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ABSTRACT | In this paper, we provide a theoretical framework

for controlling graph connectivity in mobile robot networks.

We discuss proximity-based communication models composed

of disk-based or uniformly-fading-signal-strength communica-

tion links. A graph-theoretic definition of connectivity is pro-

vided, as well as an equivalent definition based on algebraic

graph theory, which employs the adjacency and Laplacian

matrices of the graph and their spectral properties. Based on

these results, we discuss centralized and distributed algorithms

to maintain, increase, and control connectivity in mobile robot

networks. The various approaches discussed in this paper

range from convex optimization and subgradient-descent algo-

rithms, for the maximization of the algebraic connectivity of

the network, to potential fields and hybrid systems that main-

tain communication links or control the network topology in a

least restrictive manner. Common to these approaches is the

use of mobility to control the topology of the underlying com-

munication network. We discuss applications of connectivity

control to multirobot rendezvous, flocking and formation con-

trol, where so far, network connectivity has been considered an

assumption.

KEYWORDS | Algebraic graph theory; convex and subgradient

optimization; graph connectivity; hybrid systems

I . INTRODUCTION

Mobile robot networks have recently emerged as an inex-

pensive and robust way of addressing a wide variety of

tasks ranging from exploration, surveillance, and recon-

naissance, to cooperative construction and manipulation.

The success of these stories relies on efficient information

exchange and coordination between the members of the

team. In fact, recent work on distributed consensus and
state agreement has strongly depended on multihop com-

munication for convergence and performance guarantees

[1]–[14].

Multihop communication in multirobot systems has

typically relied on constructs from graph theory, with

weighted proximity and disc-based graphs gaining the most

popularity. Besides their simplicity, these models owe

their popularity to their resemblance to radio signal
strength models, where the signals attenuate with the dis-

tance [15]–[17]. In this context, multihop communication

becomes equivalent to network connectivity, defined as

the property of a graph to transmit information between

any pair of its nodes.

Network connectivity has been widely studied in the

area of wireless and ad hoc networks. Of great importance

in this field is the power management of the nodes for
optimal routing and lifetime of the network, while ensur-

ing connectivity [18]–[23]. This research has given rise to

connectivity or topology control algorithms that regulate

the transmission power of the nodes and, therefore, their

communication range. Approaches range from cone-based
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[24]–[26] to distributed algorithms that do not involve any

position information of the nodes [27], [28]. Related is also

work on asymptotic bounds on the number of neighbors

required to ensure connectivity in randomly deployed

networks [29], as well as on the critical interference above

which connectivity is lost [30]. However, this type of work

focuses more on the power consumption and routing

problem than the actuation and control.
Although networks have long served as models of local

interactions in the field of mobile robotics (Fig. 1), until

recently their structural properties have been assumed and

decoupled from the control objectives, as in the case of

connectivity in distributed consensus [1]–[14]. A first at-

tempt to control the network structure was with the design

of networks with maximal connectivity, where eigenvector

structure-based approaches for tree networks [31], [32] were
followed by optimization-based approaches applied to more

general networks [33], [34]. These results were derived for

static, state-independent, networks. Recently, controllabil-

ity frameworks for state-dependent graphs were also pro-

posed [35]. Nevertheless, the first work to treat connectivity

as a control objective was [36], in the context of multirobot

rendezvous. Since then, a large amount of research has been

targeted in this direction, and a wide range of applications
and solution techniques have been proposed.

A metric that is typically employed to capture connec-

tivity of robotic networks is the second smallest eigenvalue

�2ðLÞ of the Laplacian matrix L of the graph, also known

as the algebraic connectivity or Fiedler value of the graph.

It is well known that �2ðLÞ is a concave function of the

Laplacian matrix, and when positive definite, it implies

network connectivity [37]–[40]. This has given rise to
optimization-based connectivity controllers that rely on

maximization of the Fiedler value [41], [42]. Since �2ðLÞ is

a function of the network’s structure via the Laplacian

matrix, connectivity algorithms that relied on it were ini-

tially centralized [41]. Only recently have there been sub-

gradient algorithms for its distributed optimization [42].

Furthermore, the Fiedler value is a nondifferentiable

function of the Laplacian matrix, which presents difficul-
ties in designing feedback controllers to maintain it

positive definite. Ways to overcome this problem involve

either positive definiteness constraints on the determinant
of the Laplacian matrix that is a differentiable function of

the Laplacian [43], or distributed consensus on either

Laplacian eigenvectors [44], [45] or on the network struc-

ture itself [46] for local estimation of the Fiedler value of

the overall network.

Alternatively, connectivity can be captured by the sum

of powers
PK

k¼0A
k of the adjacency matrix A of the net-

work, which represents the number of paths up to length K
between every pair of nodes in the graph [40]. By defini-

tion of graph connectivity, if this number is positive

definite for K ¼ n� 1 and all pairs of nodes, then the

network is connected (n denotes the number of nodes).

For originally connected networks, maintaining positive

definiteness of all positive entries of
PK

k¼0A
k for any

K � n� 1, maintains paths of maximum length K between

agents and, as shown in [47], is sufficient to maintain
connectivity of the network. This typically gives rise to

optimization-based connectivity controllers [47], [48] that

are often centralized due to the multihop agent depen-

dencies that are introduced by the powers of the adjacency

matrix. Since smaller powers correspond to shorter de-

pendencies (paths), distribution is possible as K decreases.

If K ¼ 1, connectivity maintenance reduces to preserving

the links of a connected spanning subgraph of the network
and due to differentiability of the adjacency matrix, often

results in feedback solution techniques. Discrete-time

approaches are discussed in [36], [49], and [50], while

[51]–[56] rely on local gradients that may also incorporate

switching in the case of link additions. Switching between

arbitrary spanning topologies has also been studied with

the spanning subgraphs being updated by local auctions

[46], distributed spanning tree algorithms [57], combina-
tion of information dissemination algorithms and graph

picking games [58], or intermediate rendezvous [59], [60].

