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Abstract—Brief bursts of focal, low amplitude rhythmic activity — fy; Higher cutoff frequency.
have been observed on depth electroencephalogram (EEG) in the O Length of median operation.
minutes before electrographic onset of seizures in human mesial
temporal lobe epilepsy. We have found these periods to contain
discrete, individualized synchronized activity in patient-specific

frequency bands ranging from 20 to 40 Hz. We present a method l. INTRODUCTION

for detecting and displaying these events using a periodogram

of the _s[gn-ll_rmted t_emporal derivative of the_EE_G signal, de- WENTY-FIVE PERCENT of the world’s 50 million
noted joint sign periodogram event characterization transform . . .

(JSPECT). When applied to continuous 2-6 day depth-EEG people with epilepsy have seizures that cannot be con-

recordings from ten patients with temporal lobe epilepsy, JSPECT trolled by any available treatment. The need for new therapies,
demonstrated that these patient-specific EEG events reliably and the success of similar devices to treat cardiac arrhythmias,
ogcurred 5-80 S prior to e_IectrlcaI onset of seizures in five patients p5g spawned an explosion of research into algorithms for use
with focal, unilateral seizure onsets. JSPECT did not reveal . . . . .
this type of activity prior to seizures in five other patients with in |mplantable therape_utlc deV|ces_ for epﬂep_sy. Most of these
bilateral, extratemporal or more diffuse seizure onsets on EEG. algorithms focus on either detecting unequivocal EEG onset
Patient-specific, localized rhythmic events may play an important of seizures [1]-[3], or on quantitative methods for predicting
role in seizure generation in temporal lobe epilepsy. The JSPECT gejzures in the state-space, time, or frequency domains that may
method efficiently detects these events, and may be useful as party, yigicyit to relate to the neurophysiology of epilepsy [4]-[7].
of an automated system for predicting electrical seizure onset in . . h
appropriate patients. Recently, Littet al. presented evidence that mesial temporal
Index Terms—Depth-EEG, epilepsy, nonparametric detection, lobe seizures are generated in a cascade. of even.ts', meas'ured by
onset prediction, signature event detection, visualization. depth EEG, that evolve over hours, leading to clinical seizure
onset [8]. Among their observations in this “preictal cascade”

were localized bursts of rhythmic, seizure-like activity whose

NOMENCLATURE rate of occurrence appeared to grow exponentially as seizures

n Discrete time axis. approached. The authors of this paper identified these localized
zgpc[n] Original EEG data. discharges by manually reviewing days of EEG data, 10 s at a
x[n] Whitened joint sign periodogram event charactertime. This approach is limited to detecting events of sufficient

zation transform (JSPECT) input. signal-to-noise ratio to be seen by the human eye, and by the
s[n] Sign-limited signal. potential for human error. Other investigators have reported
I [K] JSPECT output. these events prior to temporal lobe seizures, however, there are
N Sliding window length. no reported studies using guantitative methods to elucidate the

Sliding window displacement. spatial and temporal characteristics of these low amplitude,
J}?: [m]  Maximum JSPECT amplitude. high-frequency electrographic events. [9], [10].
D[m)] JSPECT signature detector. In this paper, we quantitatively analyze low-amplitude,
Jio Lower cutoff frequency. high-frequency activity appearing within seconds to minutes

of electrical seizure onset before seizures in patients with
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Fig. 1. Signature events. The plot shows the EEG of the same bipolar ) )
channel for five different seizures of a single patient. This passage just befbi§: 2. PSD ranges of the EEG detection environment. The plot shows the
the electrical seizure onset (= 0 s) contains stereotyped, low-amplitude,PSD ranges of one hour EEG segments from the epileptic focus region, selected
high-frequency signature events (arrows indicate the detection times of th@kéeast 4 h away from any seizure. We refer to these segments as “baselines,”
events with the JSPECT detection described in this paper). The second seigigw. The PSDs of all study patients’ EEGs were low-frequency-dominated
is preceded by two signature events. (PSDs for three typical patients are shown in this figure). The form of the PSDs
within single patients and across patients varies. Howeved tifié PSD is a
first approximation for all the EEG PSD shapes. This approximation suggests

The EEG is a nonstationary Signal with a low-frequenci, oo Seatie Tl or wterng 2 Secorciang e ceeclon
dominated spectrum [11]. In epilepsy, the EEG also contaigifgle patients and across patients.

