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Abstract— We focus on detecting intrusions in ad hoc networks
using the misuse detection technique. We allow for detection
modules that periodically fail to detect attacks and also generate
false positives. Combining theories of hypothesis testing and
approximation algorithms, we develop a framework to counter
different threats while minimizing the resource consumption. We
obtain computationally simple optimal rules for aggregating and
thereby minimizing the errors in the decisions of the nodes
executing the intrusion detection software (IDS) modules. But, we
show that the selection of the optimal set of nodes for executing the
IDS is an NP-hard problem. We describe a polynomial complexity,
distributed selection algorithm, “Maximum Unsatisfied Neighbors
in Extended Neighborhood” (MUNEN) that attains the best possi-
ble approximation ratio. The aggregation rules and MUNEN can
be executed by mobile nodes with limited processing power. The
overall framework provides a good balance between complexity
and performance for attaining robust intrusion detection in ad
hoc networks.

I. INTRODUCTION

Ad hoc networks provide the only means of electronic com-
munication in areas where establishing infrastructure like base
stations is either impossible or not cost-effective. Examples in-
clude disaster recovery operations, battlefields, communication
in remote terrains (e.g., reservations, rural areas), events like
superbowl matches, etc. These networks are used by a diverse
user population, e.g., civilians in disaster hit areas, spectators in
superbowl matches etc., which increases the security risks. One
such risk is a user who subverts the functioning of the network
by causing undesirable events. Such users are considered as
intruders and the events as intrusions. Examples of intrusions
are attacks such as TCP SYN flood∗, Land Exploit†, SSPing‡

etc. [5], [6]. These intrusions leverage system vulnerabilities.
There are two ways to prevent such intrusions. One way is to
remove the vulnerabilities from the system such as by designing
resistant protocols like SCTP [20] to resist TCP SYN flood
attacks, patching the operating systems, etc. But, this may
not be possible due to various reasons such as poor design
[16], limited use of efficient technical solutions (e.g., SCTP is
rarely used due to large scale deployment of TCP), different
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∗The attacker opens a large number of half-open TCP connections.
†The attacker sends a TCP SYN packet with the same target and source

address.
‡The attacker sends a series of fragmented, oversized ICMP packets.

devices having different capabilities, inefficient configuration
(e.g., users do not change default security settings or apply
patches), etc. The second approach, which is complimentary to
the first, is to detect attempts to leverage the vulnerabilities and
stop such attempts from succeeding. We focus on the detection
aspect of the second approach. We refer to this as intrusion
detection.

Intrusion detection has been extensively investigated for
wireline networks [7], [10]. But, techniques geared towards
wireline networks do not suffice in an ad hoc network due to
mobility, the ease of listening to wireless transmissions, lack
of fixed infrastructure, etc. [11]. For example, several detection
strategies in wireline networks are based on the presence of
a small number of static gateways that route and therefore
monitor all traffic. But, ad hoc networks typically do not
have such choke points, and if such choke-points exist, their
locations continuously change due to mobility. Also, intrusions
may be detected in wireline networks by detecting anomaly,
i.e., by comparing the current system behavior with that in
the absence of intrusion. In ad hoc networks, however, normal
behavior cannot be accurately characterized, e.g., a node may
transmit false updates since the routing protocol is slow to
converge and not because it is malicious. Further, unlike in
wireline networks, nodes in an ad hoc network have limited
energy. Hence, only computationally simple, energy-efficient
detection strategies can be used. The detection algorithms must
also be distributed as communication with a central computing
unit will consume significant energy and bandwidth. Finally,
the detection algorithms must seamlessly adapt to topological
changes due to mobility. These motivate the design of detection
strategies specifically geared towards ad hoc networks.

A strategy specifically suitable for ad hoc networks is that
of misuse detection that relies on the use of known patterns of
unauthorized behavior. This technique detects intrusion when
the transmitted traffic contains abnormal packets which serve
as “signatures” of attacks. For example, a UDP packet destined
to port 0 can crash some machines [6]. The signature of
ping-of-death attack is a very large ping packet, that of RPC
locator attack is a packet intended for port 135 that contains
a command that the system is not expecting, that of Bubonic
attack are various values such as a TTL of 255, a TOS field
value of 0xC9, exactly 20 byte payload in the IP datagram
and the fragment ID value with consistent increments of 256
[6]. Due to low false alarm rates, misuse detection is the
mainstay of current commercial intrusion detection systems
in wireline networks and wireless local area networks. This
technique cannot however detect new attacks, i.e., the attacks



whose signatures are unknown. Nevertheless, it is the most
suitable technique in ad hoc networks given that it does not
require characterization of normal behavior.

But a prerequisite for deploying misuse detection in ad
hoc networks is to determine which nodes should execute
the sniffing and analysis software modules which we refer
to as the intrusion detection system (IDS) modules. A simple
strategy is to execute IDS at all nodes [2], [4], [13], [15], [19].
But, executing IDS consumes significant resources like energy,
memory and CPU cycles at each node, and nodes have limited
resource in a wireless network. Thus, this simple strategy
significantly increases the resource consumption in the system.
On the other hand, if the IDS are executed in very few nodes,
then the resource consumption decreases but several intrusions
may escape detection. Huang et al [1] propose to organize the
network in clusters such that every cluster has a leader and only
the leaders monitor the traffic. There is however no guarantee
on the resource consumption and the security risk of the above
scheme. The challenge is to determine which nodes should
execute the IDS so as to minimize the resource consumption
subject to limiting the security risk below a tolerable value.

We have recently proposed a framework that attains the
above goal in ad hoc networks [24], [25]. The framework
however relies on the assumption that the sniffing nodes never
generate “false positives”, i.e., never conclude that there is an
attack when there is none. In practice, however, nodes generate
false positives, e.g., when they use bloom filters to detect sig-
natures [8], which in turn significantly complicates the design
challenges. In addition, nodes also periodically do not detect
signatures in the transmitted traffic even when the transmitted
traffic contains the signatures. Now, the security risk of the
system must be appropriately formulated so as to consider both
missed detections and false positives. Next, the system must
attain desired tradeoffs between the above security risk and
resource consumption. Last, but not the least, the system needs
to decide whether there is an intrusion when different detectors
arrive at different decisions, in addition to determining which
nodes should execute the IDS. The performance of a decision
strategy depend on the selection of the sniffing nodes, and
vice-versa, and the security risk and the resource consumption
depend on both of these. For example, when large number
of nodes execute the IDS, larger number of intrusions are
detected as each packet is examined by larger number of nodes,
but depending on the decision strategy more false positives
may also be generated. Our contribution here is to provide a
framework that minimizes the resource consumption subject to
limiting the security risk, even when sniffing nodes generate
both false positives and missed detections.

We describe our system model and quantify the security
risk in Section II. Combining theories of hypothesis testing
and approximation algorithms, we develop a framework to
counter different errors in decision process, while consuming
the minimum possible resource (Section III). We obtain compu-
tationally simple optimal and robust rules for aggregating and
thereby minimizing the errors in the decisions of the nodes
detecting the intrusion. But, we prove that optimally selecting
the nodes for sniffing and analyzing packets is NP-hard. We

describe a distributed approximation algorithm, “Maximum
Unsatisfied Neighbors in Extended Neighborhood” (MUNEN),
which attains the best possible approximation ratio while
using only simple computations and limited message exchange
among nodes. We consider a simple random selection heuristic
(RP) which does not involve any message exchange among
nodes. Using analysis and simulations, we evaluate the resource
consumption and security risks of different decision rules and
selection strategies and determine when each may be used
(Section IV). We conclude in Section V. We prove the main
analytical results in the appendix. Due to lack of space, we
prove the remaining analytical results (Theorem 5, Theorem 6,
Corollary 1, Corollary 2 and Lemma 1) in [23].