This class of approaches are typically hybrid, combining

continuous link maintenance and discrete topology

control. The algebraic connectivity �2ðLÞ and number of

paths
PK

k¼0A
k metrics can also be combined to give

controllers that maintain connectivity, while enforcing

desired multihop neighborhoods for all agents [61].
The results discussed above have been successfully

applied to multiple scenarios that require network con-

nectivity to achieve a global coordinated objective. Indi-

cative of this work is recent literature on connectivity

preserving rendezvous [36], [52], [56], [62], [63], flock-

ing [55], [64], and formation control [56], [59], where so

far connectivity had been an assumption. Further exten-

sions and contributions involve connectivity control for
double integrator agents [49], agents with bounded inputs

[65]–[67] and indoor navigation [61], as well as for

communication based on radio signal strength [68]–[71]

and visibility constraints [36], [62], [72]–[74]. Periodic

connectivity for robot teams that need to occasionally split

in order to achieve individual objectives [75] and sufficient

conditions for connectivity in leader–follower networks

Fig. 1. Networks have long served as models of local interactions in

the field mobile robotics. Robots are typically associated with the

nodes of a graph and communication links with the edges.
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[76], also add to the list. Early experimental results have
demonstrated efficiency of these algorithms also in practice

[75], [77], [78].

In this paper, we focus on the works of [41]–[43], [46],

[56], and [64], since they are the first to have formally

addressed connectivity control of mobile networks for a

wide range of applications and solution techniques. Our

contribution is to present a cohesive overview of the key

results in these papers in a unified framework. This includes
basic notions of network connectivity and control-theoretic

methods for connectivity guarantees and convergence. The

results discussed in this work incorporate a variety of

mathematical tools, ranging from spectral graph theory and

semidefinite programming, to gradient-descent algorithms

and hybrid systems. A byproduct of this work is to classify

the available literature with respect to the connectivity

metrics and solution techniques and provide a basis upon
which future research can be built.

The rest of this paper is organized as follows. In

Section II, we develop graph-theoretic models of commu-

nication and discuss network connectivity. In Section III,

we present centralized [41] and distributed [42] optimi-

zation-based approaches to maximizing the algebraic

connectivity of a network, while in Section IV, we discuss

gradient-based feedback controllers that rely on the
spectral properties of the network [43]. In Section V, we

introduce distributed hybrid solutions to the problem [46],

[56], while in Section IV, we discuss application of

connectivity control to connectivity preserving rendezvous

[56], flocking [64], and formation control [56].

II . CONNECTIVITY IN MOBILE
ROBOT NETWORKS

Consider n points robots in Rd and let xiðtÞ 2 Rd denote

the position of robot i at time t � 0. The robots can be

described by either single integrator models

_xiðtÞ ¼ uiðtÞ (1)

where uiðtÞ 2 Rd denotes the control input to robot i at

time t, or double integrator models

_xiðtÞ ¼ viðtÞ (2a)

_viðtÞ ¼ uiðtÞ (2b)

where viðtÞ 2 Rd denotes the velocity of robot i at time t.
Assume further that the robots have integrated wireless

communication capabilities and denote by ði; jÞ a commu-

nication link between robots i and j. With every

communication link ði; jÞ, we associate a weight function

w : Rd �Rd ! Rþ

such that

wijðtÞ ¼ w xiðtÞ; xjðtÞ
� �

¼ f xijðtÞ
�� ��

2

� �
(3)

for some f : Rþ ! Rþ, where xijðtÞ ¼ xiðtÞ � xjðtÞ.1 We

choose the function f to be a decreasing function of the
inter-robot distance kxijðtÞk2 such that

1� � G f xijðtÞ
�� ��

2

� �
� 1; if xijðtÞ

�� ��
2
G �1

and

0 � f xijðtÞ
�� ��

2

� �
G �; if xijðtÞ

�� ��
2
> �2

for 0 G �1 G �2 and small enough 0 G � G 1 (Fig. 2). This

definition captures the fact that signal strength between

wireless robots is strong up to a distance �1 and then
decreases rapidly until it practically vanishes beyond a

distance �2.

The system described above gives rise to a weighted

state-dependent graph

G ¼ ðV;WÞ

where V ¼ f1; . . . ; ng denotes the set of nodes indexed by

the set of robots and W : V �V �Rþ ! Rþ denotes

the set of edge weights, such that

Wði; j; tÞ ¼ wijðtÞ

for i; j 2 V and with wijðtÞ as in (3). The set ~EðtÞ ¼
fði; jÞjwijðtÞ > 0g is called the set of directed edges of G,

while the unordered pair fi; jg is an edge of G if wijðtÞ > 0

or wjiðtÞ > 0. If wijðtÞ ¼ 0 implies wjiðtÞ ¼ 0 for all

i; j 2 V, then the weights are called weakly symmetric
and the graph is called undirected. On the other hand, if

wijðtÞ ¼ wjiðtÞ for all i; j 2 V, then the weights are called

symmetric. Clearly, if a graph has symmetric weights, then

it is also undirected. Throughout this paper, we assume

graphs G with symmetric weights that additionally have no

loops, i.e., wiiðtÞ ¼ 0 for all i 2 V. We also define the set of

neighbors of node i 2 V by NiðtÞ ¼ fj 2 Vjði; jÞ 2 ~EðtÞg,
which in the case of undirected graphs results in a mutual
adjacency relationship between nodes, i.e., if i 2 NjðtÞ
then j 2 NiðtÞ. Similarly, we define a directed path of

1We denote by Rþ the set ½0;1Þ and by Rþþ the set ð0;1Þ.
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length k by a sequence of kþ 1 distinct nodes i0; i1; . . . ;
ik 2 V such that ðip�1; ipÞ 2 ~EðtÞ for all 1 � p � k. If the
graph G is undirected, then so are its paths. An important

topological invariant of graphs is graph connectivity, which

for the case of undirected graphs is defined as follows.

Definition 2.1 (Graph Connectivity): We say that an undi-

rected graph G is connected if for every pair of nodes there

exists a path starting at one node and ending at the other.

Network connectivity is an important property of
robotic networks designed to achieve global coordinated

objectives, since it ensures information sharing via multi-

hop communication paths between members of the team.

This property can be efficiently captured using an equiv-

alent algebraic representation of graphs by the adjacency

and Laplacian matrices.

A. Algebraic Definitions of Connectivity
We define the adjacency matrix AðtÞ 2 Rn�n

þ of the

weighted graph G with entries

AðtÞ½ �ij¼ wijðtÞ: (4)

Clearly, if the network has symmetric weights, then the

adjacency matrix is a symmetric matrix. Furthermore, if
the weights satisfy wijðtÞ 2 f0; 1g [Fig. 2(a)], then the

powers of the adjacency matrix of a graph are closely

related to network connectivity. In particular, we have the

following result [40].

