooth function such that the
windowed Fourier basis functions are simultaneously 1) orthog-
onal and 2) localized in time and frequency [3], [4]. Therefore,
the STFT coefficients lose the important physical interpretation
of representing the energy in the original time series.

In this paper, we present the Auto-SLEX method that uses the
smooth localized complex exponentials (SLEX) basis functions,
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which are derived from the Fourier complex exponentials [2],
[4]. The SLEX transform is complex valued and, hence, is pre-
ferred over real valued transforms because they retain important
phase information. In addition, unlike wavelets and time-fre-
quency distributions, they exhibit linear phase behavior under
time shift, which makes the estimation of time lags between
components of a multichannel EEG (or multivariate signal) a
straightforward calculation. Unlike the windowed Fourier func-
tions used in STFT, the SLEX basis consists of functions that are
simultaneously orthogonal and localized in time and frequency.
They evade the Balian–Low obstruction because they are con-
structed by applying a projection operator, rather than a window,
on the Fourier functions. Thus, the SLEX basis can be consid-
ered as localized generalizations of the Fourier basis. The de-
tails on the construction of projection operators are given in [4],
which also shows that applying a projection operator is iden-
tical to applying two special smooth and compactly supported
windows to the Fourier basis functions. The general form of
these two windows is given in [2], and it is this double-window
method we use here in constructing the basis.

Time frequency methods were developed to study deter-
ministic signals. The EEG is either not deterministic, or its
determinism is not completely known. It, therefore, is usually
treated as a realization of an underlying stochastic process
whose spectrum we want to estimate. The standard approach to
estimating the spectrum is to compute the periodograms, which
are simply the square of the modulus of the Fourier coefficients.
The periodogram is, approximately, an unbiased estimator of
the spectrum. That is, if we repeatedly observe many signals
that are realizations from the same underlying process, then
the average of the periodograms computed from each signal is
close to the true unknown spectrum of the underlying process.
The periodograms, however, are not consistent estimators. The
periodogram estimates computed from many realized signals
tend to vary and fluctuate with high degree and the variability
cannot be ignored even for long signals. To form a consistent
estimator of the spectrum, one can smooth the periodograms
over frequency, by applying a moving average to them [5].
In smoothing periodograms, the choice of the span of the
smoothing window (also called bandwidth) is more crucial
than the choice of the shape of the smoothing window. The
Auto-SLEX method includes an automatic criterion for span
selection.

The Auto-SLEX method also automatically divides the
nonstationary signal into segments that are approximately
stationary. It is necessary to use a moving time window that is
small enough to approximate the stationarity of the underlying
random process. However, if the time window is too small, the
resolution in the frequency domain diminishes and components
of the signal that oscillate at similar frequencies will be indis-
tinguishable. In addition, smaller time windows have fewer
observations, thus increasing the bias in the spectral estimates.
The Auto-SLEX method for segmenting the nonstationary
signal is similar to a method described by Adak [1] in which
the original signal is divided dyadically into possibly over-
lapping segments, and segments are combined whose spectral
estimates are similar based on a distance metric. This provides
an improved segmentation in which each segment is as long

as possible while remaining approximately stationary. One
limitation of the Adak method is that it is not easily extended to
multivariate data, thus, it cannot estimate coherencies between
channels of EEG signals. The method presented here also
divides the signal in a dyadic manner. To determine the optimal
segmentation, we use an objective cost function that is a log
energy function with an added complexity penalty to prevent
over-segmentation. The penalized log energy cost function can
be derived as a Kullback–Leibler distance for random processes
with Gaussian innovations [6]. The best segmentation is then
obtained by applying the best-basis algorithm of Coifman and
Wickerhauser [7].

II. M ETHODS

A. The SLEX Transform

The SLEX transform utilizes a double-window procedure,
which is equivalent to a projection operation on the Fourier
functions [4]. The two windows, denoted and , are con-
structed as follows on the discrete interval

(1)

where is the number of points overlapping into a neighboring
block and should not exceed 1/2 the block size, , to re-
tain statistical independence of neighboring blocks. is the
iterated sine function which controls the steepness of the win-
dows and , and is given by [4]

(2)

The number of iterates controls the steepness in the rising
and falling phases of and, hence, , which in turn controls
the time-frequency localization of the transform. A steeper
rising function preferentially selects time localization over
frequency localization andvice versa. Fig. 1(a) shows the
and functions and Fig. 1(b) the log modulus squared of the
Fourier transform of the sum . Fig. 1(b) also shows
spectra of windows used in popular time-frequency localized
Fourier methods, the short-time Fourier transform (STFT) and
Thomson’s multiple window method (MWM).