II. SYSTEM MODEL

We first postulate that ad hoc networks in near future
will consist of two classes of nodes: (i) nodes that both
communicate using the network and perform system tasks like
relaying packets, discovering routes, securing communication,
etc. (insider nodes), and (ii) nodes that only communicate using
the network (outsider nodes). Our postulate is based on the
observation that providing the desired quality of service to
users is a pre-requisite for large scale use of this technology.
But, if the network is to provide any quality of service (QoS)
guarantee it can utilize the users but cannot solely rely on them.
This is because users may be available for short durations only.
The QoS guarantees can however be provided if some easily
deployable low complexity system nodes e.g., static and mobile
access points are available. These nodes together with users
who are trusted by the network and are in the network most
of the time can be relied upon for performing system tasks.
Such system nodes and trusted users therefore constitute the
insiders. The remaining nodes are the outsiders.

We now provide several example wireless networks that con-
sist of insiders and outsiders. During an event which is widely
attended and lasts for short time, e.g., a super-bowl match,
service providers may augment the connectivity and coverage
provided by the existing cellular and/or Wi-Fi networks by
utilizing additional static and mobile access points and the ter-
minals of trusted users [12]. Here, the static and mobile access
points as well as the trusted users constitute insider nodes. The
remaining users who only communicate using the network are
the outsiders. Mesh networks also consist of insiders (mesh
points) and outsiders (users). In future, such networks may
utilize some trusted users to perform system tasks, particularly
during service outage due to failure of existing mesh points, or
sudden and temporary increase in service demand in specific
areas (temporary hot-spots) - such users would also constitute
insiders. Finally, a disaster recovery team can use ad hoc
networks to provide services like email, news, audio/video
applications etc. in an area where communication infrastructure
has been damaged due to a natural disaster or terrorist activity.
The insider nodes are access points on buildings and mobile
terminals carried by the personnel. The outsider nodes are
civilians who communicate using the network.

All the above examples, and more generally the wireless
networks with insiders and outsiders, retain the essential char-



acteristics of ad hoc networks. These networks use multi-
hop wireless communication, as source-destination paths may
involve several insiders who relay messages using wireless
links. Nodes in such networks, outsiders and also insiders, may
be small mobile terminals and may have limited energy and
memory, e.g., access points, laptops, PDAs carried by members
of a disaster recovery team and trusted users (insider nodes).
Static access points in some existing ad hoc networks in rural
areas also have limited energy [3]. Finally, the set of insiders
may change with time. For example, the network provider will
need to provide incentives in lieu of service to the users who
serve as insiders, and hence may utilize such users only as
required, e.g., in hot-spots or when existing access points fail.
We focus on detecting intrusion in these ad hoc networks. Note
that these networks are significantly different from cellular
networks where only the last hop is a wireless link, and only
the nodes that use the network are mobile, dynamic and have
limited energy and memory, while the set of nodes (base-
stations) that perform system tasks remain the same, do not
change locations and have practically unlimited energy and
memory.

We now describe the security risks. An outsider may wish
to deliver malicious (bad) packets to the destination, which
may be an insider or an outsider, resulting in malfunction or
failure of the destination. An outsider that sends bad packets is
referred to as an intruder. A packet that is not bad is referred to
as good. The network may have multiple intruders. The number
and location of the intruders, their destinations and the paths
used by them are not known to the network, and vary with
time. For simplicity we assume that each attack consists of
one packet, e.g., a land exploit attack [6] consists of a bad
packet. Note, though, that our approach directly extends to the
case where an attack consists of multiple packets [23].

Insider nodes execute the IDS modules that employ misuse-
based detection strategy so as to detect bad packets while in
transit between the intruder and the destination. We therefore
consider the network intrusion detection (NID) technique [14]
where the IDS is executed at the network layer of some selected
insider nodes. Some insider nodes may not have the capability
to execute the IDS. Thus, insider nodes are of two types:
(a) IDS capable and (b) IDS incapable. Also, different IDS
capable insider nodes e.g., PDAs, laptops, access points etc.
consume different amount of resources to execute the IDS,
since they have different residual energy and computational
capability. An IDS capable insider node i has weight wi that
represents its resource consumption when it executes the IDS.
Depending on the system policy, some but not all the IDS
capable insider nodes will execute the IDS - these are denoted
as IDS active.

We represent a wireless network by an undirected graph
G(V,E). Here, V = {1, . . . , N} consists of the insiders and
E is the set of edges between the insiders. There exists an
undirected edge between any two insiders that can receive
transmissions from each other. We assume that every insider
can receive its own transmission and hence has an edge to
itself.

Definition 1: A neighborhood Ni of an insider node i is

the set of insiders that have edges from i. An insider i covers
every insider in its neighborhood.
By this definition, an insider is always its own neighbor and
covers itself.

An IDS active insider operates in promiscuous mode, i.e.,
receives any packet that is transmitted by any of its neighbors.
An IDS active insider may sporadically fail to detect bad
packets and report good packets as bad. A node may not detect
bad packets during power saving operations, or if the attack
has been designed to evade its IDS module [18], or if the
IDS modules on the node are out of date, or if the attacker
successfully launches a denial of service (DOS) attack on the
node, or if it does not receive the packets due to collisions§,
poor transmission quality in wireless links, etc. Depending on
the signature matching techniques used an insider may also
report a good packet as bad. Bloom filters [8] are examples
of such techniques. Bloom filters consider a packet or packet
fragments to be suspicious whenever a hash function of the
packet or packet fragments match that of an attack signature.
Only suspicious packets are analyzed further. This technique
can be implemented in hardware and therefore signatures can
be matched at line speed. But, this technique also results in
false positives. The false positive rate can sometimes be non-
negligible, e.g., sometimes 10% of the good packets have
been reported to be suspicious [8]. Now when an insider
node is overloaded or does not have enough resource it may
report suspicious packets as bad without conducting a thorough
analysis. Otherwise, if the node chooses to thoroughly analyze
suspicious packets it might have to drop several incoming
packets which are more likely to be good. Since at different
times different nodes conduct power saving operations or
experience poor transmission conditions in different links or are
overloaded or suffer DOS, their conclusions about the status of
the same packet may be different.

We assume that every IDS active insider considers a bad
packet to be good with probability p and a good packet
to be bad with probability q. We focus on the efficacy of
detection schemes given such a failure model. We do not
consider the threats where intruders control the insider nodes.
We assume that a packet transmitted by an intruder is good
with probability πG. We consider scenarios where an insider
knows πG (e.g., from history of attacks) and p, q (e.g., from
online measurements), and also scenarios where an insider does
not know these parameter values.

We assume that either a packet is not encrypted or only
the transport layer payload of a packet is encrypted. This is
the case with several protocols like PGP, SRTP, HTTPS etc.
Then, IDS modules can detect attacks at the transport and lower
layers, e.g., ping-of-death, TCP SYN flood, etc. without any
knowledge of the encryption schemes. We do not consider link
layer and network layer encryption protocols like IPSec since

§Some collisions happen only due to promiscuous operation. Consider an ad
hoc network with 3 insider nodes A, B, C. All nodes are IDS capable. Let both
A and C be B’s neighbors. But, A and C are not each others neighbors. Let
B execute the IDS. If A and C simultaneously relay bad packets to outsider
nodes, the packets collide at B. Since however the intruders transmit bad
packets only rarely, such collisions of bad packets are rare.
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Fig. 1. This figure illustrates the coverage redundancy of an insider. The
intruder (I) attacks the destination (T). Insider nodes A and B relay the
intruder’s packets to the destination. Node A is covered by IDS active insiders
(C, D, E, F). When A relays a packet, C, D, E, F receive the packet in
promiscuous mode. If any of these detect the packet to be bad, it reports
its diagnosis to A. Based on the reports, A determines whether the packet is
bad.

these protocols are typically used in enterprise environments
which is beyond the scope of this paper. This is a standard
assumption in several papers that investigate NID [14].

III. ALGORITHMS FOR ROBUST INTRUSION DETECTION

We first consider the detection goals. Ideally, we would
like to maximize the probability of detecting bad packets,
and minimize the probability of reporting a good packet as
bad (“false positive”). But, it may not be possible to attain
both goals simultaneously. This happens when increasing the
detection rate involves increasing the false positive rate. Thus,
our goal is to select the IDS active insiders among the IDS
capable insiders so as to minimize the resource consumption
subject to limiting the system risk below an acceptable value.
We quantify the risk as follows. The risk for a bad packet
is a constant yM times the probability PM that the packet is
not detected (missed detection). The risk for a good packet
is a constant yF times the probability PF that the packet is
reported as bad. The expected risk for a packet is therefore
(1 − πG)yMPM + πGyF PF . We refer to this expected risk
as the system risk. The constants yM , yF reflect the relative
risks associated with missed detection and false positive. The
resource consumption is the sum of the weights of all IDS active
insiders.