Theorem 2.2 (Graph Connectivity): The entry ½AkðtÞ�ij of

the matrix AkðtÞ is the number of paths of length k from

node i to node j in G. Therefore, the graph G is connected
if and only if there exists an integer K such that all the

entries of the matrix CKðtÞ ¼
PK

k¼0A
kðtÞ are nonzero.

Note that the integer K in Theorem 2.2 is upper

bounded by n� 1, since this is the length of the longest

possible path in a network of n nodes. Note also that for

any K � n� 1 the inequality

CKðtÞ½ �ij > 0

enforces paths of maximum length K between nodes i and j
in V. It is shown in [47] that, for initially connected

Fig. 2. Different choices for the function f. In particular, (a) fðyÞ ¼ 1 if y � �2; (b) fðyÞ ¼ 1=1þ e��ðy��Þ with � ¼ ð2=ð�2 � �1ÞÞ logðð1� �Þ=�Þ,
and � ¼ ð�1 þ �2Þ=2; (c) fðyÞ ¼ ð1=ð�1 � �2ÞÞy � ð�2=ð�1 � �2ÞÞ if �1 � y G �2; and (d) fðyÞ ¼ e��ðy��1Þ if y > �1, with � ¼ ð1=ð�2 � �1ÞÞ logð1=�Þ.
The above plots are for �1 ¼ 0:6, �2 ¼ 1:4, and � ¼ 0:01.
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networks, requiring that ½CKðtÞ�ij > 0, for any K � n� 1,
whenever ½CKð0Þ�ij > 0 is sufficient for network connecti-

vity for all time t � 0. This result can be easily understood

if applied for K ¼ 1, where it states that maintaining all

one-hop links of an originally connected network is suffi-

cient for connectivity for all time. In what follows, when

relying on the matrix CKðtÞ to ensure connectivity, we only

consider the case K ¼ 1. The general case is discussed in

[47] and [48].
Alternatively, graph connectivity can be captured using

the Laplacian matrix LðtÞ 2 Rn�n of the network G,

which is defined by

LðtÞ½ �ij¼
�wijðtÞ; if i 6¼ jP

s6¼i wisðtÞ; if i ¼ j.

�
(5)

If DðtÞ ¼ diagð
Pn

j¼1 wijðtÞÞ denotes the diagonal matrix of

degrees of the network, also called the Valency matrix of

G, then the Laplacian matrix can be written as

LðtÞ ¼ DðtÞ � AðtÞ:

The Laplacian matrix of a network G with symmetric

weights is always a symmetric positive-semidefinite

matrix with spectral properties closely related to network

connectivity, as it can be seen from the following

theorem [40].

Theorem 2.3: Let

0 � �1 LðtÞð Þ � �2 LðtÞð Þ � � � �n LðtÞð Þ

be the ordered eigenvalues of the Laplacian matrix LðtÞ.
Then, �1ðLðtÞÞ ¼ 0 with corresponding eigenvector 1, i.e.,

the n� 1 vector of all entries equal to 1. Moreover,

�2ðLðtÞÞ > 0 if and only if G is connected.

Besides an indicator of connectivity, the second

smallest eigenvalue �2ðLðtÞÞ of the Laplacian matrix of

G, also called the algebraic connectivity or Fiedler value
of the network, is also a measure of the robustness of

the network to link failures, captured by the notion of

k-connectivity [40].

Definition 2.4 (k-Connectivity): Let �ðGÞ be the mini-

mum number of edges that if removed from G increase

its number of connected components. Then, for any

k � �ðGÞ the undirected graph G is called k-connected.
The edge connectivity �ðGÞ and algebraic connectivity

�2ðLðtÞÞ are related by the inequality [40]

�2 LðtÞð Þ � �ðGÞ:

Therefore, if �2ðLðtÞÞ > k� 1, then the network G is
k-connected. Note that if k ¼ 1, then k-connectivity

reduces to the usual definition of connectivity

(Definition 2.1). The results discussed above give rise

to the following statement of the connectivity control

problem.

Problem 1 (Network Connectivity Control): Given an

initially connected state-dependent network G, design
distributed controllers fuiðtÞgn

i¼1 for the robots so that

the closed-loop system (1) or (2) guarantees that G is

k-connected for all time.

In what follows, we discuss optimization [41], [42] and

feedback-based [43], [46], [56] solutions to Problem 1 that

employ both connectivity metrics developed above, i.e.,

the adjacency matrix AðtÞ and its powers as well as the

algebraic connectivity �2ðLðtÞÞ. We unify these ap-
proaches under a common control framework and charac-

terize them with respect to the amount of distribution they

possess.

III . OPTIMIZATION-BASED
CONNECTIVITY CONTROL

Observe that �2ðLðtÞÞ is a concave function of LðtÞ in the

space 1? given by the infimum of a set of linear functions

in LðtÞ, i.e.,

�2 LðtÞð ÞzTz � zTLðtÞz

for all z 2 1?, or equivalently

�2 LðtÞð Þ ¼ inf
z21?

zTLðtÞz
zTz

: (6)

Therefore, maximization of �2ðLðtÞÞ gives rise to

optimization-based approaches to the connectivity control

problem. In other words, a sufficient solution to Problem 1

can be obtained by solving the optimization problem

max
x2Rdn

�2 LðxÞð Þ (7)

where x ¼ ½x1 x2 . . . xn�T 2 Rdn denotes the vector of all

robot positions. The two approaches to this problem that

we discuss rely on concavity of the state-independent

problem

max
L2Sn

�2ðLÞ (8)
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to obtain an equivalent convex formulation, and then pro-
pose centralized and distributed iterative algorithms, re-

spectively, to introduce the nonconvex dependence on the

state x 2 Rdn.

A. Centralized Connectivity Maximization
The key idea behind a centralized solution to problem

(8) is to employ the following result that relates positive

definiteness of the algebraic connectivity to positive

definiteness of a quadratic expression of the Laplacian

matrix [41].