epileptiform discharges (spikes), whose broad spectrum content
can interfere with detecting events that are limited to a particular

frequency band. These effects may be particularly prominent as
seizures approach, or in the prolonged period of synchronization

immediately after seizures [8], [12]. In addition, a wide varietft Characterization of EEG Detection Environment
of features in the normal EEG, such as changing amplitude anqt is important to consider the characteristics of the signal

frequency content associated with stat.e changes eg. aw%?ection environment, in our case the EEG away from seizures,

asleep, etc.), may obscure patterns of interest in the frequewen developing an event detector. If modeled as a stochastic

domain. o _process, the EEG detection environment can be characterized
Extreme low-frequency (ELF) communications and detectlr&/ its power spectral density (PSD) and its probability density

signals embedded in underwater acoustic noise are two problgi tinn (ndf). These tools can guide the signal detector design.
areas that share the challenges of detecting discrete electrlcatlhe independent identically distributed (i.i.d.) stochastic

events in Fhe intracranial EEG. Signal .detect|.on. method; f focess assumption simplifies the detector design. A whitening
those environments often use a nonlinear limiter functio refilter stage can be used to decorrelate colored noise. As
This function can reduce sensitivity to spikes and Improves, . in Fig. 2, the PSDs of our EEG data were low-frequency
dete‘?“on p?rformance. The S'”‘P'es_t such I|m|ter.|s thg S minated, suggesting that a first approximation for most EEG
function. It is optimal for Laplacian independent, 'de”t'ca”%egments we recorded in this environment ig /g2 PSD.
dis_tributed additive noise (i.i._d.-noise). With Laplacian nois¢p;q suggests that the temporal derivative may be useful as a
being _the worst case, _the sign detector _also leads to r°bé’i?ﬁple prefilter for our experimental data. By amplifying the
detection performance in other harsh environments [13]—[1@Ower in the high-frequency bands by a facf8rthe temporal
We have developed a method of applying the sign limitefarivative, even though not optimal, was a good approximation
function to the intracranial EEG in order to enhance detectigg, decorrelating the wide range of PSD shapes in our EEG
of the signature preseizure events described above. We tgkes The computational efficiency of a simple temporal deriva-
the temporal derivative of the EEG signal to “whiten” thejye filter is an additional advantage for large amounts of data
spectrum before input into the algorithms below. and real time applications. We, therefore, applied a temporal
Because the EEGs of interest to this type of study agrivative filter to all our EEG data as a first detector stage.
usually 32-64 or more channels, digitized at a minimum of The pdf of the whitened environment determines the nonlin-
200 Hz/channel, quantitative tools to study seizure generati@rity function of the detector. To guarantee robust detection,
detection or prediction must be very computationally efficienfvorst case distribution should be used to determine the nonlin-
Long data epochs containing both preseizure and baselawity [17]. In our case, the pdfs were nonstationary (see Fig. 3).
data, preferably over days, must be processed in orderTioe large pdf ranges within single patients and across patients
demonstrate the statistical validity of any seizure “predictorsifihibit a parametric description of the detection environment.
These requirements were taken into account in developing Based on this difficulty, the JSPECT detector described in this
guantitative methods described below. paper is a nonparametric detector.

Il. THEORETICAL BACKGROUND
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Fig. 4. Schematic frequency evolution of a signature event. For each patient,
signature events demonstrate a characteristic frequency evolution (signature).
The events were found to be predominantly in the 20-40 Hz range. Even though
Fig. 3. Normalized pdf ranges of the temporally derived EEG detectiahe shape of the signature events before each seizure remained similar for each
environment. The Plot shows the pdf ranges of 1 h temporally derived EFgatient, the offset frequencies and duration varied slightly between seizures.
segments from the epileptic focus region at least 4 h away from any seizure

onset or termination. The standard deviations of all pdf curves have been

normalized to one. The pdfs are strongly varying within single patients aggdhriance of the noise; the sign detector is, therefore, constant
across patients. The qu c_har_acterlstlcs range from Gagssmn to Laplac[an tar]d ) .
to even heavier tailed distributions. The pdfs are approximately symmetric. faiSe-alarm rate (CFAR). Another property of the sign detector
is its robustness: we have implicitly assumed that the noise
) ) values haveheworst case probability density—the Laplacian.
B. Nonparametric Detection A more practical property is the one bit of precision required
D. H. Johnson describes the nonparametric detection as fey- the quantities used in the computation of the sufficient
lows (cited from [17], shortened and partially paraphrased): “Biatistic: each observation is passed through an infinite clipper
situations when no nominal density can be reasonably assigif@done-bit quantizer) and matched (binary operation) with a
or when the possible extend of deviations from the nominatbit representation of the signal. A less desirable property is
cannot be assessed, nonparametric detection theory can rig@&odependence of sign detector’s performance on the signal
the occasion [13], [14]. In this framework, little is assumewaveform. A signal having a few dominant peak values may
about the form of the noise density. Assume that mddgtor- be less frequently detected than an equal energy one having
responds to the noise-only situation ak to the presence of & more constant envelope. Examples show that the loss in
a signal. Moreover, assume that the noise density has zero p@formance compared with a detector specially tailored to
dian: any noise value is equally likely to be positive or negativéhe signal and noise properties can be small (about 3 dB for
This assumption does not necessarily demand that the densitgiseisoidal signals).”
symmetric about the origin, but such densities do have zero me-
dian. Given these assumptions, the formalism of nonparameftic Characterization of Signature Events