Given the time series for , the SLEX
transform, of , denoted is

(3)
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(a) (b)

Fig. 1. (a) The window functions	 (solid) and	 (dashed) using a 1,024
point window ford = 1 and" = 128 (see text for an explanation of the role of
d and" in the construction of the window functions) and (b) modulus squared of
the Fourier transform of the sum	 +	 (solid). In addition, (b) contains the
Fourier transform of windows used in two other popular Fourier based methods:
Hanning window (dot-dash) and Thomson’s MWM (dotted).

Each term on the right-hand side of (3) should be recognized
as a windowed Fourier transform of the sequence using the
windows and , respectively. In addition, the second term
is the complex conjugate of the Fourier transform. This second
term, using the window , is necessary to restore the orthog-
onality to the transform. The periodogram, , is defined
to be where denotes the modulus of the complex
terms of the SLEX transform.

B. The Auto-SLEX Algorithm

If it is assumed that the spectral density function of
the sequence is continuous and smooth, the periodogram
is an asymptotically unbiased estimate of . It is also,
however, an inconsistent estimator of [5]. That is as

. In addition, as the cor-
relation between neighboring frequencies actually decreases,
giving the periodogram wildly fluctuating behavior different
from that expected from a continuously smooth where
the neighboring frequencies would be correlated. Spectral
smoothing (over frequency) can be applied to the periodogram,
which alleviates the consistency problem. The method pre-
sented here for estimating the time-varying spectra and cross
spectra includes a method for selecting the optimal span of the
spectral smoothing window and a procedure which segments
the time series into approximately stationary segments based on
the best basis algorithm (BBA) of Coifman and Wickerhauser
[7].

The optimal span of the smoothing window is selected by
generalized cross validation (GCV) [8]. The GCV function is a
measure of the deviation of the smoothed SLEX periodograms
to the raw periodograms, and the bandwidth where the GCV
function is a minimum is the optimum. The GCV function is
appropriate for statistical quantities like the periodogram that
are asymptotically distributed as gamma random variables. The
GCV span selector attempts to balance precision and accuracy.
It gives estimates that are smooth (precise) and at the same
time smoothed estimates that are close to the raw observed pe-
riodograms (accurate).

The GCV function of theth block in the th level of the ini-
tial segmentation for the time series , for
, is

(4)

where is the block size of theth level, , is the
bandwidth of the smoothing window, the “error degrees
of freedom” and is where

is the smoothing window convolution matrix, the
estimated raw periodogram and the smoothed peri-
odogram using bandwidth. The optimum bandwidth is that
which minimizes the GCV function

(5)

The SLEX transform forms a library of orthornormal trans-
forms, corresponding to each block of the initial segmentation.
To each smoothed periodogram, an objective cost function is ap-
plied and the goal is to find the segmentation that minimizes the
overall cost. In our implementation, we use the total log-energy
cost plus a complexity penalty term as motivated in [6]. The cost
of the th block of the th level is defined as

(6)

where is a complexity penalty parameter and is now
the periodogram smoothed using the optimal bandwidth. The
penalty parameter safeguards the procedure from obtaining a
segmentation that either has too many or too few blocks. A
small value of tends to select a segmentation that has too
many blocks while a larger value chooses segmentations with
too few blocks. If the segmentation has too many blocks, sta-
tionary segments will be split resulting in inflated variances. If
too few blocks are selected, bias is introduced by computing the
spectrum on a nonstationary segment. Therefore, careful con-
sideration in the choice of is required. Donohoet al.[6] give a
theoretical argument for the choice of , which is supported
by Gao [9]. The optimal value, however, may be data dependent.
For data with rapidly changing spectra a small value ofwill
give segmentations with many blocks that will faithfully follow
rapid transitions in the spectra. The same small value used on
data with slowly changing spectra may over-split the data. It is
unclear at this time just how data dependent this parameter is and
we are currently working on a data driven automatic method for
selecting the optimal value. The choice of this parameter used
in the EEG analysis in Section III-B was based on simulation
results in Section III-A.

The next step is to apply the BBA to the smoothed SLEX peri-
odograms, which searches for the segmentation with the overall
lowest cost. Fig. 2 shows a realization of a piecewise stationary
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(a)

(b)

Fig. 2. (a) Realization of a piecewise stationary process and (b) segmentation
table following Auto-SLEX processing. Gray blocks indicate those chosen by
BBA for final segmentation.

process used in the simulations and a segmentation chart de-
picting all blocks of the dyadic segmentation and the blocks se-
lected by BBA (gray) as minimizing the overall cost. The chart
shows that BBA divided the time series into three stationary
blocks with break points at 1/2 and 3/4. The final periodograms,

are constructed from the blocks which define the
best segmentation as selected by BBA.