Proposition 3.1: Let P ¼ ½p1 . . . pn�1� 2 Rn�n�1 be such

that pT
i 1 ¼ 0 for all i ¼ 1; . . . ; n� 1 and pT

i pj ¼ 0 for all
i 6¼ j. Then, �2ðLÞ > 0 if and only if PTLP � 0.

Proof: Since for any graph we have that L 	 0 and

L1 ¼ 0, the smallest eigenvalue �1ðLÞ ¼ 0 is always zero

and rankðLÞ � n� 1. This implies that �2ðLÞ > 0 if and

only if wTLw > 0 for all w 2 1?.

Let z 2 Rn�1 and consider the quadratic form

zTPTLPz ¼ ðPzÞTLPz. Let w ¼ Pz. Since P is full rank

and 1Tw ¼ 1TPz ¼ 0 for any z 2 Rn�1, the mapping
w ¼ Pz defines an injection between Rn�1 and 1?.

Therefore, wTLw > 0 for all w 2 1? if and only if

zTPTLPz > 0 for all z 2 Rn�1. h
Proposition 3.1 results in an equivalent convex

formulation for problem (8) by

max
L2Sn

�

s.t. PTLP � �I n�1 (9)

which can be solved for the optimal Laplacian matrix L?
using readily available tools from semidefinite program-

ming [79].

To obtain a set of trajectories that drive the robots from

a set of initial configurations to a final configuration with

associated Laplacian matrix L?, Kim and Mesbahi [41]

introduce state dependence of the network G via the set of

edge weights described in Fig. 2(d). Along with a set of

minimum distance constraints kxijk2
� �1, this gives rise

to the optimization problem

max
x2Rdn

�

s.t. PTLðxÞP � �I n�1

kxijk2
2 � �2

1 (10)

for all i G j, which now assumes a nonconvex form.

Solution of problem (10) for a trajectory xðtÞ 2 Rdn is

achieved by an iterative algorithm that maximizes the

algebraic connectivity at every step. For this, the distances

kxijk2

2
are differentiated and then discretized by Euler’s

first-order method to give

2 xsþ1
i � xsþ1

j

� �T

xs
i � xs

j

� �
¼ ½X�sþ1

ij � ½X�
s
ij

where X 2 Rn�n
þ is a Euclidean distance matrix, such that

½X�ij ¼ kxijk2

2
and s denotes the iteration index. Similarly,

differentiating and discretizing the weights wij gives

wsþ1
ij ¼ ws

ij þ
@f ½X�ij
� �
@½X�ij

������
s

½X�sþ1
ij � ½X�

s
ij

� �

which results in a discrete Laplacian matrix LðxsÞ.
Substituting in problem (10) gives

max
xsþ12Rdn

�

s.t. PTLðxsþ1ÞP � �I n�1; ½X�sþ1
ij � �2

1

2 xsþ1
i � xsþ1

j

� �T

xs
i � xs

j

� �
¼ ½X�sþ1

ij � ½X�
s
ij (11)

for all i G j. Problem (11) is essentially a linear approxi-

mation to problem (10) and, therefore, there is a potential

for inconsistencies between the robot positions and their

pairwise distances. This problem can be resolved if a

Euclidean distance constraint is enforced on the matrix
X 2 Rn�n

þ . Such a constraint can take the form of a linear

matrix inequality, which is due to the following result.

Theorem 3.2 (Euclidean Distance Matrix): A matrix

X 2 Rn�n
þ is a Euclidean distance matrix if and only if

JXJ 
 0 and ½X�ii ¼ 0 for all i ¼ 1; . . . ; n, where

J ¼ I n � 11T=n.

Therefore, including the Euclidean distance matrix
constraints from Theorem 3.2 to the maximization

problem (11) ensures that there are no inconsistencies

between the robot positions and the inter-robot distances.

The iterative greedy algorithm proposed by Kim and

Mesbahi [41] is guaranteed to converge as the sequence of

algebraic connectivities generated by it is nondecreasing

and upper bounded by n� 1.

B. Distributed Connectivity Maximization
A distributed solution to problem (8) can be obtained

by supergradient optimization [42]. In particular, a
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supergradient matrix for �2ðLðxÞÞ can be obtained by ob-
serving that

�2ð ~LÞzT
2 z2 � zT

2
~Lz2 (12)

where ~L 6¼ L and z2 2 1? is the unit eigenvector of L
corresponding to �2ðLÞ. The right-hand side of (12) can be
further expanded to give

zT
2

~Lz2 ¼ zT
2Lz2 þ zT

2ð ~L � LÞz2

¼�2ðLÞ þ z2zT
2 ; ð ~L � LÞ

	 


which substituted in (12) gives

�2ð ~LÞzT
2 z2 � �2ðLÞ þ z2zT

2 ; ð ~L � LÞ
	 


:

Therefore, the matrix G ¼ z2zT
2 is a supergradient for

�2ðLÞ. Then, the optimal Laplacian matrix L? can be

obtained as the limit of the subgradient iteration

Lsþ1
? ¼ Ls

? þ �sG s: (13)

If the step size �s is the coefficient of a not summable
but square summable series, then the supergradient meth-

od converges to the optimal value. Distributed computa-

tion of the supergradient G s as well as of the eigenvectors

of the Laplacian matrix L is discussed in [80]. According to

this scheme, every robot i computes its own row of the

Laplacian matrix Ls
?, denoted by ½Ls

?�i.
To obtain a set of trajectories that drive the robots from

an initial configuration to a final configuration associated
with the optimal Laplacian matrix L? ¼ lims!1 Ls

?,

DeGennaro and Jadbabaie [42] propose a set of distributed

motion controllers fuiðtÞgn
i¼1 for the robots that essentially

track the sequence of Laplacians Ls
? generated by the

supergradient algorithm (13). State dependence of the

network G is introduced via a set of symmetric weights

that are according to Fig. 2(d) and give rise to a state-

dependent Laplacian matrix LðxÞ defined by (5). There-
fore, associated with every iteration of the supergradient

iteration algorithm (13) is a motion control stage, which

for every robot i is captured by the following optimization

problem:

min
xi2Rd

LðxÞ½ �i� Ls
?

� �
i

�� ��2

2

where ½LðxÞ�i denotes the ith row of the Laplacian matrix

as a function of the robots’ positions, and ½Ls
?�i is the ith

row of the optimal Laplacian computed by robot i at the sth

step of the supergradient iteration. The above optimization
problem is solved using potential functions and results in a

controller

uiðtÞ ¼ �
X
j2Ni

rxi
VijðtÞ (14)

for every robot i, where

VijðtÞ ¼
kxijk2

2 � Ls
?