model evaluation yields the sign test as the best decision rule. "Signature events were oscillations in the 20- to 40-Hz fre-
the simplest model evaluation context; has constant, positive quency band. The frequency evolved in a characteristic manner
mean for each observation. However, Signal values are “S“%}’each patient over 5-30 s (Fig. 4). Signature events were usu-
unequal and change sign; we must extend the sign test to thig ow in amplitude and often background EEG activity was
more realistic situation. Noting that the statistic of the sign tegtq, ced in amplitude during such periods. The absolute ampli-
does not depend on the value of the mean but oniits sign, the sigfle of the signature event is unimportant for the nonparametric
of each observation should be ‘matched’ with the sign of eagtector described above because the detection only depends on
signal value. A kind of matched filter results, whetign(r[l])  the signs of the input. The frequency of the oscillations usually
is match-filtered withsign.(s[1]) remained stationary over a 1-s window. We detected determin-
istic signature events using a periodogram of the sign-limited
temporal derivative of the EEG signal.

Normalized Amplitude

h
i

M,
sign(r[l]) sign(s[l]) = ~.
I I1l. M ETHODS

The sum counts the times when the signal and the observatfonISPECT

signs matched. The JSPECT detection is based on an i.i.d. environment
The nonparametric detector expressed by the sigmdel. To decorrelate the background samples, the temporal

match-filter equation above has many attractive propertiderivative is applied to the EEG as an approximative whitening

for array processing applications. First, the detector does fitter

require knowledge of the amplitude of the signal. In addition,

note that the false-alarm probability doest depend on the z[n] = zgrc[n] — zerc[n — 1]. 1)

l

Il
<
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The JSPECT of a discrete time sequenpd is computed by = |
. . . . > 60t i
taking the two-piece sign function 3) ‘
. 7] !
1, if z[n] >0 3 40¢f ‘
sl =sismtefa) = {17 @ g* |
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of the input followed by the periodogram with/d-point fast wa I a ’
Fourier transform (FFT) on a sliding window (see Fig. 5) Py e . ; ;
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Tulk = |55 3 sl m — Njems2mbn/N Time (s)
n=0
m =0, M, 2M, 3M, .... (3) 100 JSIPECT .

JSPECT resembles the first stage of the Rao detector for si-
nusoids of unknown amplitude and phase embedded in i.i.d. 807
generalized Gaussian noise [16]. However, these assumptionZ.
do not hold for our application. As mentioned above, our EEG 60|
data had a strongly varying pdf. The worst case pdf, in our case G
the Laplacian, should be assumed to maintain good detectiorag; ; A
performance [13]. This results in a sign limiter function as an & e e T K e /\',‘ﬁ
early detection stage. The quantitative amplitude of the signa- I e
ture events is known in our case but is not used because of this 0 iy . gk SR, el o
sign limiter function. Therefore, JSPECT and the Rao detector 200 -150 -100 -50 0 50

have similarities even though they are based on different models. Time (s)
In addition to detection, JSPECT provides a visualization tool
to characterize signature events. Fig. 6 shows a comparison be- EEG

tween JSPECT and a classical power spectrogram, applied to the
same 4-min data epoch (3 min prior to electrical seizure onset,
(marked as time= 0), to 1 min after onset). The darkness of
the output is linearly proportional to signal amplitude on both
plots. On the plot of the JSPECT function, the preseizure signa-
ture eventis easily seentat —90 s. This event is revealed with

I I
. . L, , : (s
contrast enhancement on the classical spectrogram, but is much -200 -100 -50 50
fainter without this enhancement, as it is overwhelmed by the . . .

spectrum of spikes and seizure onset. These plots demonstrate | Signature Event |

that JSPECT selectively filters out high amplitude events, which

might obscure the signal, while preserving important character- WWW%M“WWMW

istics of the signature events of interest. I ]
A fundamental property of JSPECT is that it outputs a nor- , , __Time (s

malized energy spectrum. Looking at (2) we see that the energy _119 -100 -90 -80 -70

in the observation window 8, = """ s2[n4+m—N] = N.