The system risk needs to be maintained below an acceptable
value without any knowledge of the intruders, targets and the
paths between them. If every IDS active insider could decide
without any error (p = q = 0), then the expected risk associated
with any packet that is analyzed by at least one IDS active
insider is 0. Thus, the system risk can clearly be limited if
the IDS active insiders are selected so that most packets are
analyzed by at least one IDS active insider. Now, since IDS
active insiders may decide erroneously, and different IDS active
insiders can conclude differently about the status of the same
packet, packets must be analyzed by multiple (k or more)
IDS active insiders and the results of the analysis intelligently
combined to reduce the errors in the decisions. Here, k must
be determined in accordance with the acceptable risk.

Due to promiscuous operation, every IDS active insider
can receive and hence analyze all packets transmitted by its
neighbors. Thus, if the IDS active insiders are selected so that
every insider is covered by at least k IDS active insiders, every
packet transmitted by an insider would be analyzed by k or
more IDS active insiders. Refer to figure 1 for an example
detection procedure. Now, all packets, except those that are

directly transmitted from an intruder to its target (which usually
constitutes a small fraction of the total number of packets [22]),
are relayed by the insiders. Thus, most packets are analyzed
by k or more IDS active insiders. Thus, the system risk can
be limited as desired and the resource consumption minimized
by optimally (i) aggregating the analysis of different IDS active
insiders and (ii) selecting k and subsequently selecting the IDS
active insiders such that every insider is covered by at least k
IDS active insiders. We now discuss the issues involved in
determining each of the above.

Due to the coverage redundancy several insiders may analyze
a packet, and they may decide differently whether the packet
is bad. The different decisions must be combined to determine
whether the packet is indeed bad. For example, in figure 1,
if C and D decide that a packet relayed by A is bad and
E and F determine otherwise, A needs to decide whether it
should report an attack. The challenge is to aggregate the
insiders’ decisions so as to minimize the expected risk. Since
a packet may be relayed by multiple insiders, the IDS active
insiders analyzing a packet may not be geographically close.
The aggregation therefore needs to be distributed. We develop
an optimal aggregation scheme based on hypothesis testing
framework that minimizes the expected risk and is naturally
amenable towards distributed implementation. An aggregation
scheme that is optimal at a given πG, p, q may lead to a high
risk at a different πG, p, q. Again, using the hypothesis testing
framework, we propose a robust aggregation strategy that
depends on p, q but is guaranteed to deliver a certain maximum
expected risk irrespective of πG. This robustness with respect
to πG is an important advantage as intruders can dynamically
vary πG easily but cannot easily control p, q. Nevertheless, the
robustness with respect to all three parameters πG, p, q can be
attained at high k and certain ranges of p, q. We propose an
aggregation strategy that attains a near-zero expected risk when
k is high at all πG, p ∈ [0, 0.5), q ∈ [0, 0.5).

We prove that under the optimal and robust aggregation
schemes the expected risk decreases with increase in k. But,
the resource consumption also increases with increase in k.
The challenge therefore is to select the minimum k that
attains a tolerable risk when each insider optimally or robustly
aggregates its neighbors’ decisions. We quantify the expected
risks of different aggregation strategies as functions of k and
appropriately select k using these analytical expressions. Once
k is determined, we need to select the IDS active insiders so
as to minimize the resource consumption or the total weight of
the IDS active insiders subject to ensuring that every insider
is covered by at least k IDS active insiders. We prove that
this problem is NP-hard. Using the theory of approximation
algorithms, we design a distributed selection algorithm that
attains a guaranteeable approximation bound. The selection
algorithms do not depend on the parameters πG, p, q once k is
selected. If robust aggregation rules are used, the selection of
k also does not depend on πG, p, q.

We initially assume that only one insider relays each packet.
Under this assumption, in subsection III-A we determine the
optimal and robust aggregation rules, and in subsection III-B
we determine the optimal value of k and the selection of IDS



active insiders for different aggregation rules. In subsection III-
C, we generalize the entire framework to consider arbitrary
number of relays between an insider and its target and also
relax several other simplifying assumptions made in other
subsections.

A. Optimal and Robust aggregation of decisions of different
IDS active insiders

We obtain the optimal aggregation scheme under the as-
sumption that each packet is relayed by one insider (different
packets can use different relays) and every insider has k IDS
active neighbors. Thus, when an insider i relays a packet, its k
IDS active neighbors analyze the packet (one of the neighbors
may be i itself) and communicate their decisions to i. Then i
aggregates its neighbors decisions so as to determine whether
the packet is bad.

Definition 2: An aggregation strategy is optimal if it mini-
mizes the system risk for a given value of k.

Theorem 1: Let threshold Topt =
⌈

ln
yF πG

yM (1−πG)+kln 1−q
p

ln((1−p)(1−q)/pq)

⌉
.

The following is the optimal aggregation strategy for each relay
insider.

When p+q < 1,¶ a relay insider decides that a packet is bad
if and only if Topt or more of its IDS active neighbors inform
that the packet is bad.

When p+ q > 1, a relay insider decides that a packet is bad
if and only if Topt or fewer of its IDS active neighbors inform
that the packet is bad.

Let p + q = 1. If πG ≥ yM

yF +yM
a relay insider decides that

every packet is good, and otherwise every packet is bad.
Theorem 2: Let Hopt(k) be the minimum system risk.
When p+ q < 1, Hopt(k) = yF πG

∑k
i=max(Topt,0)

(
k
i

)
qi(1−

q)k−i + yM (1 − πG)
∑min(Topt−1,k)

i=0

(
k
i

)
pk−i(1 − p)i.

When p + q > 1, Hopt(k) = yF πG

∑min(Topt,k)

i=0

(
k
i

)
qi(1 −

q)k−i + yM (1 − πG)
∑k

i=max(Topt+1,0)

(
k
i

)
pk−i(1 − p)i.

When p + q = 1, Hopt(k) = min (yM (1 − πG), yF πG) .
Note that the above aggregation rule is optimal for any

relay insider irrespective of whether it is IDS active. Since
each insider is also its own neighbor, if a relay insider is IDS
active the set of its IDS active neighbors includes itself, and
it executes the above aggregation rule considering both its and
its other neighbors’ analysis of each packet.

We now present the intuition behind the results. When
p + q < 1, the error probabilities of each IDS active insider’s
analysis are small for both good and bad packets. So, a large
number of insiders are likely to report a packet as bad only
when the packet is bad. Thus, a relay insider decides that a
packet is bad only when many of its IDS active neighbors report
it as bad. Now let p+q > 1. Since the error probabilities of each
IDS active insider’s analysis are high, if a packet is bad (good),
many insiders would report it as good (bad). Thus, the previous
policy is reversed. This is equivalent to reversing the decision of
each IDS active insider and aggregating the reversed decisions

¶Note that p and q are probabilities associated with different packets. Thus,
p + q can exceed 1.

using the same rule as for p + q < 1. Due to the reversal,
the effective error probabilities of each insider’s analysis are
1 − p and 1 − q for bad and good packets respectively. Now,
the sum of the two new error probabilities 2 − (p + q) is less
than 1 (as p + q > 1) and decreases with further increase in
p+q. Thus, intuitively the uncertainty in each insider’s analysis
of a packet decreases with increase in |p + q − 1| and is the
maximum when p+q = 1. Thus, when p+q = 1, the optimum
aggregation strategy for a relay insider is to ignore the analysis
and decide whether a packet is bad based only on the statistical
information πG about the nature of each packet and weights
yF , yM . Thus covering every insider with k IDS active insiders
is redundant in this case. We later discuss the coverage issues
in greater detail (Subsection III-B).