� ��1

ij

� �2

; if kxijk2 � �2

�2 � Ls
?

� ��1

ij

� �2

; if kxijk2 > �2

8><
>:

and ½Ls
?�
�1
ij is the desired distance between robots i and j,

given by the inverse of the ði; jÞth entry of the target

Laplacian matrix. It is shown in [42] that under certain

boundedness conditions on the tracking error associated

with the optimal Laplacian Ls
?, the supergradient algo-

rithm converges.

IV. CONTINUOUS FEEDBACK
CONNECTIVITY CONTROL

Both approaches discussed in Section III employ

discrete iterative algorithms to control the nondiffer-

entiable algebraic connectivity �2ðLðxÞÞ. However,

Proposition 3.1 and the fact that the determinant of any

matrix is equal to the product of its eigenvalues gives that

�2ðLðxÞÞ > 0 if and only if detðPTLðxÞPÞ > 0. Using this

observation for state-dependent networks G with edge
weights as in Fig. 2(b), Zavlanos and Pappas [43] propose a

class of potential fields � : Rdn ! Rþ that treat connec-

tivity violation as an obstacle in the configuration space.

This is captured in the following result.

Proposition 4.1: Define the potential function

�ðxÞ ¼ log det PTLðxÞP
� ��1

: (15)

Then, the closed-loop system (1) with u ¼ �rx�ðxÞ
guarantees that G is connected for all time.

Proof: The proof of this result relies on positive

invariance of the level sets ��1ð½0; c�Þ ¼ fx 2 Rdnj�ðxÞ �
cg of �, which is due to the fact that _�ðxÞ ¼
�krx�ðxÞk2

2 � 0. h
Note that the potential � is a convex function of

the Laplacian matrix L [79]. However, dependence of

the Laplacian on the state via the edge weights makes

� a nonconvex function of the x 2 Rdn. Therefore,

even though detðPTLðxÞPÞ increases as a result of
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Proposition 4.1, �2ðLðxÞÞ might actually decrease. This
implies that the proposed control scheme ensures only

local maximization of �2ðLðxÞÞ. Zavlanos and Pappas [43]

conclude by providing a closed-form expression for the

controller in Proposition 4.1.

Proposition 4.2: The controller u ¼ �rx�ðxÞ is given by

u ¼ 1

detMðxÞ

tr M�1ðxÞ @
@x1
MðxÞ

h i
..
.

tr M�1ðxÞ @
@xn
MðxÞ

h i

2
6664

3
7775 (16)

where MðxÞ ¼ PTLðxÞP.

Proof: LetMðxÞ ¼ PTLðxÞP and denote by cijðxÞ the

cofactor of the entry mijðxÞ of the matrix MðxÞ. Let CðxÞ
denote the cofactor matrix and denote by cT

ijðxÞ the ði; jÞth
entry of CTðxÞ, i.e., cT

ijðxÞ ¼ cjiðxÞ. Since the determinant is

a differentiable function of matrix entries, in particular, it

is a sum of products of entries, the chain rule gives

@

@xk
detMðxÞ¼

Xn�1

i¼1

Xn�1

j¼1

@

@mij
detMðxÞ


 �
@

@xk
mijðxÞ:

For all j ¼ 1; . . . ; n� 1, computation of the Laplace ex-

pansion of the determinant along the jth column gives

detMðxÞ ¼
Pn�1

i¼1 cijðxÞmijðxÞ a n d h e n c e ð@=@mijÞ
detMðxÞ ¼ cijðxÞ. Therefore

@

@xk
detMðxÞ ¼

Xn�1

i¼1

Xn�1

j¼1

cijðxÞ
@

@xk
mijðxÞ

¼
Xn�1

j¼1

Xn�1

i¼1

cT
jiðxÞ

@

@xk
mijðxÞ

¼ tr CTðxÞ @
@xk
MðxÞ

� �
:

A direct consequence of the Laplace expansion of the

determinant is the identity I � detMðxÞ ¼ MðxÞCTðxÞ.
Proposition 4.1 guarantees that �2ðLðxÞÞ > 0 for all time,
and so detMðxÞ > 0 for all x 2 Rdn. Thus, MðxÞ is

always positive definite, and hence invertible. Therefore,

by left multiplication of the previous identity by M�1ðxÞ,
we get M�1ðxÞ � detMðxÞ ¼ CTðxÞ, and substituting in

the expression for ð@=@xkÞ detMðxÞ, we get

@

@xk
detMðxÞ ¼ tr detMðxÞ �M�1ðxÞ @

@xk
MðxÞ

� �

¼ detMðxÞ � tr M�1ðxÞ @
@xk
MðxÞ

� �

where M�1ðxÞ ¼ ðPTLðxÞPÞ�1
and ð@=@xkÞMðxÞ ¼

PTð@=@xkÞLðxÞP, and the result follows directly from

Proposition 4.1 and a simple application of the chain rule. h

V. HYBRID FEEDBACK
CONNECTIVITY CONTROL

The approach discussed in Section IV is centralized since

every robot requires knowledge of the whole network

structure captured by LðxÞ to compute its controller

(Proposition 4.2). The key idea employed in [56] and [46]

to regulate the structure of the proximity-based network G
in a distributed fashion is the introduction of a binary

control signal 	 2 f0; 1gn�n, such that

½	�ij ¼
1; to activate the link ði; jÞ 2 ~E
0; to deactivate the link ði; jÞ 2 ~E.

�

This gives rise to the weighted graph G	 ¼ ðV;W	Þ
where W	 : V �V �Rþ ! Rþ is the set of edge

weights such that

W	ði; j; tÞ ¼ w	ijðtÞ

with w	ij ¼ wij½	�ij, for wij given by (3). Therefore, the

control signal 	 is essentially a discrete switch on the links
of the network G, but only affects existing links for which

wij > 0. The edge and neighbor sets associated with the

graph G	 are defined by ~E	 ¼ fði; jÞjw	ij > 0g and N	
i ¼

fj 2 Vjði; jÞ 2 ~E	g, respectively. Based on this idea, Ji and

Egerstedt [56] and Zavlanos and Pappas [46] propose a

hybrid model for the mobile network G consisting of

single integrator robots (1) and controllers given by

u	i ¼ �
X
j2N	

i

rxi
 ij: (17)

The functions  ij : Rþ ! Rþ are artificial potential
functions defined on the links of the network, which in the

case of connectivity control take the form (Fig. 3)

 ij ¼
1

�2
2 � kxijk2

2

(18)

to ensure link preservation between adjacent robots. The

rest of this section discusses two particular choices for the

control signal 	 that ensure connectivity of the mobile

network G.
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A. Maintaining Communication Links
The approach followed in [56] relies on maintaining

and increasing the number of links in the network.