Because oParseval's relationthe total energy in the JSPECTFig' 6. JSPECT versus classic spectrogram applied to the same 5-min data
epoch (4 min prior to electrical seizure onsetat 0 to 1 min after onset).

is constantts; = -, Jm[k] = Es/N = 1. . This comparison shows that JSPECT suppresses artifacts due to epileptiform
EEG data were sampled at 200 Hz, a window lengtiVof  discharges while preserving important signature information (hat shape at
200 points and a displacementdf = 100 points were used for —20 s). The temporal derivative of the bipolar EEG signal has been analyzed.
P . P . P . . The UEO is marked as = 0 s. The original EEG segment is also shown for
processing. The corresponding frequency and time resolutiQ@parison.

were 1 Hz and 0.5 s, respectively.
B. JSPECT Signature Detection Then, the median acrogs consecutive values is computed

Distillation of JSPECT output into a single parameter is nec-
essary for use in online detection of signature events. This is
accomplished as follows. A simple feature can be derived from
the JSPECT output for use in event detection

Dlm] = Inedian((}%}: [m —i])izo, m,20m...,c0o—)m-  (5)

Looking at (2)—(5), we see thd®[m] is strictly causal, as it
only depends on past valuepn — 1], z[m — 2], ... Therefore,
J Jfl‘: [m] = max(Jo [k]) k=fio . f; - (4) areal-time implementation is straight forward.
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Fig. 7. JSPECT signature detection. The plot shows 160 h of processed single channel depth-EEG data from patigrifs Théhe JSPECT Signature
Detection output value in arbitrary units. Theaxis is the time axis in hours. The consecutive subplots show the JSPECT Detection output of 20 data CDs. All
CD containe 8 h ofdata except CD #15 which contained only 5 h of data. All signature detection peaks occurred approximately 20 s prior to the actual electrical
seizures onsets, which have been marked with diamonds. The dotted line indicates a possible detection threshold allowing a maximum of one.FN detectio

Trial evaluation of JSPECT output demonstrated that sig- ' . T ' ' -y '
nature events were typicalty5 s in duration. An analysis of 5t / { E
different median length® was undertaken to determine the
probability of false-positive (FP) waveform detections due to 5 10 Signature event Ch. 2-3

noise alone. The JSPECT detector, being nonparametric, hasg
a CFAR which can be adjusted with the observation window S 157 ]
length as described in Section Il. Based on the tradeoff between© o0l i § élif ]
detection delay and FP/false-negative (FN) probabilities, the . 1 §
median length was set t@ = 10. This value was verified . ]
experimentally. Finding the optimal median length was not the . . . . _Time (s
focus of this study. In this algorithm, the median is only taken -200 -150 -100 -50 0 50

across ten values, so the usual computational intensivenlgz_ss8 JSPECT visualization of all channels. Th lete patient q
. . . . . 8. visualization of all channels. The complete patient records
associated with the required sort operation was not a problerqﬁ,e been processed before visualization. The signature event indicates the

Fig. 7 shows the result of this algorithm applied to 160 h @portant bipolar channel. It can be distinguished from the other events by its
continuous depth-EEG data from one single patient. By exa#@ieen colo_r (corresponds toa frequgn_cy between 20-40 Hz), which cannot be
inina theJSPECT Vi lizati Section I1I-C). the binolar seen on this black and v_vhlte plot. S_lmllar_ events could be found_on the same
Ining the _Sua atigr(see Sectio ] ), the bipola channel before other seizures of this patient. A closer look at this channel in
channel (voltage difference between two adjacent electrodeg) 9 reveals the detailed frequency evolution of this signature event. The
nearest the epileptic focus region (spatial origin of a seizure§G onset and propagation of the seizure to other channels can be seen after

: : the electrical sei @t 0s).
and the cutoff frequencief, and f,; were determined. & electrical seizure onset € 0's)

amplitude is extracted and stored twice/second. A detection

potential measurement is stored along with it in a Matlab file.
In order to determine the processing channel and to visualizhe detection potential is equal t[m], using fi, = 0 Hz

the JSPECT output for long data segments, a condensed metiwod f1,; = 100 Hz, as described in Section 1lI-B (5). With

for visually displaying results was developed. this method, data reduction by a factor of 50 is possible. We
Using the JSPECT followed by an adaptive frequency equalpplied JSPECT Visualization to all the channels in the com-

izer, the frequency corresponding to the maximum JSPE@lete recordings.