The complete Auto-SLEX procedure can be summarized
as follows: 1) divide the time series into blocks in a dyadic
manner; 2) compute the SLEX transform (3) on each data block
and create the periodogram; 3) smooth the periodograms with
a smoothing window of optimal span by minimizing the GCV
function [(4) and (5)]; 4) assign to each block an objective cost
measure (6); and 5) select the blocks using BBA that minimize
the overall cost of the segmentation.

C. Bivariate Time Series

It is easy to extend the method presented above to a bivariate
nonstationary time series . Estimates of the pe-
riodograms of and proceeds as for the univariate
case described above. The estimate of the cross periodogram is

where denotes complex con-
jugation. To ensure that the estimate of the spectral density ma-
trix is nonnegative, the spectral smoothing bandwidth of the pe-

riodograms and cross periodograms must be the same [2]. The
best bandwidth for block is that which minimizes

where and are computed from (4). The
spectra and cross spectrum are smoothed using this bandwidth
and a modified cost function is applied

As in the univariate case, BBA selects the blocks, which
minimize the overall cost. The phase and coherence spectra are
obtained from

D. Computational Notes

The Auto-SLEX algorithm was implemented using
MATLAB release 12 (The Mathworks, Natick, MA), and the
m-files will be made available upon request to the authors. If
the time series is divided such that the size of each block is

where is an integer, then the SLEX transform can be
computed in a computationally efficient manner. Since the
SLEX transform is a form of the windowed Fourier transform,
the fast Fourier transform (FFT) can be used to compute the
SLEX transform. Use of non-Radix-2 data lengths should
generally be avoided not only for computational efficiency but
also because there are a limited number of splits of the data that
is possible and, therefore, a limited number of segmentation
levels. Radix-2 FFT algorithms require complex
multiplications and since the SLEX transform requires two FFT
computations, the number of multiplications is at the
first level (full data length, level ). At the second level,
there are two blocks and
multiplications. This continues to theth level where there are

blocks of length and multiplications.
The total complex multiplications needed to compute the trans-
form on the entire tree then becomes . For
the EEG data presented here, epochs of data points
were analyzed to level . This required greater than 190
million multiplications, but completed in less than 1 min on a
1.7-GHz processor PC.

The most time consuming stage of the algorithm is the se-
lection of the optimal smoothing bandwidth. Since the GCV
function cannot be explicitly minimized, the minimum must be
found through a search algorithm. We currently use a simple
gradient search, which can find the minimum in less than 40
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iterations, however when smoothing each periodogram in the
entire tree, as is done prior to applying the log-energy cost, the
time required for each epoch was approximately 30 min. During
the course of the simulations presented below we noted that
the segmentation accuracy was not too greatly affected by com-
puting the cost on the raw rather than optimally smoothed pe-
riodograms. This generally led to segmentations with a greater
number of blocks, and with it inflated variances, but greatly re-
duced computation time so that larger data sets could be ana-
lyzed very quickly. Of course, smoothing of the final spectro-
gram is necessary to give consistent and low variance estimates.

E. Simulated Data

The data sets used for the simulations are piecewise stationary
autoregressive (AR) processes. An process is of the form

where are independent random variables with zero mean
and variance .

For each realization the averaged squared error (ASE) of the
log-spectrum was computed

where is the estimate of the true time-dependent spec-
trum, . ASE combines errors due to both estimate bias
and variance. For each simulation, we created 200 data sets of

points, and the highest level of segmentation for
SLEX was , which gives a block size of 64 points. The
piecewise stationary simulated data used had stationary seg-
ments of at least 256 points, which corresponds to the smallest
block size used in the EEG data described in the next section.
This allowed us to use the simulations to find a value of the com-
plexity parameter, in (6), which is approximately optimal for
EEG.