Since

lim
kxijk2!��2

 ij ¼ 1

infinite energies  ij take place in the control laws (17)

when two robots i and j form an edge between them, i.e.,

when they move within distance �2 of each other. To

address this problem, Ji and Egerstedt [56] introduce a

hysteresis into the system through the signal 	 given by

the state machine in Fig. 4. In particular, the signal ½	�ij is

such that the total energy is affected by an edge ði; jÞ that
was previously not contributing to the total energy only

when kxijk2 G �1, where 0 G �1 G �2 is the predefined

switching threshold that regulates how fast inter-robot

information is included in the control law. Once the edge

is allowed to contribute to the total energy, it keeps doing

so for all subsequent times. In particular, the signal ½	�ij is
defined by

½	�ijðtþÞ ¼
0; if ½	�ijðt�Þ ¼ 0 and kxijk2 � �1

1; otherwise

�

where the notation ½	�ijðtþÞ and ½	�ijðt�Þ denotes the value

of ½	�ij before and after the state transition in Fig. 4. It can

be shown that this control scheme maintains all links in

G	 and, therefore, ensures connectivity of the network

[46], [56].

Proposition 5.1: Consider the closed-loop system (1)–
(17). Then, all links in G	 are maintained.

Proof: Let

 	 ¼
1

2

Xn

i¼1

 	i

where  	i ¼
P

j2N	
i
 ij, denote the total energy of the

system and observe that

1

2

Xn

i¼1

_ 
	

i ¼
1

2

Xn

i¼1

X
j2N	

i

_xT
ijrxij

 ij

¼ 1

2

Xn

i¼1

X
j2N	

i

_xT
i rxij

 ij � _xT
j rxij

 ij

� �

¼ 1

2

Xn

i¼1

X
j2N	

i

_xT
i rxi

 ij þ _xT
j rxj

 ij

� �

¼
Xn

i¼1

X
j2N	

i

_xT
i rxi

 ij ¼
Xn

i¼1

_xT
i rxi

 	i

by symmetry of the functions  ij. Therefore

_ 	 ¼ �
Xn

i¼1

rxi
 	i

�� ��2

2
� 0

which implies that the level sets  �1
	 ð½0; c�Þ of  	 are

positively invariant and, hence, no links are lost. h

B. Incorporating Link Deletions
The approach followed in [46] extends the hysteresis

model for link activations introduced in [56] to also ac-

count for connectivity preserving link deactivations. For

this, Zavlanos and Pappas [46] propose a set of control

signals f	ign
i¼1, where 	i 2 f0; 1gn�n

denotes the signal

Fig. 4. Hysteresis protocol for adding interagent energy functions to

the total energy function only when agents get within a distance �1 of

each other, rather than when they first encounter each other at a

distance �2.

Fig. 3. The artificial potential function  ijðkxijk2Þ. The function is

symmetric with respect to xi and xj , and when bounded, it guarantees

edge preservation for kxijk2 ! �2. Here, the function is plotted for

�2 ¼ 0:5.
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associated with robot i, that give rise to local neighbor sets

N	i
i defined as in Section V.

The key idea behind the approach developed in [46] is

to employ distributed consensus to populate the signals 	i

with nonadjacent active links and then use these signals to

check link deactivations with respect to connectivity

(Fig. 5). The latter objective is possible since connectivity

verification does not require the actual edge weights, but

only knowledge of what links in the network are active,

which is captured by the signals 	i. In other words, the

signals 	i can be thought of as an abstraction of the adja-

cency matrices of the graphs G	i
obtained when the signals

	i are applied to G. The proposed update rule is2

	iðsþ 1Þ ¼ : 	iðsÞ $ !iðsÞð Þ (19)

where !i 2 f0; 1gn�n is such that ½!i�jk ¼ 1 if a control

action is taken to activate or deactivate link ðj; kÞ (Table 1).

It is shown in [46] that !i can be decomposed into two

disjoint components !a
i and !d

i regulating activations and
deactivations, respectively, as

!i ¼ :	i ^ _j2N	i
i
	j

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

_ ð:	i ^ �iÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
II

0
BB@

1
CCA ^ !a

i

0
BB@

1
CCA

_ 	i ^ !d
i

� �

where

• the ðk; lÞth entry of Term I (with k; l 6¼ i) is equal

to 1 if there exists an active link between robots k
and l that is known to robot i’s neighbors, i.e.,

½_j2N	i
i
	j�kl
¼ 1, but is not known to robot i, i.e.,

½:	i�kl ¼ 1;

• the ðk; lÞth entry of Term II with k ¼ i or l ¼ i is

equal to 1 if there does not exist an active link

between robots k and l, i.e., ½:	i�kl ¼ 1, and is

always zero if k; l 6¼ i.

The condition that k ¼ i or l ¼ i in Term II is captured

by the matrix �i ¼ _j6¼iðeie
T
j _ eje

T
i Þ, where ei is an n� 1

column vector with all entries 0 except for the ith entry

that is 1. Clearly, if the ðk; lÞth entry of either Term I or

Term II is equal to 1, then this entry indicates a link that

can possibly become activated if the activation control

action becomes ½!a
i �kl ¼ 1. Similarly, the control action !d

i

can only deactivate links ðk; lÞ that robot i considers active,

i.e., ½	i�kl ¼ 1. It is shown in [46] that the dynamics (19)

resemble a consensus algorithm with inputs on the control

signals 	i that in the case of no inputs, i.e., if !a
i ¼ 1n�n

and !d
i ¼ 0n�n, reduce to the usual consensus update

	i :¼ _j2N	i
i
ð	i _ 	jÞ

as desired. The choice of the control actions !a
i and !d

i

needs to satisfy the following two conditions:

1) 	i is updated with all active links in G	;
2) connectivity of G	 is not violated by link

deactivations.

