Matlab Exercise II: Simulation of a Rolling/Sliding Disk

Find the position vector of the center \((C^*)\) of the disk in frame \(A\) and express it in terms of triad \((a_1, a_2, a_3)\)

\[
\overrightarrow{OC^*} = \overrightarrow{OQ} + \overrightarrow{QC^*}
\]

\[
= (?) \overrightarrow{a_1} + (?) \overrightarrow{a_2} + (?) \overrightarrow{a_3}
\]

Reference Triads

- Rotate triad \(A\) about \(z\) through \(q_1\) followed by rotation about \(x\) by 90 deg to get \(E\)
- Rotate triad \(E\) about \(-x\) through \(q_2\) to get \(B\)
- Rotate triad \(B\) about \(z\) through \(q_3\) to get \(C\) (not shown)

Imagine \(E\) to be a virtual body that is attached to \(Q\)

Imagine \(B\) to be a virtual body that is attached to \(C^*\)
Angular Velocity: Components

\[\omega_C = u_1 \mathbf{b}_1 + u_2 \mathbf{b}_2 + u_3 \mathbf{b}_3 \]

- \(u_i \) are the components of the angular velocity of the disk with respect to the reference triad \(B \).

\[\omega_C = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2 + u_3 \mathbf{a}_3 \]

- \(u_i \) are the components of the angular velocity of the disk with respect to the reference triad \(A \).

Express the time derivative of each coordinate in terms of the five coordinates and the velocities \(u_i \).

\[\dot{\omega}^C = \dot{\omega}^E + \omega^B \times R^C + R^C \dot{\omega}^C = \dot{\mathbf{a}}_1 \mathbf{b}_1 + \dot{\mathbf{b}}_1 + \dot{\mathbf{b}}_2 \]

\[\dot{\omega}^C = u_1 \dot{\mathbf{b}}_1 + u_2 \dot{\mathbf{b}}_2 + u_3 \dot{\mathbf{b}}_3 = -\dot{q}_1 \mathbf{b}_1 + \dot{q}_1 \cos q_3 \mathbf{b}_3 + (\dot{q}_1 \sin q_2 + \dot{q}_3) \mathbf{b}_3 \]

- \(u_i = -\dot{q}_2 \)
- \(u_2 = \dot{q}_1 \cos q_3 \)
- \(u_3 = \dot{q}_3 \sin q_2 \)
- \(u_4 = \dot{q}_4 \)
- \(u_5 = \dot{q}_5 \)

\[\dot{q}_1 = \frac{u_4}{\sin q_3}, \quad \dot{q}_2 = \frac{u_3}{\cos q_3} \]

Two constraints which reduce the disk's degrees of freedom from 5 to 3...

Homework

Program Structure

- **disk_simulation.m**: Input: \(u \) (3x1 rolling, 5x1 sliding) \(q_0 \) (5x1 vector) \(t_{stop} \) (stopping time) Output: \(\dot{q}_0 \)
- **get_qdot_from_u.m**: Input: \(u \) Output: \(\dot{q}_0 \)
- **disk_animation.m**: Input: \(R \) Output: \(\dot{R} \)
- **get_R_r.m**: Input: \(q \) Output: \(\dot{R} \) & \(\dot{q} \)