F. Experimental Data: Subjects and Data Acquisition

We analyzed EEG recordings from a patient with presumed
mesial temporal lobe epilepsy undergoing localization of
seizures with intracranial electrodes during evaluation for
epilepsy surgery. Continuous EEG was recorded for 14 days
using the 64-channel, 12-bit Nicolet BMSI 5000 epilepsy
monitoring system (Nicolet Biomedical, Madison, WI) which
digitizes the signal at 200 Hz. Apart from using a bipolar
montage to remove common mode signals and artifact, no
preprocessing was applied to the digitized EEG data. During
the recording period this patient had four seizures of unilateral
mesial temporal onsets, three seizures localized to the left and
one to the right anterior hippocampus. Approximately six hours
of continuous EEG (2 data points) prior to each seizure was
extracted for SLEX analysis. Only the channel determined to
be the seizure lead channel was processed. Because of the size
of the data set, analysis was performed on four contiguous

Fig. 3. Effect of the complexity parameter,�, on segmentation accuracy.

segments of 2 data points each to reduce computation time.
For each of the four segments, the best segmentation was
computed to a maximum level of , corresponding to a
block size of 256 points (1.25 s). At this level, the EEG is
assumed to be approximately stationary based on the work of
Qin [10].

III. RESULTS

A. Simulations

Any method that gives a good spectral estimate of a non-
stationary process must be able to accurately segment the data
and give spectral estimates with low bias and variance. In
this section, we compute the time-varying SLEX periodogram
on simulated data to assess the accuracy of the segmenta-
tion and then compare the spectral estimate to those of two
other Fourier based time-frequency methods: the STFT and
Thomson’s MWM using four windows [11], [12]. Optimal
spectral smoothing, by using the GCV method described above,
is applied to the STFT spectrogram to give consistent and low
variance estimates for fair comparison. MWM is designed to
simultaneously minimize bias and variance through specially
designed window functions.

Segmentation on a Dyadic Boundary:Selection of the
penalty parameter, , in (5) may be crucial to the accuracy
of the segmentation. As explained in the Section II, too small
a value of will give segmentations with too many blocks,
whereas a value of too large, gives segmentations with
too few blocks. We tested the segmentation on the following
piecewise stationary process with known break points on the
dyadic boundaries 1/2 and 3/4 ( and , respectively)
and computed the percentage that the method was able to
correctly identify the break points

if
if
if

where is an process with , is an
process with and , and is

an process with , , and
. Fig. 3 shows an accuracy rate of 72% with .
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Fig. 4. Time-varying spectra of a piecewise stationary process segmented on
a dyadic boundary.

We proceed with the remaining simulations, and analysis of the
EEG data set, using this value of.

Fig. 4 shows the resulting spectrograms from a realization
of this process. The spectrograms shown are those that pro-
duced the lowest ASE for each of the three methods and Table I
compiles the average ASE for all simulations. SLEX divided
the time series into an average of 4.5 segments which indicates
that the method errs on the side of too many blocks (oversplit-
ting) rather than too few, undersplitting in less than 5% of the
cases. This is preferable since under-segmenting will cause a
bias due to nonstationarity. However the method should also
guard against too much oversplitting since this will reduce the
frequency resolution and increase the estimate variance.

Segmentation on Nondyadic Boundary:Rarely will real sig-
nals change system parameters exactly on dyadic boundaries,
where SLEX segmentation is optimum. In this simulation, we
generated the following piecewise stationary process with a
single break at

if
if

where is an process with , and
process with . An ideal segmentation would

be one that gives very small blocks around the break point,
which is dependent on the length of the time series and the
level of initial segmentation, . Fig. 5 shows the resulting spec-
trograms from one realization. As in Fig. 4, the spectrograms
shown are those that showed the best fit to the true spectrum.
The average number of segments was 7.8 with a minimum of
four again indicating the method favored over-splitting the time
series. The ASE reveals that the Auto-SLEX fit to the true spec-
trum was not as good as in the previous case, which shows the
drawback of using a dyadic transform on a nondyadic process,
however the mean ASE is still below any values of both STFT
and MWM.

Slowly Varying Process:It is unlikely that biological
processes such as EEG abruptly change parameters as the
piecewise stationary processes above do. Rather their parame-
ters most likely will evolve relatively slowly over time. It is for
this reason that the SLEX transform is based on blended sta-
tionary processes instead of piecewise stationary. To investigate
how Auto-SLEX performs on such data we constructed 200
realizations of the following slowly varying process

and . Fig. 6 shows
the spectrograms from one realization. Note that Auto-SLEX
gave segmentations of relatively large blocks, which is reason-
able since the process parameterchanges slowly. The av-
erage number of segments was 5.1 with a range from 2 to 10
and the number of segments was more evenly distributed across
the range than in the previous cases. The mean ASE of 0.037
indicates that Auto-SLEX performs quite well on this type of
data even though the process is not piecewise.