C. JSPECT Visualization
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means other than gradually tapering each patient’s antiepileptic
medication, as per monitoring unit protocol, to encourage the
occurrence of spontaneous seizures. Digitized EEG data were
preprocessed only by using bipolar “montaging,” an EEG tech-
nigue in which signals from adjacent electrode contacts, each
recording the potential difference between that contact and a
common reference electrode, are subtracted to remove common
mode signals and artifacts. dc changes can not be measured
with bipolar montaging but in our case the dc information was
not used for detection.

Patients whose data were evaluated in this study had the fol-
lowing clinical characteristics:

» Four patients had unilateral mesial (middle) temporal
Fig. 9. JSPECT visualization of one channel. Even though only the maximum

frequency is used for displaying, the signature event is visibte 90 s) as seizure Qnsets (A, B’ D, G). .
a hat shaped cluster of points in the 20- to 40-Hz frequency band. Its frequency ® ONne patient had unilateral seizure onsets from the lateral

evolution is observable as a curve of neighboring points being less than 10 Hz temporal neocortex (I)
apart. In other patients, this curve shape was fuzzier but still within the 10-Hz Two patients had independent bitemporal seizure onsets
range. An adaptive frequency equalizer was applied resulting in a uniform . . . . '
distribution for the background. with a t_mef diffuse decrem(_ental pattern as the earliest re-
producible EEG change prior to seizure onset (C, E).
) ) ) ) » Two patients had inferior frontal seizure onsets, one of

Using Matlab, all bipolar EEG channels are viewed simul-  \yhich demonstrated simultaneous early involvement of

taneously. The information is coded in the following way. The  the hippocampus on the same side (F, H).

brightness of a pixel is made proportional to a sigmoid function « gpe patient had temporal epidural peg electrodes, which
applied to the detection potential. The color of the pixel is used  gjd not extend into the subdural space (J).

to represent its frequency. Fig. 8 shows 28 bipolar EEG chan-pe following definitions were used for evaluation:

nels before electrical seizure onset. On this plot, the signaturel-rue positive detections of signature events were defined as
preseizure event is identified on channel 2-3. These events Wg[£.a avents which occurred within a 2-min window before un-
found preceding all the seizures for this patient, localized to ”Eﬁuivocal EEG onset of seizures [8]. FNs were defined as clin-
same channel. _ o _ ical seizures without a JSPECT detection peak above threshold
Once the channels of interest are identified, a single chanﬂ?lthe 120-s window before EEG onset. FPs were defined as
can be viewed on a time frequency plot. Fig. 9 shows such,d peaks that rose above threshold outside the 120-s preonset
plot of channel 2-3. The EEG detection environment resuliandow and in the absence of a clinical or subclinical seizure
in randomly distributed points, in this figure. The signaturescs). The JSPECT method was developed using EEG data
event reveals itself as a cluster of points that stands out frgpgm patient A-E. Data from patients F-J were previously un-
the background. seen by the JSPECT algorithm to avoid “training” of the method
itself.

D. Analysis of Human Data/Seizure Prediction Trial

The following procedure was followed for each patient.

We analyzed continuous 2-6 day EEG recordings from 1) By examining theJSPECT Visualizatiomf seizures in

ten out of 13 consecutive patients with mesial temporal lobe
epilepsy admitted to the Emory Epilepsy Monitoring Unit
between January 1997 and May 1999, who underwent routine
intracranial EEG monitoring during evaluation for resective
epilepsy surgery. Three patients were excluded from this study
for the following reasons. For two patients the whole EEG
recordings were of poor quality and contained many artifacts
because of detached reference electrodes. For one patient the
EEG recordings contained only four seizures, which did not
meet our selection criterion of minimal five seizures. After
two years of follow-up, all of the patients whose data were
analyzed were either seizure free or had rare seizures but a very
significant improvement in their condition and quality of life.
Continuous intracranial EEG and video were collected
using a digital, 64-channel, 12-bit Nicolet BMS-5000 epilepsy
monitoring system and were stored on videotape. Referentially
recorded EEG was downloaded from tape and archived to
CD-ROM for processing. EEGs were digitized at 200 Hz and
recorded after filtering through a bandpass of 0.1-100 Hz. All
seizures occurred spontaneously, and were not provoked by any