We have so far implicitly assumed that each insider knows
πG, p, q. Note that πG is the most difficult to ascertain as it is
directly controlled by the intruders and they can dynamically
vary πG. The optimum aggregation rule at a given πG can be
substantially suboptimal at a different value of πG. Thus, the
intruders can significantly increase the system risk by selecting
a πG which is different from that assumed by the insiders.
The aggregation strategies need to be robust to such dynamic
variations.

We first quantify a robustness goal. At a given πG,
the expected risk under an aggregation strategy A is de-
noted as RA(πG). The maximum expected risk of A
is the maximum value of RA(πG) for all possible πG,
i.e., max0≤πG≤1 RA(πG). Now, max0≤πG≤1 RA(πG) corre-
sponds to the maximum “damage” an intruder can cause by
appropriately selecting πG when the system selects A. The
aggregation strategy that minimizes this maximum damage
among all aggregation strategies is referred to as a robust
aggregation strategy. The definition follows.

Definition 3: An aggregation strategy B is robust
if for a given value of k, max0≤πG≤1 RB(πG) =
minA max0≤πG≤1 RA(πG).
We now present a robust aggregation strategy.

Theorem 3: Let threshold Trob and probability rrob be

Trob =




min i : (yF

∑k
j=i

(
k
j

)
qj(1 − q)k−j

≤ yM

∑i−1
j=0

(
k
j

)
pk−j(1 − p)j)

if p + q < 1,

max i : (yF

∑i
j=0

(
k
j

)
qj(1 − q)k−j

≤ yM

∑k
j=i+1

(
k
j

)
pk−j(1 − p)j)

if p + q > 1.

rrob =


yM

∑Trob−1

j=0 (k
j)pk−j(1−p)j−yF

∑k

j=Trob
(k

j)qj(1−q)k−j

( k
Trob−1)

(
yF q

Trob−1
(1−q)

k−Trob+1
+yM p

k−Trob+1
(1−p)

Trob−1
)

if p + q < 1,
yM

∑k

j=Trob+1 (k
j)pk−j(1−p)j−yF

∑Trob
j=0 (k

j)qj(1−q)k−j

( k
Trob+1)

(
yF q

Trob+1
(1−q)

k−Trob−1
+yM p

k−Trob−1
(1−p)

Trob+1
)

if p + q > 1.

Clearly, 0 ≤ rrob < 1.



The following is the robust aggregation strategy for a relay
insider.

Let p + q < 1. For each packet a relay insider selects a
threshold T = Trob − 1 with probability rrob and a threshold
T = Trob with probability 1− rrob. A relay insider decides that
the packet is bad if and only if T or more IDS active neighbors
inform the relay insider that the packet is bad.

Let p + q > 1. For each packet a relay insider selects a
threshold T = Trob + 1 with probability rrob and a threshold
T = Trob with probability 1− rrob. A relay insider decides that
the packet is bad if and only if T or fewer IDS active neighbors
inform the relay insider that the packet is bad.

Let p + q = 1. A relay insider decides a packet is bad with
probability yM

yM+yF
, and good with probability yF

yM+yF
.

We now describe the intuition behind Theorem 3. First,
assume that p + q �= 1. Let rrob = 0. Then both the robust
and optimum aggregation rules are threshold type. Thus, the
intuition behind the robust aggregation rule is the same as
that behind the optimum aggregation rule. The rules however
select different thresholds. The robust aggregation rule selects
threshold Trob so as to equalize the risks associated with missed
detection and false positive, i.e., yMPM = yF PF . This leads to
an expected risk of yMPM irrespective of πG. Thus an intruder
cannot increase the expected risk of the robust aggregation
strategy by appropriately selecting πG - the robust aggregation
strategy is “robust” in this sense. Since the thresholds are
discrete integers, an insider cannot always equalize the risks by
selecting only the thresholds. Now the probability rrob can have
any value in the real interval [0, 1). Thus rrob can be selected
to equalize the risks by randomizing the decisions. Now, when
p+q = 1, the uncertainty in the analysis is high. Thus, a robust
aggregation rule for a relay insider is to ignore its neighbors’
analysis and decide whether a packet is bad based only on the
weights yF , yM . The robust and the optimum aggregation rules
are similar in this case; the difference being that the optimum
aggregation rule uses πG in its decision process. Furthermore,
note that for all p, q, the knowledge of πG allows the optimum
aggregation rule to be deterministic, while the lack thereof
forces the robust aggregation rule to be randomized.

Theorem 4: Let Hrob(k) be the system risk and P rob
M (k) be

the missed detection probability under the robust aggregation
rule. Then Hrob(k) = yMP rob

M (k). Also,
when p + q < 1, P rob

M (k) =
∑Trob−1

i=0

(
k
i

)
pk−i(1 − p)i −

rrob
(

k
Trob−1

)
pk−Trob+1(1 − p)Trob−1,

when p + q > 1, P rob
M (k) =

∑k
i=Trob+1

(
k
i

)
pk−i(1 − p)i −

rrob
(

k
Trob+1

)
pk−Trob−1(1 − p)Trob+1,

and when p + q = 1, P rob
M (k) = yF

yM+yF
.

Note that the expected risk of the robust aggregation rule
does not depend on πG, but, exceeds that of the optimal
aggregation rule at any given πG. Intuitively, the difference
is the penalty accrued for the insiders’ lack of knowledge of
πG.

We still assume that the insiders know p and q. This is
justified since the intruders do not directly control p and q
and hence cannot alter them easily. Furthermore, the insiders
can learn p and q from measurements. Nevertheless, we now

propose some heuristic aggregation rules that may be used
when the insiders do not know p and q. We first observe the
following.

Corollary 1: Let yM = yF and p = q. When k is odd,
rrob = 0. When k is even, rrob = 0.5. In addition, when p <
0.5, Trob = �k/2� + 1, and when p > 0.5, Trob = �k/2� − 1.

Corollary 1 suggests that in many cases limited information
about p and q is sufficient to obtain the robust aggregation rule.
Specifically, when p = q < 0.5 the robust aggregation rule
determines the nature of a packet based on the decisions of the
majority of its IDS active neighbors. Now, usually p < 0.5
and q < 0.5. This motivates the heuristic “majority aggregation
rule” which does not depend on p and q and can therefore be
used when an insider does not know these.

We now describe the majority aggregation rule. A relay
insider decides that a packet is bad (good) if majority of its IDS
active neighbors decide that the packet is bad (good). During
a tie, the insider decides with probability 0.5 that the packet is
bad. Let Hmaj(k) be the expected risk under the majority rule.

Lemma 1: Let max(p, q) ≤ α < 0.5. Then, Hmaj(k) ≤
max(yF , yM )

∑�k/2�
i=0

(
k
i

)
αk−i(1 − α)i.

Note that Hmaj(k) depends on πG, p, q but its upper bound does
not depend on exact values of these. The next corollary follows
from Theorems 2, 4 and Lemma 1.

Corollary 2: For each πG, p and q, Hopt(k) and Hrob(k) are
monotonically non-increasing functions of k.

If p + q �= 1, limk→∞ Hopt(k) = limk→∞ Hrob(k) = 0.
If max(p, q) < 0.5, Hmaj(k) is a monotonically decreasing

function of k, and limk→∞ Hmaj(k) = 0.
We first describe the intuition behind this corollary. For both
the optimum and robust aggregation rules, an insider can make
better decisions if it has more information, i.e., if it hears
from more neighbors. Thus, the expected risks of these rules
decrease with increase in k and in the limit converge to 0.
From the law of large numbers and since max(p, q) < 0.5,
as k increases, the probability that 0.5k or more (majority) of
the IDS active neighbors of a relay insider analyze a packet
erroneously decreases and in the limit converges to 0. Thus,
the expected risk of the majority rule decreases with increase
in k and in the limit converges to 0.

Corollary 2 suggests that if max(p, q) < 0.5, which is
usually the case, the majority aggregation rule is near optimum
for large k. Thus, the penalty for an insider’s lack of knowledge
of p and q is that a large k is necessary and hence a large
number of insiders need to be IDS active.