B. Stationarity of Preseizure EEG

Segmentation of the times series is important for high quality
spectral estimates in Fourier based methods since the Fourier
transform assumes stationarity of the data. Also, consistent esti-
mators of the spectrum benefit from data of increasing length as
this reduces the estimate variance. The stationarity of EEG prior
to a seizure may itself be an interesting phenomenon to study
since it may be suggestive of changes in the state of the system.
It is already known that there are changes in the EEG, which
takes place from minutes to several hours prior to seizure onset
[13]–[16]. To our knowledge there have been no comprehensive
studies examining stationarity of EEG for large data sets.

In this study, we looked at the segmentation provided by
Auto-SLEX over approximately six hours of continuous EEG
prior to seizures in one patient with four partial seizures arising
from the temporal lobes, three from the left and one from the
right hemisphere. The segmentation chart for one such seizure
is shown in Fig. 7. Gray regions depict blocks selected by
Auto-SLEX as minimizing the overall cost of the segmentation.
Block size decreases dyadically to the bottom of the chart. It is
clear that the EEG has frequent runs of stationarity as long as
10 min in duration until approximately 40 min prior to a seizure
(time 0 in Fig. 7) when the EEG becomes more heavily seg-
mented. This time frame is interesting in that recent evidence
[15] has shown that EEG energy increases occur approximately
one hour prior to seizure onset. Since segmentation is based
on log-spectral energy, rapid changes in stationarity are a
reflection of changes in energy of the time series.

In total, three of the four seizures analyzed showed changes to
stationarity preceding a seizure. Fig. 8 shows the segment dura-
tion, in minutes, averaged in a 5-min moving window for each of
the four preseizure records. In seizures 1, 2, and 4, all of which
were generated in the left temporal lobe, step-like drops in sta-
tionarity can be seen at 300, 40, and 185 min prior to seizure
onset, respectively. Of interest, seizure 3, which arose from the
right temporal lobe, did not demonstrate any of these changes
prior to seizure onset, suggesting the possibility of a different
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TABLE I
ESTIMATION RESULTS

Fig. 5. Time-varying spectra of a piecewise stationary process segmented on
a nondyadic boundary.

Fig. 6. Time-varying spectra of a slowly varying AR process.

mechanism of generation for this seizure. It is important to note
that while this analysis was restricted to a single patient, there

Fig. 7. Segmentation table of preseizure EEG from a patient with temporal
lobe epilepsy. The four tables represent contiguous segments from one
continuous EEG record, approximately six hours in duration.

are relatively few studies in the literature that analyze preseizure
data epochs of this duration, and none which focus on the sta-
tionarity of EEG signals as seizures approach.

IV. DISCUSSION

We have demonstrated the Auto-SLEX method for analyzing
nonstationary time series in the context of Fourier analysis. It
uses the SLEX transform, which is localized in both time and
frequency, while maintaining orthogonality that allows us to use
the powerful best-basis algorithm for selecting an optimal seg-
mentation. The method is computationally efficient, as it utilizes
the FFT algorithm for data sets whose length is an integer power
of two. The method was developed for bivariate time series and
can give estimates of time-varying coherence and linear phase
relationships.
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Fig. 8. Time-varying average segmentation duration of preseizure records
from a patient with temporal lobe epilepsy. The segmentation duration was
averaged using a 5-min moving window.

In this paper, we have demonstrated the segmentation
capability on simulated data sets and have shown that the
Auto-SLEX spectral estimates outperform two existing Fourier
based time-frequency methods by providing an estimate with
consistently lower ASE. A more theoretical treatment of the
Auto-SLEX method is given in [2] where the authors prove the
statistical consistency of the Auto-SLEX estimator. Moreover,
a model of nonstationary random processes that is based on the
SLEX basis is given in [17].

We have demonstrated the promise of the Auto-SLEX
method in clinical practice by applying it to prolonged EEG
recordings from a patient with temporal lobe epilepsy during
presurgical evaluation. Reproducible, periodic fluctuations in
the segmentation of the signal prior to seizures, marked by a
significant drop in segment length over time were observed.
The timing of these findings agrees with reports of signal
changes that occur prior to seizures in such recordings [14],
[15].

In summary, the Auto-SLEX method holds great promise for
analyzing biological data, particularly EEG signals. Using sim-
ulated data, the method has significant advantages over other
methods for segmenting experimental data into stationary seg-
ments. In a clinical example, preseizure data epochs demon-
strated reproducible decreases in signal stationarity up to sev-
eral hours prior to seizure onset in a patient with temporal lobe
epilepsy. The predictive value of these results will need to be as-
sessed, and validated in a larger number of patients over longer
periods of time. The method may prove to be extremely useful
in improving the accuracy of algorithms that require signal sta-
tionarity in the EEG, and perhaps in elucidating mechanisms
underlying human epilepsy.
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