all bipolar channels, the channel demonstrating signature
events was selected. With the computational efficiency of
the algorithm all channels could have been used for de-
tection, but to reduce false detections the algorithm was
restricted to one channel identified by an expert reader in
which electrodes were presumed to be closest to the re-
gion of seizure onset. This was defined as the channel in
which the earliest signs of seizure onset were detected, or,
if more than one channel met this criterion, the channel in
which earliest EEG changes associated with seizure onset
were maximal in amplitude. If no signature events prior to
the electrical seizure onset could be found, the procedure
was aborted. By signature events we mean characteristic
waveforms on the EEG that reliably occurred within min-
utes prior to seizure onset with stereotyped temporal and
spatial properties relative to seizure onset. Selection of
channels for processing was verified by expert interpre-
tation of depth-EEG studies by one of the authors (BL).
In all cases in which signature events were identified by
the JSPECT, the contacts in which these events were seen
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TABLE | TABLE 1l

JSPECT VSUALIZATION RESULTS JSPECT &NATURE DETECTION RESULTS
Pt.  Channel f;, (Hz) f5; (Hz) Special t.
A LAH 27 39 SCS A 40 50 6 30075
B RIT 18 24 B 48 5 0 0 1 0.021
C none bilateral D 48 5 1 0 9 0.19
D RIT 19 30 F 160 11 1 0 9 0.056
E none bilateral G 40 5 0 15 6 0.15
g EK:H %% %? SCS PT: patient number. L: duration of all the analyzed
H none data. S: number of seizures. FN: number of false
I none negatives. SCS: number of detections with a fol-
] none lowing subclinical seizure. FP: number of false

. . K positives. FPH: number of false positives/hour
PT: patient. Channel. The anatomical location of the channel

demonstrating the signature events is noted for each patient.

None: no stereotyped signature event could be identified. Signature events reliably occurred in the 2 min prior to seizure

LAH: left anterior hippocampus, RIT: right inferior/mesial onset on EEG. We demonstrate the statistical significance ex-
temporal, RIF: right inferior frontal. RAH: right amygdala .

and anterior hippocampus (mesial temporgl) and fi.;: emplary for patient F, who had the longest data record. We used
parameters were extracted by analyzing 2-3 seizures from a 2-min time window as a measure of association with events,
each patient. Special: special properties of the patients. SCS: similar to the way the “prediction horizon” is defined by Litt

has subclinical seizures . . .
et al. [8]. Nine “false” detections occurred in absence of any

éeizure. For patient F, 160 h of data were recorded, which ap-

changes associated with seizures, as defined byttt proximately corresponds to 160 h/2 min4800 segments. Ten
' detections occurred in the 11 2-min segments just before the
(8]

2) By analyzing 2-3 randomly selected seizures, the paraHEo' The mean event detection rate with confidence intervals
eters f,, and f,; were estimated tdf, = min—1 and 'S = 0-0019%0.0016999, = [0.0003; 0.0035]49¢, for nonpre-

fus = max +1, respectively. Whereiin andmax denote  S€iZureé segments apd = 0.909=£0.31999y, = [0.59; 1.23]995;

the lower and the upper frequency boundary of the sign,fé’-r 2 min before UEO preseizure segments. The coryﬁdence

ture events in the 2-3 selected seizures. All other seizuf8Ervals do not overlap, therefore, the presence of signature

(at least half of the seizures for each subject) were <{€Nts before seizures is significantly higher than elsewhere for

aside to validate the method. patient F. Using the same procedure, we also found the signa-
3) JSPECT signature detectiomas applied to the entire tUre event detection rate to be significantly highe©9%) in

set of continuous data in the previously chosen bipold#€ 2 min prior to UEO of seizures in patients A, B, D, F, and G.

channel for the test patient. The parameters were setWglile JSPECT was trained on signature patterns from patients
N = 200, M = 100, O = 10, and to the previously A-E., no information associating these patterns temporally with

estimated values fof,, and fu;. seizure onset was used in training, and this finding is not likely
4) To evaluate signature event detection performance, a ébe an artifact of study design.

tection threshold was chosen to allow a maximum of one The times between detection of Signature events and EEG

FN detection. All detections without a following clin- Onsets are shown in Fig. 10.