B. Selection of IDS active insiders

We now obtain the optimum value of k and the optimum
set of IDS active insiders. The former can be obtained in
polynomial complexity using the analytical results developed
for different aggregation rules in the previous subsection. We
prove that the latter is NP-hard. We subsequently describe
a polynomial-complexity distributed approximation algorithm,
“Maximum Unsatisfied Neighbors in Extended Neighborhood”
(MUNEN), which attains the best possible approximation guar-
antee for the optimal selection problem [21], [25].



We still assume that only one insider relays each packet.
When every insider has k IDS active neighbors, each packet
has an expected risk of H(k), where H(k) depends on the
aggregation rule. We initially assume that each insider knows
p and q, but may or may not know πG. If an insider knows
πG, it uses the optimum aggregation rule; otherwise, it uses
the robust aggregation rule. We initially assume that either
all insiders know πG or none knows πG. In the former case,
H(k) = Hopt(k) and in the latter case, H(k) = Hrob(k). We
later generalize to the case when only some insiders know πG.
When p+q = 1, neither the optimum nor the robust aggregation
strategy depends on the analysis of the packets by the IDS
active insiders (Theorems 1 and 3). Thus, no insider needs to
execute IDS and k = 0 suffice. Thus NID is effective only
when p + q �= 1, which henceforth we assume.

We now obtain the optimum value of k. Let the tolerable
expected risk be γ. We need to select a k such that H(k) ≤ γ.
Since the number of IDS active insiders and hence the resource
consumption increases with increase in k, the resource con-
sumption is minimized when k = kmin = mink{k : H(k) ≤
γ}. Since p + q �= 1, limk→∞ Hopt(k) = limk→∞ Hrob(k) = 0
(Corollary 2). Thus, for any positive γ, there exists a kmin that
attains an expected risk of γ or less, which can be computed
using expressions for H(k) given in Theorems 2 and 4.

Now, the detection goal of attaining the tolerable expected
risk subject to minimizing the total weight of the IDS active
insiders is satisfied if the IDS active insiders are selected so
as to minimize their total weight subject to ensuring that each
insider has at least kmin IDS active neighbors. This ensures that
the expected risk remains tolerable and resource consumption
is minimized irrespective of the location of the intruders, their
targets and paths between them and any statistical distribution
of these quantities. We now discuss how to select the IDS active
insiders so as to attain this goal.

The optimal set of IDS active insiders can be computed by
solving an integer linear program, MRRRIP (minimize resource
consumption subject to attaining the required risk). Let V ′ be
the set of IDS capable insiders. For each insider i, there exists
an integer variable xi. Now, xi = 1 if i is IDS active, and
0 otherwise. Since every insider must be covered by at least
kmin IDS active insiders,

∑
j∈Ni∩V ′ xj ≥ kmin. The goal of

MRRRIP is to minimize the weight of the IDS active insiders,
i.e.,

∑
j∈V ′ xjwj subject to these constraints.

(MRRRIP) Minimize:
∑

j∈V ′ xjwj

subject to

1)
∑

j∈Ni∩V ′ xj ≥ kmin,∀ i,
2) xi ∈ {0, 1} ∀ i.

We refer to MRRRIP as the optimum selection algorithm. The
expected risk of the optimum selection algorithm is below
γ. This is because some insider nodes will have more than
kmin IDS active neighbors, and H(k) decreases with increase
in k (Corollary 2). For example, consider a linear array of
insider nodes A,B,C,D,E. Every node is a neighbor of its
adjacent nodes. If kmin = 1, the optimal algorithm will execute
IDS in B and D. Thus, C will have 2 IDS active neighbors.
This motivates an analysis of the expected risk attained by the
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Fig. 2. The figure illustrates an algorithm for selecting the IDS active insiders
under the ETICDS(ρ) model. The algorithm would execute IDS in kmin

insiders at positions very close to those marked •. The circles indicate the
coverage areas of some of the IDS active insiders.

combination of the optimal selection algorithm and the selected
aggregation rule. The analysis will allow us to estimate the
difference between γ and the expected risk.

We now describe the first analysis. We assume that N static
insiders are uniformly distributed in a square of area A. Each
insider is IDS capable and has unit weight. Now we assume that
an insider u can receive transmissions from any node v which
is within a distance R from u. Thus, the fraction of total area
covered by an insider is ρ = πR2/A. We refer to this model
as the ETICUS(N, ρ) (all insiders have equal transmission
ranges, are IDS capable and uniformly distributed in a square)
model. Our goal is to compute the expected risk of the
optimum selection algorithm F (N, ρ, kmin) when a uniformly
selected insider v relays the packets and executes the given
aggregation rule (optimal or robust). Note that it is difficult to
compute F (N, ρ, kmin) because of the dependencies between
the selection of the IDS active insiders and the topology. So,
we approximate this expected risk assuming that every point
in the square is an insider. This resembles a network with a
large number of insiders. We refer to this assumption as the
ETICDS(ρ) model (all insiders have equal transmission ranges,
are IDS-capable and densely distributed in a square). Now
we execute IDS in insiders at a certain number of locations
in the square such that every point in the square is in the
coverage area of at least kmin IDS active insiders (figure 2).
We now compute the expected risk F (kmin) when a uniformly
selected point v in the square relays the packets and executes
the given aggregation rule (optimum or robust). Now F (kmin)
represents the expected risk for a selection algorithm and the
given aggregation rule, and is therefore expected to be an upper
bound for F (N, ρ, kmin).

Theorem 5: F (kmin) = 4−π
2 H(kmin) + π−2

2 H(2kmin).
As discussed before, H(k) = Hopt(k) for the optimal strategy
and H(k) = Hrob(k) for the robust strategy. These can be
computed from Theorems 2 and 4 respectively.

We now examine the computational complexity of the op-
timal selection algorithm. We no longer limit ourselves to
the ETICUS(N, ρ) model, and consider arbitrary distributions
for insider nodes and arbitrary edge sets. The complexity
of solving MRRRIP is exponential in N . Furthermore, the



following lemma suggests that the optimal selection problem
is not likely to be polynomial complexity computable.

Lemma 2: Optimally selecting the IDS active insiders is NP-
hard.

Proof: We first describe the set-multicover problem which
is well-known to be NP-hard [9]. There exists a set U with
elements {u1, . . . , uN} and K subsets of U : U1, . . . , UK . The
goal is to select the minimum number of subsets such that
each element belongs to kmin or more selected subsets. We
now show that the set-multicover problem can be solved in
polynomial complexity if MRRRIP can be solved in polynomial
complexity. Now, consider a wireless network with IDS capable
insiders v1, v2, . . . , vK and IDS incapable insiders u1, . . . , uN .
Let E = {(vi, uj), 1 ≤ i ≤ K,uj ∈ Ui} ∪ {(vi, vj), 1 ≤
i ≤ K, 1 ≤ j ≤ K} ∪ {(ui, ui), 1 ≤ i ≤ N}. Here,
V ′ = {v1, . . . , vK} , Nvi

= V ′ ∪Ui, for each i ∈ {1, . . . , K}.
Thus vi covers all insiders in Ui and no insider in U \Ui. Let
the coverage requirement be kmin for each insider. Clearly, any
feasible solution for MRRRIP selects at least kmin insiders from
V ′ and no insider from V \V ′. Thus, for any feasible solution,
insiders in V ′ are covered by at least kmin IDS active insiders.
Thus, the optimal solution for MRRRIP is a feasible solution
that selects minimum number of insiders from V ′ subject to
ensuring that every insider in u1, . . . , uN is covered with at
least kmin selected insiders. Thus, the optimal solution for
MRRRIP provides the optimal solution for the set-multicover
problem.

We now consider algorithms for approximating the opti-
mal selection problem. The proof for Lemma 2 demonstrates
that the optimal selection problem is an instance of the set-
multicover problem. Thus, unless P = NP, the best possible
approximation ratio‖ for this selection problem is Ω(ln N)
(pp.112 − 116, [26]). In our earlier work [21], [25], we have
proved that there exists a distributed computationally simple
approximation algorithm MUNEN, that not only attains the
above approximation ratio (O(ln N)) for the set-multicover
problem, but also selects the same set of nodes as the best
known centralized approximation algorithm. For completeness,
we describe MUNEN here. We first introduce a new notion.

