Kinematics - II

Velocity and Acceleration Analysis
Relationship between Velocities and Accelerations in A of Two Points fixed to B

- Points \(P \) and \(Q \) fixed to (in) \(B \)
- \(O \) is a point fixed in \(A \)
- Position vectors for \(P \) and \(Q \) in \(A \) are denoted by \(\mathbf{p} \) and \(\mathbf{q} \)
- Velocities for \(P \) and \(Q \) in \(A \)
 \[
 A\mathbf{v}^P = \frac{A}{dt} \mathbf{d} \mathbf{p}, \quad A\mathbf{v}^Q = \frac{A}{dt} \mathbf{d} \mathbf{q}
 \]
- Accelerations for \(P \) and \(Q \) in \(A \)
 \[
 A\mathbf{a}^P = \frac{A}{dt} \frac{A\mathbf{v}^P}{dt}, \quad A\mathbf{a}^Q = \frac{A}{dt} \frac{A\mathbf{v}^Q}{dt}
 \]
Velocities of P and Q

- Triangle law of vector addition for points P and Q
 \[\mathbf{q} = \mathbf{p} + \mathbf{r} \]
- Differentiate both sides
 \[\frac{A}{dt} \mathbf{d} \mathbf{q} = \frac{A}{dt} \mathbf{d} \mathbf{p} + \frac{A}{dt} \mathbf{d} \mathbf{r} \]
- Substitute definitions of velocities
 \[A \mathbf{v} Q = A \mathbf{v} P + \left(\frac{B}{dt} \mathbf{d} \mathbf{r} + A \mathbf{\omega}_B \times \mathbf{r} \right) \]
- Velocities for P and Q in A
 \[A \mathbf{v} Q = A \mathbf{v} P + A \mathbf{\omega}_B \times \mathbf{r} \]
Accelerations of \(P \) and \(Q \)

- Velocities for \(P \) and \(Q \) in \(A \)

\[
A_{vQ} = A_{vP} + A \omega^B \times \mathbf{r}
\]

- Differentiate both sides

\[
\frac{d}{dt}(A_{vQ}) = \frac{d}{dt}(A_{vP}) + \frac{d}{dt}(A \omega^B \times \mathbf{r})
\]

\[
A_{aQ} = A_{aP} + \frac{d}{dt}(A \omega^B \times \mathbf{r}) + A \omega^B \times \frac{d\mathbf{r}}{dt}
\]

- Accelerations for \(P \) and \(Q \) in \(A \)

\[
A_{aQ} = A_{aP} + A \alpha^B \times \mathbf{r} + A \omega^B \times (A \omega^B \times \mathbf{r})
\]

- tangential acceleration
- centripetal (normal) acceleration
Relationship between Velocities and Accelerations in A of Points described in B

- Point P fixed to (in) B
- Point Q moving in B (but easily described in B)
Velocities of P and Q

- Triangle law of vector addition for points P and Q
 \[q = p + r \]

- Differentiate both sides
 \[\frac{A}{dt}dq = \frac{A}{dt}dp + \frac{A}{dt}dr \]

- Substitute definitions of velocities
 \[A v_Q = A v_P + \left(\frac{B}{dt}dr + A \omega^B \times r \right) \]

- Velocities for P and Q in A
 \[A v_Q = A v_P + B v_Q + A \omega^B \times r \]
Velocity and Acceleration of Q in B

- Point Q moving in B has position vector s in B
 \[s = \overline{QQ} \]

- Velocity, acceleration
 \[\frac{B}{dt} \frac{ds}{dt} = B \mathbf{v}_Q, \quad B \mathbf{a}_Q = \frac{B}{dt} \left(B \mathbf{v}_Q \right) \]
Acceleration of P and Q

- Velocities for P and Q in A

$$A v_Q = A v_P + B v_Q + A \omega_B \times r$$

- Differentiate in A

$$A a_Q = \frac{A d}{dt}(A v_Q) = \frac{A d}{dt}(A v_P) + \frac{A d}{dt}(B v_Q) + \frac{A d}{dt}(A \omega_B \times r)$$

$$\{A a_P\}$$

$$\left\{\begin{array}{l}
\frac{A d}{dt}(A \omega_B) \times r + A \omega_B \times \left(\frac{B dr}{dt} + A \omega_B \times r\right) \\
\frac{B d}{dt}(B v_Q) + A \omega_B \times B v_Q
\end{array}\right.$$
Acceleration of P and Q

\[\mathbf{a}^Q = \mathbf{a}^P + \mathbf{a}^Q + A_\alpha \times \mathbf{r} + A_\omega \times (A_\omega \times \mathbf{r}) + 2A_\omega B \times \mathbf{v}^Q \]

- Tangential acceleration
- Centripetal (normal) acceleration
- Coriolis acceleration

Special case: $\mathbf{r} = 0$

\[\mathbf{a}^Q = \mathbf{a}^\overline{Q} + B \mathbf{a}^Q + 2A_\omega B \times \mathbf{v}^Q \]