ical seizure were inspected by a board-certified reader

(BL). These cases were split into detections with a fol- V. DISCUSSION

lowing SCS and FP detections. The FP rate, or number ofrhis study suggests that nonparametric detection theory is
FPs/hour (FPH) was calculated. A complete ROC curvg howerful tool for detecting signature events in the rough
analysis was not performed, due to the small number gfy| environment which surrounds the intracranial EEG.
available seizures for each patient. Historically, linear features have dominated the detection
5) Th_e time from detection of each 5|gnatur¢ event to EEﬁ%erature because of the broad acceptance of the Gaussian
seizure onset was calculated b_y companng evem.det%?s'tribution [13]. JSPECT is a relatively simple feature from
tion times with time of unequivocal electrical seizur he nonparametric detector family that we have demonstrated to
onset (UEO_) as marked by.an expert EEG reader (BL)'have utility in processing these biosignals. In future work, new
_ The JSPECT signature detectionethod was implemented o a4res hased on more sophisticated nonparametric detectors
in C++. The custom wnttep softwatdrtualEEG was used for such as Wilcoxon Detector, Spearman Rho Detector or Kendal
computatlpn and for reading the raw EEG data from CDs. TH%U Detector [13] should be tested on EEG data.
FFTW C-library [26] was used to compute the FFT. The temporal derivative stage in the algorithm raises the ques-
tion about the physical EEG measurement setup from an elec-
trical engineering point of view. Electrodes measure the voltage
The evaluation procedure was applied on continuous EH@tween two regions in the brain. Neuronal activity (predom-
recordings from ten patients. Table | shows the EEG chann#&lantly post-synaptic potentials in this case) produces electric
selected for analysis and the frequency bands delimiting sigratrents that flow between brain regions. If the two measuring
ture events for each patient, as determined by JSPECT Visuagions are modeled as patrtially insulated regions (equivalent
ization. Stereotyped signature events were found in five out tof a capacitor) with random current sources between them, the
the ten study patients (see Table ). electrodes would measure the temporal integral of the neuronal

(Table 1) were found to be in the site of earliest EE

IV. RESULTS
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mentation, depending upon the nature of alarm or therapeutic
intervention to which it might be coupled.

Some signature events appeared to be more diffusely dis-
. tributed than others, and their evolution over time appeared to
Fl C vary. Events in higher frequency bands were better detected

' than those in lower frequency bands. This may be because of
the fixed FFT window length, which could be avoided using
alternative transforms (wavelet), or because lower frequency
activity (0-15 Hz) is of higher power and fluctuates more in
normal background EEG, particularly in relation to subject
state of awareness (e.g., awake, asleep, etc.). This poorer
performance at lower frequencies may potentially inhibit the
use of JSPECT in patients with neocortical epileptic foci,
which may initiate seizures at these lower frequencies [9], [18].
JSPECT was not applied successfully to patients with more
Fig. 10. Signature events: Time between detection of signature events and@éfise or multifocal seizure onsets. A more careful evaluation
onset for all patients. The range and mean detection times with respect to UgPothe method, and of the underlying neurophysiology in this
of seizures is plotted for each patient. The UEO is marked-a%). patient group is warranted.

Of interest, several patients demonstrated 80-100 Hz activity
activity [25]. In this model, the temporal derivative of the meain the seconds just before seizure onset, as revealed by JSPECT.
sured EEG voltage may better represent the actual activity in thech activity has been described previously in intracranial
brain. recordings in patients with temporal lobe epilepsy [19]. This

The signal analysis methodology and its application crctivity could not be explored in detail, given the limitations
clinical data presented in this paper are important for severl recording bandwidth (Nyquist frequency of 100 Hz) of the
reasons: First, they demonstrate a computationally efficigiutine clinical system used to obtain these recordings.
method for extracting, detecting and displaying patient-spe-One of the most interesting questions raised by this paper is
cific EEG events embedded in large volumes of EEG datahat generates the cellular activity responsible for the observed
Second, they demonstrate that these events typically occur‘signature events” picked up by our method; and what is their
to minutes prior to clinical seizures, in patients with unilateraignificance to the process of generating individual seizures?
mesial temporal lobe epilepsy. Finally, this paper suggests tWs¢ hypothesized that individual seizures are generated in a cas-
unilateral temporal seizures of focal onset may be generatetle of electrophysiological events that may begin up to hours
by different mechanisms than seizures of bilateral independenior to seizure onset [8]. In one of these steps, in the minutes
temporal and extra-temporal onset, as the seizure precurdorseconds prior to seizure onset, rhythmic “chirp-like-events”
detected by our method were only found prior to unilaterdlave been observed. The method described in this paper pro-
mesial temporal onset seizures and not on bilateral independédes an automated means for detecting these events. As part of
or extra-temporal onset seizures. Another, perhaps more plthis process, SCSs, and perhaps these more localized signature
sible explanation for this finding is the possibility that EEGvents, may play an important role in promoting localized syn-
electrodes were not placed very close to the epileptic focusdhronization which, under the right circumstances, may propa-
the patients with bitemporal and extratemporal seizure onseagafe into a clinical seizure. The signature events could identify
perhaps evidenced by the more diffuse pattern of seizure orthetregion whose synchronization might be critical to generating
on the intracranial EEG in several of these patients. seizure onset, or identify the “point of no return,” beyond which