Definition 4: The kmin-priority of an insider node i is the
ratio of the number of its neighbors that are covered by fewer
than kmin IDS active insiders to its weight wi.

Let h(u, v) be the minimum number of hops between insid-
ers u, v. Let N2(u) be the set of IDS-capable 2−hop neighbors
of u not including u, i.e., N2(u) = {v : v ∈ V ′\{u}, h(u, v) ≤
2}.

In each iteration an IDS-capable insider u selects itself if
• u has not selected itself already and
• u’s kmin-priority is positive and
• for any other insider v that has not been selected yet and

is in N2(u), either (i) u’s kmin-priority is greater than that
of v or (ii) u’s kmin-priority equals that of v and u < v.

At the end of each iteration, insiders recompute their kmin-
priorities.

‖The approximation ratio of a node selection algorithm is the ratio between
the number of nodes it selects and the number of nodes the optimal algorithm
selects.

Clearly, MUNEN selects additional IDS active insiders in
each iteration until each IDS capable insider that has not been
selected has 0 kmin-priority. It can select at most |V ′| insiders.
Thus, MUNEN terminates in |V ′| iterations, and the complexity
of the computations at each insider is O(|V ′|2).

When an insider node in G is covered by at most kmin −
1 IDS capable insiders, it may not be possible to select IDS
active insiders so as to cover every insider by kmin IDS active
insiders. In this case, MUNEN selects IDS active insiders such
that either an insider has at least kmin IDS active neighbors or
all its IDS capable neighbors are IDS active. Thus MUNEN
provides the maximum possible coverage in this case.

MUNEN is oblivious to the position of the outsiders, and
is therefore not affected by their movements. But, it needs
to recompute the IDS active set each time an insider node’s
neighborhood changes due to its or its neighbors’ movements.
Even though insiders require only local information and limited
message exchanges during such computations, frequent execu-
tion of these computations may consume significant resource.
Thus, MUNEN may not be suitable when the insider nodes
move rapidly.

We therefore consider a naive algorithm, Random Placement
(RP), in which nodes do not exchange any control message.
Here, every IDS capable insider node executes the IDS with
a probability s which can be selected so as to regulate the
resource consumed and the detection rate. For example, if s
is high, then a large number of insiders are IDS active. Thus,
the detection consumes a lot of resource but the expected risk
is low. We now compute the expected risk obtained by the
combination of RP and a selected aggregation rule. Here we
restrict ourselves to ETICUS(N, ρ) model. We compute the
expected risk G(N, s, ρ) when a uniformly selected insider
v relays the packets and executes the given aggregation rule
(optimal or robust).

We first compute the probability lk that an insider has k IDS
active neighbors.
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Fig. 3. We now illustrate the importance of intelligent aggregation rules
when multiple IDS active insiders relay a packet. We plot the expected risk
as a function of k. We present averages over 300 topologies. Each topology
has one mobile intruder, one target and p = 0.4, q = 0.2. Here we consider
ETICUS(100, 0.087) model. The path between an insider and its target, which
is selected by AODV, may consist of multiple links. Here, yF = yM = 1 and
πG = 0.8. When no insider is IDS active, and every packet is considered as
good, the expected risk is 0.2. When IDS active insiders are selected using
MUNEN and their analysis aggregated using the intuitively appealing algorithm
(NAIVE) the expected risk exceeds 0.2!. The expected risk associated with the
optimum multihop aggregation scheme (OPTMHOP) is smaller.
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Theorem 6: G(N, s, ρ) =
∑N

i=0 liH(i).
In Section IV, we compare the performances of MUNEN

and RP, and determine when each may be deployed.
We have so far assumed that every insider knows p, q. If not,

when max(p, q) < 0.5 and an upper bound α of max(p, q) is
known, similar results can be obtained by using the majority
aggregation rule. Now, α can often be determined from system
knowledge. The upper bound of Hmaj(k) provided in Lemma 1
must be used to compute kmin. Thus a large kmin would
normally be required to reduce this upper bound below γ and
hence the resource consumption would be high. This is the
penalty for insiders’ lack of knowledge of p, q.

C. Generalizations and Discussions

We first generalize the framework to consider arbitrary
number of relay insiders between an intruder and its target.
Now, the IDS active neighbors of all relay insiders analyze
a packet. The main challenge is to aggregate in a distributed
manner all this analysis.

We first demonstrate that an intuitively appealing aggregation
scheme can lead to a very high expected risk. Consider a
multihop aggregation scheme (NAIVE) in which a packet is
considered malicious if at least one relay insider considers it
such. Each relay insider decides whether the packet is bad using

a single-hop aggregation rule (presented in subsection III-A)
based on the analysis of its IDS active neighbors. Clearly, this
scheme has high false positives, which leads to significantly
high expected risk. Sometimes, the resulting expected risk is
above that incurred when no insider is IDS active (fig. 3).

Having shown the need for intelligent aggregation rules, we
next describe the optimum and robust aggregation rules for
multihop sessions. Irrespective of the number of relay insiders
an IDS active insider covers, it analyzes a packet only once.
Let ki

mhop be the total number of distinct IDS active neighbors
of the relay insiders of the ith session. Now, Theorems 1 and
3 respectively provide the optimal and the robust aggregation
rules for each session i with k substituted by ki

mhop and the
“IDS active neighbors” referring to the “distinct IDS active
neighbors of all relay insiders”. The aggregation procedure is
therefore similar to that of a fictitious system where every
packet of session i is relayed by a single insider with ki

mhop
active neighbors.

Since a packet is examined by a larger number of IDS
active insiders as the number of hops in its path increases, the
expected risks for the above aggregation rules decrease with
increase in the path length of the sessions for each selection rule
(MUNEN, RP). Thus, selecting kmin as before (i.e., assuming
that every packet is relayed by only one insider) still ensures
that the expected risk does not exceed γ. Such a selection also
ensures that kmin and hence the selection of the IDS active
insiders do not change with change in paths between intruders
and their targets. Thus, the selection algorithms remain the
same irrespective of the path lengths of the sessions.

We now describe a distributed implementation of the above
aggregation rules. For simplicity assume that p + q < 1. The
case of p+q > 1 can be treated similarly. Both the optimum and
the robust aggregation rules decide whether a packet is good or
bad depending on whether the number of IDS active insiders
that conclude that the packet is bad exceeds a certain threshold.
The last relay insider for session i determines this threshold
using ki

mhop and Theorems 1 and 3. Note that ki
mhop can be

obtained during route discovery. Now, every insider relaying a
packet determines how many of its IDS active neighbors decide
that the packet is bad (“bad votes”), and communicates this
number to the next relay after relaying the packet. Subsequent
relay insiders add the number of bad votes they count to the
number sent by the previous relay and transmit the sum further
downstream. Thus the last relay insider knows the total number
of bad votes. The last relay can thereby detect the occurrence
of an attack if this number exceeds the threshold.

Several optimizations are possible. First, the number of
bad votes can be communicated in the header of the next
packet. This eliminates the need for separate control packet
transmission, except once every time a new path is used. Note
that several data packets are transmitted between consecutive
path changes. Also, every relay insider for session i can
determine the threshold for the aggregation rules using ki

mhop
and Theorems 1 and 3. Thus, a relay insider can instruct its
next hop relay to signal an attack if the number of bad votes
obtained so far exceeds this threshold. The integrity of these
communications among the insiders may be protected using



message authentication codes - this prevents intruders from
posing as insiders.

We now consider some other generalizations of the frame-
work. First, some insiders may know πG while others may not.
Then, the former class of insiders uses the optimal aggregation
strategy and the latter uses robust aggregation strategy. Now,
at any πG and k, the expected risk of the optimal aggregation
strategy is less than that of the robust aggregation strategy.
Thus, the insiders who do not know πG must be covered
by more IDS active insiders for providing the same expected
risk for the relayed packets. Specifically, an insider i must
be covered by at least ki IDS active insiders, where ki =
kopt
min = mink{k : Hopt(k) ≤ γ} (ki = krob

min = mink{k :
Hrob(k) ≤ γ}) if i knows (does not know) πG. Now, clearly the
optimal selection problem remains NP-hard. A generalization
of MUNEN which considers different coverage requirements
for different insiders attains the best possible approximation
ratio of O(ln N).