Condition 1) is satisfied by the link addition

controller

!a
i ¼ :�ið Þ|ffl{zffl}

III

_ �i ^ X G
�2

1

n
11T


 �
 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IV

; (20)

where
• Term III ensures that ½!a

i �kl ¼ 1 whenever k; l 6¼ i,
i.e., that all active links in the network known to

robot i’s neighbors will be activated in 	i as well;

• Term IV ensures that ½!a
i �kl ¼ 1 whenever k ¼ i or

l ¼ i and the distance ½X�kl ¼ kxklk2
2 between robots

k and l (with k ¼ i or l ¼ i) is lower than the link

activation threshold �1, i.e., that links between robot

i and close-by agents will be activated (X 2 Rn�n
þ

denotes a Euclidean distance matrix).

Condition 2) needs to address the fact that simulta-

neous link deactivations by multiple nonadjacent robots

may disconnect G	 (Fig. 6). For this, Zavlanos and Pappas

[46] propose a market-based framework to achieve

agreement of all robots on one single link deactivation as

the outcome of every auction. In particular, every robot i

2The symbols :, ^, _, !, and $ stand for the boolean operators
not, and, or, if, then, and if and only if, respectively (in the case of
matrices, they are applied elementwise on their entries). The discrete time
semantics in (19) are associated with discrete communication instances
between adjacent robots.

Table 1 Link Dynamics

Fig. 5. Control challenges requiring knowledge of the network

structure. Without such knowledge, deletion of a link ði; jÞ can either

violate connectivity (right) or not (left).
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selects a neighbor j in the set

Si ¼ k 2 N	i
i jkxikk2 2 ½�1; �2Þ; �2 L�k

i

� �
> 0

� �

where L�k
i is the Laplacian matrix of the network G	i

minus the link ði; kÞ, such that if the link ði; jÞ with j 2 Si is

deactivated, then the network G	i
remains connected. The

rest of the algorithm relies on multihop propagation of

deletion requests ri ¼ ½ri1 ri2 ri3�T 2 R3 containing the

requested link ðri1; ri2Þ 2 ~E and an associated bid

ri3 2 Rþ, such that initially ri1 ¼ i and ri2 ¼ j 2 Si for all
robots i. With every communication round, request ri is

updated with the request rj corresponding to the robot j
that has placed the highest bid rj3, i.e.,

ri ¼ rj with j 2 arg maxk2N	i
i
fri3; rk3g (21)

and employs a Bmaximum label[ rule to break ties. Note

that (21) is essentially a maximum consensus update on

the bids ri3 and will converge to a common outcome ri for

all robots when all bids have been compared to each other.

If at least one robot has placed a positive bid, i.e., if ri3 > 0,

then the controller

!d
i ¼ eri1

eT
ri2
_ eri2

eT
ri1
; (22)

deactivates the link ðri1; ri2Þ from G	i
, and the process is

repeated for a new link deactivation (Fig. 7). If ri3 ¼ 0,

then !d
i ¼ 0n�n, i.e., no link is deactivated form G	i

.

Communication time delays, packet losses, and the

asymmetric network structure may result in auctions

starting asynchronously, outdated information being used

for future decisions, and consequently, robots reaching
different decisions for the same auction. In the absence of a

common global clock, Zavlanos and Pappas [46] propose an

event-triggered synchronization scheme, where a trigger-

ing event corresponds to receipt of a communication

message, which ensures that Bfast[ robots wait for their

Bslower[ peers to reach a decision as well. Altogether, this

framework gives rise to the following result.

Theorem 5.2 (Connectivity Maintenance): Assume that
the network G	 is initially connected. Then, the closed-

loop system (19), (20), (22) guarantees that G	 remains

connected for all time.

Proof: Assume that the local networks G	i
are

initialized with nearest neighbor links only. Then, the

proof relies on the following observations.

1) All network estimates G	i
are spanning subgraphs

of the overall network G	, which implies that
connectivity can be checked locally for G	i

and

then extended to G	.

2) The market-based maximum consensus (21)

ensures agreement of all robots on the deactiva-

tion request which, therefore, does not violate

connectivity.

3) Synchronization ensures that no outdated infor-

mation is used in (21).
Consequently, links can be deactivated continuously one

by one, without violating connectivity of the network. h

VI. APPLICATIONS OF
CONNECTIVITY CONTROL

A. Connectivity Preserving Rendezvous
A canonical example in which connectivity mainte-

nance is crucial is the so-called rendezvous problem. Here,

the robots are required to meet at a common, not a priori

Fig. 6. Control challenges due to multiple link deletions. In the

absence of an agreement protocol, simultaneous deletion of links

ði; jÞ and ðk; lÞ violates connectivity.

Fig. 7. An example of a link deactivation auction taking place in a

network of four robots. Next to every robot in brackets is shown its

deletion request ri ¼ ½ði; jÞ bi� containing a desired link ði; jÞ with

j 2 Si that if deactivated does not violate connectivity, and the

associated bid bi. Initialization is as shown in the network at the left.

During the first communication round, robot 1 compares its bid

b1 ¼ 1 with the bids of its neighbors b4 ¼ 4 and b2 ¼ 2. Since among its

neighbors, robot 4 has placed the highest bid, robot 1 updates its

request with the request of robot 4, i.e., r1 ¼ ½ð4; 1Þ 4� [cf. (21)].

Similar updates take place for the requests of the other robots.

After two communication rounds, all robots have agreed on the

request with the highest bid [(4,1) 4]. Then, robot 4 physically

deactivates (dashed line) the link (4,1) and along with all other robots

updates its signal 	i [cf. (22)].
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specified location without relying on global positioning.
Instead, the only information available to them is the rela-

tive displacement, i.e., robot i, at position xi, has access to

xj � xi if i and j are neighbors, i.e., if they are within sens-

ing range of each other. A linear control strategy that

achieves this objective is

_xi ¼
X
j2Ni

ðxj � xiÞ (23)

as long as the graph G is connected for all times. However,

as shown in [56], initially connected proximity networks

that evolve according to (23) are not guaranteed to remain

connected throughout time. Instead, nonlinear coordina-

tion models are needed, and one that achieves rendezvous

while ensuring connectivity (Problem I) is the hybrid
control strategy under consideration in Proposition 5.1. In

particular, the model employed in [56] is

_xi ¼
X
j2N	

i

2�2
2

�2
2 � kxijk2

2

� �2 ðxj � xiÞ (24)

which not only ensures that no edges are lost, but it also

achieves rendezvous in the sense that all agents asymp-

totically approach the same location. This is due to the

modified potentials � ij ¼ kxijk2

2
=ð�2

2 � kxijk2

2
Þ in (24) that

along with link maintenance (Section V-A) also capture
the rendezvous objective. An example of this behavior is

shown in Fig. 8.