JSPECT was computationally efficient, processing data orntas impossible to prevent seizure onset. These hypotheses are
Pentium-Il 266-MHz machine 300 times faster than real tim¢estable, and must be verified in appropriate clinical and animal
Though this is encouraging performance, the method will stiésearch studies, which are far beyond the scope of this paper.
require considerable optimization before being ready for im- Of interest, the frequency modulation over time of the sig-
plementation in low-power, 100 kHz implantable computingature events detected by JSPECT, which often appeared in the
environments. Some challenges associated with applying tfasm of “chirps,” bears strong resemblance to patterns defining
method in the clinical arena include automating the processeadéctrographic seizures, as defined by Reisirged. and Shiff
selecting a “focus channel” to be analyzed. In this paper, thes al. [20], [21]. With this in mind, it is possible that the sig-
choice was ultimately verified by an expert EEG reader (BLhature events detected by JSPECT may be very small, local-
In some patients, either with seizure patterns arising outsideizéd seizures, which may play a role in synchronizing larger
the mesial temporal lobe, or where recording electrodes miagtworks until enough tissue is recruited to propagate an event
be placed outside of the focus region, such patterns may motlely enough to cause clinical symptoms.
be recordable. Preliminary experiments showed that the perOf the ten patients tested, five demonstrated signature events
formance of JSPECT was insensitive to the choice of the fritat were associated strongly with electrical seizure onsets.
guency band. A generic detector using a common frequeritiie other five patients either had seizure onsets that were more
band (e.g., 16-100 Hz) would slightly increase the false-alamiffuse or of different enough morphology that JISPECT was
rate, but might still perform well enough for a clinical implenot able to detect them. Alternatively, it is possible that depth
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electrodes were not positioned near the seizure-onset zone if]
these individuals. This would not be unusual, as our experience
indicates that electrodes placed outside of the seizure focuﬁ
region at a distance of more than 1-2 cm, in many cases,
may be sufficiently far away to miss the earliest EEG changes[4]
associated with seizures [8], [22], [18], [23], [25]. It is also
possible that activity in the frequency range on which we
focused our efforts was not important to seizure generation inl®]
these patients. Event though JSPECT did not detect signatur
events in those five patients it could be valuable for early
detection of unequivocal EEG onsets, which goes beyond them
focus of this paper.

(8]
VI. CONCLUSION
9
Signature preseizure events, as detected by JSPECT, appe[a]r
to have significant statistical association with electrical onsef!?
of seizures in individuals with unilateral onset mesial temporal
lobe epilepsy. While the method detects EEG events that occiri]
primarily between 5 and 80 s prior to electrographic seizure
onset, it is more likely that these events are involved in thg;y
early stages of initiating seizures, before they begin to propa-
gate, rather than as remote seizure precursors. Their preseqfa
prior to SCSs adds more credibility to their potential impor-
tance, though this must be taken into account when assessifig]
their utility for triggering intervention to abort clinical events. (15]
This utility will likely depend upon side effects of the target in-
tervention, and whether it will disrupt normal brain function. [16]
Higher FP rates are likely to be better tolerated if the interven-
tion they trigger is relatively benign. [17]
JSPECT produced FP alarm rates which are comparable
to commonly used methods of seizure detection (e.g., [1])118]
though this limited study is not sufficient to compare JSPECT
to other, more widely tested methods. At present, few studieg9]
of algorithms developed for identifying events associated wit
the “preictal cascade” have been published which analyz
comparable volumes of clinical EEG data [8], [24], though[21]
the number of patients analyzed in this study was small. FurtheL :
more extensive studies will be required to assess the performance
of the JSPECT in the broad range of patients with medically23]
resistant epilepsy. This technique provides a rapid method for
detecting physiological events that appear to be important in
the last states of seizure generation. It is possible, with morg4]
validation of this method, that this technique could become
part of a more comprehensive system for predicting epileptig,s;
seizures and triggering intervention to abort them prior to their
clinical expression. [26]

20]
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