We have assumed that all the IDS active insiders have equal
p, q. All the results hold when all IDS active neighbors of
each insider have the same p, q. Now, different insiders have
different coverage requirements which depend on the p, q of
their IDS active neighbors. This can be accommodated as
described in the previous paragraph. The aggregation rules
can be generalized to accommodate the more general case of
different p, q of different IDS active neighbors of an insider,
and the IDS active insiders can now be selected to satisfy the
different coverage requirements.

IV. PERFORMANCE EVALUATION

Using ns2-simulations, we compare the performance of dif-
ferent aggregation and IDS active insider selection algorithms.
The simulations allow us to investigate the effect of the factors
we did not consider in the analysis such as arbitrary number
of hops between the intruder and the target, mobile insiders
etc. We also evaluate the advantages and disadvantages of
different aggregation rules and the benefits of intelligently
selecting the IDS active insiders. We accordingly decide the
appropriate aggregation rule and the selection algorithm for
different desired tradeoffs between tolerable risks and resource
consumption.

We consider networks with different p, q (p = q = 0.1,
p = 0.3, q = 0.1) and different types of node mobility. For
each combination, we measure averages over 300 different
topologies. Each topology consists of a single intruder, a single
target. Here we consider ETICUS(400, 0.05) model. Also,
yM = yF = 1. For each topology, we measure the expected
risk as the sum of the bad packets that are not detected and
the good packets that are reported as bad divided by the total
number of packets.

We measure the detection cost as the total number of
IDS active insiders. We could not simulate the optimal node
selection algorithm MRRRIP in these large networks due to
the computational complexity involved in solving integer linear
programs with 400 variables. Nevertheless, sample computa-
tions in smaller networks suggest that MUNEN closely approx-
imates MRRRIP, and the performance difference is generally

much less than the upper bound of O(ln N). We do not include
these comparisons due to space constraint.

We initially consider networks where every packet is relayed
by a single insider node. In each topology, we select the IDS
active insiders using MUNEN and RP. Then, we select an
insider uniformly among all the insiders, and measure the risk
when it relays the packets and uses different aggregation rules.
The intruder and its target are selected within the transmission
range of this insider. Here, we assume that all nodes are static.

We investigate the performance of the various aggregation
strategies for two selection algorithms MUNEN and RP. In
figure 4 we plot the expected risk as a function of πG. For
MUNEN, we consider kmin = 5. For RP we select the IDS
activation probability s such that both RP and MUNEN have
equal number of IDS active insiders. This ensures that both
selection algorithms consume equal resource. We plot both the
expected risk measured using simulations and that computed
using the analytical expressions in Theorems 5, 6, 2, 4. We first
compare the performance of different aggregation rules for each
selection algorithm, and thereafter comment on the efficacy
of the analysis. The figure demonstrates that as expected
the optimal aggregation strategy (labeled as OPTAGG) has
the minimum expected risk at each πG. The robust strategy
(ROBAGG) on the other hand has somewhat higher risk at all
πG, but this risk does not depend on πG which again follows
from Theorem 4. Also, when p = q (figures 4(a) and 4(c)),
the robust and majority aggregation rules have equal risks.
This is because the two rules are the same whenever p = q
(Corollary 1). But, when p > q (figures 4(b) and 4(d)) and πG

is low the majority aggregation rule has significantly higher
expected risk than the other aggregation rules. The expected
risk of the majority aggregation rule decreases with increase in
πG. This is because when p > q, PF < PM for the majority
aggregation rule; thus, its expected risk πG(PF − PM ) + PM

is a monotonically decreasing function of πG.
Figure 4 demonstrates a close match between the analytical

results and simulation measurements for RP– the respective
curves are indistinguishable. This is because Theorem 6 pro-
vides exact expressions for RP. But, the analytical results for
the optimum selection algorithm (Theorem 5) upper bound the
simulation measurements for MUNEN. This is again expected
as the expected risk in Theorem 5 upper bounds the expected
risk of the optimal selection algorithm whose performance is
similar to that of MUNEN. Note that the analytical results in
Theorem 5 have the same trend as the simulation measurements
for MUNEN. The analytical expressions in both Theorem 5 and
Theorem 6 are computationally simple, whereas the simulations
are computationally intensive. This renders the exact analysis
for RP and the approximate analysis for the optimum selection
algorithm very useful.

Let the optimal aggregation strategy at a given πG be denoted
as O(πG). Here, we consider the same kmin and s as before.
In figure 5(a), we plot the maximum expected risk of O(πG),
i.e., max0≤x≤1 RO(πG)(x) obtained using the expression in
Theorem 2, 5, as a function of πG when k = 5. Recall that
this maximum expected risk is a measure of the maximum
damage an intruder inflicts if each insider tries to minimize the
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Fig. 4. We plot the expected risk as a function of πG. Each packet is relayed by a single uniformly selected insider. We obtain the expected risk from both
analysis and simulations.
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Fig. 5. In figure a), we plot the maximum expected risk as a function of πG at k = 5. In figure b) we consider the expected risk as a function of k for
different aggregation strategies. We consider πG = 0.8. In figure c), we plot the ratio of expected cost of RP and MUNEN for different aggregation strategies
as a function of the expected risk. In all cases, we assume that the packet is relayed by a single uniformly selected insider. We obtain the data in figures a)
from the analysis and in figures b) and c) from simulations.

system risk assuming a specific value of πG and the intruder
selects a different πG. We also plot the maximum expected
risk of the robust strategy as a benchmark which as expected
does not change with πG (Theorem 4). The figure demonstrates
that the maximum expected risk of the optimal strategy is
significantly higher than that of the robust strategy. Moreover,
the maximum expected risk is the maximum at extremes of
πG. This is because when the insiders assume one extreme
for πG, the intruder can significantly increase the risk by
selecting the other extreme for πG. We conclude that the robust
aggregation strategy must be used when the intruders select πG

after observing the insiders’ aggregation strategy, whereas the
optimum aggregation strategy should be used if the intruders
do not vary πG.

We now examine when the majority aggregation rule can
be used. Note that we have so far observed that for k = 5 the
majority aggregation rule performs significantly worse than the
optimum and robust aggregation rules when p �= q. But, again
neither the optimum nor the robust aggregation rule can be used
when p, q are unknown. Furthermore, Corollary 2 suggests that
the majority aggregation rule can be used for large k and any
p, q when max(p, q) < 0.5. In figure 5(b), we plot the expected
risk as a function of k for different aggregation rules at p =
0.3, q = 0.1 and πG = 0.8. We select the IDS active insiders
using MUNEN. As k increases, the expected risk associated
with the various strategies decrease and approach 0. Further, for

large k the expected risks are similar for different aggregation
rules. This indicates that the majority rule can be used with a
large k when p, q are unknown.

We now compare the resource consumed by different IDS
active insider selection algorithms for different aggregation
strategies. In figure 5(c), we plot the ratio of the expected
detection costs of RP and MUNEN measured from simulations
as a function of the tolerable expected risk. For MUNEN
at each tolerable risk value, we determine kmin and subse-
quently the expected detection cost at k = kmin. For RP,
we determine the minimum s required to attain the tolerable
expected risk. We now compare RP and MUNEN for different
aggregation rules. We first explain the trends and subsequently
draw conclusions. When the security requirements are very
stringent, i.e., the tolerable expected risk is very low (e.g.,
less than 0.01), MUNEN and RP have similar detection costs.
Now, kmin and s are large in this case. Thus, most of the
neighbors of the insiders need to execute the IDS. Hence, both
RP and MUNEN would need to execute the IDS in a large
fraction of insider nodes leading to similar detection costs.
But, when the security requirements are slightly less stringent,
i.e., the tolerable risk values are slightly higher, RP consumes
significantly higher resource than MUNEN for all aggregation
rules. For example, for OPTAGG, for tolerable expected risk
values greater than 0.01 and 0.04, RP consumes 12% and
32% more resource than MUNEN respectively. The difference
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Fig. 6. Multihop sessions with static and mobile insider nodes. We consider topologies where the path between the intruder and the destination consists of
multiple hops. In figures a) and b), we plot the expected risk as a function of k for different aggregation strategies for MUNEN and RP respectively. We
consider πG = 0.8. The insiders are static. In figure c), we plot the ratio of expected cost of RP and MUNEN as a function of the expected risk for optimal
aggregation strategy. In all cases, we obtain the data from simulations.

between the resource consumed becomes much higher for
larger values of tolerable risks. In this region, intermediate
values of kmin and s are required, and MUNEN’s intelligent
selection of IDS active insiders attains the same coverage as RP
while using fewer IDS active insiders. Summarizing, MUNEN
significantly outperforms RP for most values of tolerable risks.