It should be noted that the rendezvous control law

often serves a cohesion purpose, i.e., ensures that the

robots in the team stay close together. Nevertheless, exact

rendezvous is not necessarily a good thing and a reactive,

collision-avoidance controller could be added to the

control strategy to avoid overlapping of the actual robots.

B. Connectivity Preserving Formation Control
A variation to the rendezvous objective is the problem

of driving the robots to a desired target configuration,

rather than to a common target location. We assume that
this target configuration can be encoded through 
1; . . . ;

n 2 Rd, with the interpretation that agent i should go

to location 
i, for i ¼ 1; . . . ; n. Since formations are con-

sidered rotationally and translationally invariant objects

in the configuration space, their exact location is not of

interest. Therefore, the formation control objective is to

achieve

xi ¼ 
i þ � 8i ¼ 1; . . . ; n

for some constant � 2 Rd. In other words, � corresponds

to the constant offset from the target configuration that the

agents should agree on. But, by letting �i ¼ xi � 
i, and

Fig. 8. Execution of the rendezvous control strategy until

the graph is a complete graph.

Fig. 9. Illustration of how the complete graph is changed to

the desired formation using only local information.

Fig. 10. The artificial potential function  ijðkxijk2Þ. The function is

symmetric with respect to xi and xj , and when bounded, it guarantees

both collision avoidance for kxijk2 ! 0 and edge preservation for

kxijk2 ! �2. Here, the function is plotted for �0 ¼ 0:15, �1 ¼ 0:35, and

�2 ¼ 0:5. The dwell time at the switching threshold �2 ensures that the

resulting switched system is well defined [64].
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running the connectivity preserving rendezvous algorithm

(24) over the �i’s instead of over the xi’s, it is ensured that

the offsets �i reach a common value which corresponds

directly to the offset � [81]. Note that since _xi ¼ _�i, this

strategy directly gives desired motions for the robots in

terms of their velocities. Moreover, all that is needed to
compute these control laws are the relative displacements

xi � xj between neighboring robots as well as the desired

predefined relative displacement 
i � 
j. This is highlight-

ed in Fig. 9.

C. Connectivity Preserving Flocking
Flocking has been given many definitions and various

models have been proposed so far [82]–[85]. Therefore, it
is understood quite differently by different authors. In

this paper, we focus on the model proposed by Reynolds,

developed to simulate social aggregation phenomena,

such as flocks of birds and schools of fish [86]. Reynolds

called the generic simulated flocking creatures Bboids[
and developed his flocking model based on three simple

steering behaviors that describe how an individual robot

Fig. 11. Connectivity preserving flocking of n ¼ 30 robots for a sparse initial configuration where connectivity cannot be trivially maintained.

It can be seen that the network remains connected while all robot velocities are asymptotically aligned. Dotted lines indicate communication

links that are candidates for deletion (Fig. 10).
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maneuvers given the positions and velocities of its nearby
flockmates.

• Alignment: Steer towards the average heading of

local flockmates.

• Separation: Steer to avoid crowding of local

flockmates.

• Cohesion: Steer towards the average position of

local flockmates.

In Reynold’s model, every robot has access to the whole
scene’s geometric description, however, flocking requires

information from nearest neighbor flockmates only. This

neighborhood depends on a distance and an angle from the

robot’s direction of motion, and can be thought of as model

of limited perception (such as fish in murky water) or as

the region where a robot’s motion is influenced by its

flockmates. Superposition of these three rules results in all

robots moving as a flock while avoiding collisions. Inspired
by Reynold’s model, Tanner et al. [87] proposed local

control laws that allow a team of robots with double

integrator dynamics

_xi ¼ vi (25a)

_vi ¼ �
X
j2Ni

ðvi � vjÞ �
X
j2Ni

� ij (25b)

to align their velocities, move with a common speed, and

achieve desired inter-robot distances while avoiding
collisions with each other. Stability results were obtained

using nonsmooth analysis and algebraic graph theory and

critically relied on connectivity of the communication

network. Based on these results, Zavlanos et al. [64]

proposed integration of the dynamics (25) with the

connectivity control framework developed in Section V-B
and the artificial potentials (Fig. 10)

� ij ¼

1

kxijk2
2

þ P1 kxijk2

� �
; kxijk2

2 ð0; �0�

0; kxijk2
2 ð�0; �1Þ

1

�2
2 � kxijk2

2

þ P2 kxijk2

� �
; kxijk2

2 ½�1; �2Þ

8>>>><
>>>>:

(26)

w i t h 0 G �0 G �1 G �2 a n d Pkðkxijk2
Þ ¼� akkxijk2

2
þ

bkkxijk2
þ ck for k ¼ 1; 2 such that  ij 2 C2 in ð0; �2Þ.

The resulting multirobot hybrid system was shown to
guarantee the flocking behavior of the team while

preserving connectivity of the network (Fig. 11).

VII. CONCLUSION

In this paper, we provided a theoretical framework for

controlling graph connectivity in mobile robot networks.

We presented a cohesive overview of the key results in

[41]–[43], [46], and [56] and discussed basic notions of
network connectivity as well as control-theoretic methods

for connectivity preservation. These methods relied on a

variety of mathematical tools, ranging from spectral graph

theory and semidefinite programming to maximize the

algebraic connectivity of a network, to gradient-descent

algorithms and hybrid systems to ensure topology control

in a least restrictive manner. We also discussed applications

of connectivity control to multirobot rendezvous [56],
flocking [64], and formation control [56], where so far,

network connectivity had been considered an assumption.

A byproduct of this work was to classify the available liter-

ature with respect to the connectivity metrics and solution

techniques and provide a reference for future research. h
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