The ratio of the detection costs of RP and MUNEN is
somewhat higher for the optimum aggregation rule than other
aggregation rules as the former requires somewhat lower kmin

and s at any given value of tolerable expected risk. Thus, as
discussed before, MUNEN’s intelligent selection of IDS active
insiders is more effective for the optimum aggregation rule.

We next consider topologies with an arbitrary number of
relays between an intruder and its target. The intruder and its
target are selected uniformly. Thus the path between them,
which is selected by AODV, consists of arbitrary number of
hops. We consider two different scenarios: (i) static insiders
and a mobile intruder and (ii) mobile insiders and a mobile
intruder. Each mobile node moves as per the random way point
model with a maximum speed of 20 m/s and pause time 10
sec. In figures 6(a) and 6(b), we plot the expected risk as a
function of k for different aggregation strategies for scenario
(i). In figure 6(c), we plot the ratio of the expected detection
costs of RP and MUNEN as a function of the tolerable expected
risk. We present results for both scenarios (i) and (ii) in this
figure considering only the optimal aggregation rule. In both
these figures, the trends remain the same as for a single hop
network. Thus our conclusions remain the same.

V. CONCLUSION

We consider ad hoc networks with imperfections in the nodes
performing intrusion detection tasks. Combining tools from the
theories of hypothesis testing and approximation algorithms,
we develop a framework to counter different threats while
minimizing the resource consumption. We obtain computa-
tionally simple optimal and robust rules for aggregating and
thereby minimizing the errors in the decisions of the nodes
detecting the intrusion. But, we show that optimally selecting
the nodes for sniffing and analyzing packets has the same
complexity as the well-known NP-hard set-multicover problem

[9]. We next describe a polynomial-complexity distributed
approximation algorithm, MUNEN, for selecting the nodes for
sniffing and analyzing packets which attains the best possible
approximation ratio and a simple heuristic selection strategy
(RP). Finally, we evaluate the security risk and the resource
consumed by the decision rules and the selection strategies
using both analysis and simulations. The overall framework
provides a good balance between complexity and performance
for detecting intrusion in ad hoc networks.

APPENDIX

Proof of Theorem 1: Let H0 (H1) denotes the hypothesis
that the packet is good (bad). Thus, when a relay insider decides
that a packet is good (bad), it accepts hypothesis H0 (H1).
Also, missed detection (fault alarm) corresponds to accepting
H0 (H1) when H1 (H0) holds. Let the cost for accepting
H0 (H1) when H0 (H1) does not hold be yM (yF ). Thus
the decision rule that minimizes the expected risk of a relay
insider’s decision also minimizes the expected cost of accepting
a hypothesis. Now let P0(y) (P1(y)) be the probability that y
IDS active neighbors of a relay insider inform that the packet is
bad given that H0 (H1) holds. Then, P0(y) =

(
k
y

)
qy(1−q)k−y

and P1(y) =
(
k
y

)
(1 − p)ypk−y.

Now from decision theory [17] (pp.5-9), the decision rule
that minimizes the expected cost of accepting a hypothesis (H0

or H1) is the following. A relay insider selects the hypothesis
H1 if P1(y)

P0(y) ≥ πGyF

(1−πG)yM
and selects the hypothesis H0

otherwise. By replacing the expressions for P1(y) and P0(y),
the optimal decision rules given in Theorem 1 for the cases
when p + q < 1 and p + q > 1 follow. Refer to [23] for the
case when p + q = 1.

Proof of Theorem 2: Let P opt
F (k) and P opt

M (k) denote the
probability of false positive and missed detection under the
optimal decision rule respectively. From Theorem 1, when
p + q < 1, P opt

F (k) =
∑k

i=max(Topt,0)

(
k
i

)
qi(1 − q)k−i and

P opt
M (k) =

∑min(Topt−1,k)

i=0

(
k
i

)
pk−i(1 − p)i. When p + q >

1, P opt
F (k) =

∑min(Topt,k)

i=0

(
k
i

)
qi(1 − q)k−i and P opt

M (k) =∑k
i=max(Topt+1,0)

(
k
i

)
pk−i(1 − p)i. Since Hopt(k) = (1 −



πG)yMP opt
M (k)+πGyF P opt

F (k), the results follow. Refer to [23]
for the proof when p + q = 1.

Proof of Theorem 3: Let δπG
(k) be the optimal decision

rule of a relay insider obtained at a given value of πG and k.
Now consider the case when p + q < 1, for given values of p

and q. Let 1) RM (δπG
(k)) = yM

∑min(Topt−1,k)

j=0

(
k
j

)
pk−j(1 −

p)j and 2) RF (δπG
(k)) = yF

∑k
j=max(Topt,0)

(
k
j

)
qj(1 −

q)k−j . Let the expected risk incurred by the optimal de-
cision rule δπG

(k) be H(δπG
(k)). Hence, H(δπG

(k)) =
πGRF (δπG

(k)) + (1 − πG)RM (δπG
(k)). H(δπG

(k)) can be
rewritten as H(δπG

(k)) = [RF (δπG
(k)) − RM (δπG

(k))] πG +
RM (δπG

(k)). Now we want to show that H(δπG
(k))

is a piecewise linear function of πG. From Theorem 1,
Topt is a nondecreasing step function of πG. In addition,
RM (δπG

(k)) and RF (δπG
(k)) depend on πG only through

Topt. Hence, RF (δπG
(k))(RM (δπG

(k))) is a non-increasing
(non-decreasing) function of Topt. Thus, RF (δπG

(k)) and
RM (δπG

(k)) are also step functions of πG. Hence, the slope
of H(δπG

(k)) is a non-increasing step function of πG. Thus,
H(δπG

(k)) is a piecewise linear function. It is also straight-
forward to show that H(δπG

(k)) is a continuous concave
function [17] (pp.14). Now let πG′ be the minimum value
of πG such that H(δπG

(k)) is maximized. Let T1(T2) =
limπG↑πG′ Topt(πG) (limπG↓πG′ Topt(πG)). Note that T1(T2) is
the threshold associated with δπG

for some πG1(πG2) where
πG1 < πG′(πG2 > πG′). Since H(δπG

(k)) is concave and
H(δπG′ ) is the global maximum, it is straightforward to see
that RF (δπG1 (k)) − RM (δπG1 (k)) > 0 while RF (δπG2 (k)) −
RM (δπG2 (k)) ≤ 0. Also, T2 = T1 + 1. Thus, T2 = min i :
yF

∑k
j=i

(
k
j

)
qj(1 − q)k−j ≤ yM

∑i−1
j=0

(
k
j

)
pk−j(1 − p)j .

Now from decision theory [17] (pp.13-18), the decision rule
that minimizes the maximum expected risk among all decision
rules is the following. A relay insider uses the decision rule
δπG1 (k) with probability rrob and uses the decision rule
δπG2 (k) with probability 1 − rrob where

rrob =
RF (δπ

G2 (k))−RM (δπ
G2 (k))

RF (δπ
G2 (k))−RM (δπ

G2 (k))+RM (δπ
G1 (k))−RF (δπ

G1 (k)) .

Recall that a relay insider which uses δπG1 (k) (δπG2 (k))
decides that the packet is bad if and only if T1(T2)
or more of its IDS active neighbors inform that the
packet is bad. Now, by replacing the expressions for
RF (δπG2 (k)), RM (δπG2 (k)), RF (δπG1 (k)), RM (δπG1 (k)), T1

and T2, the results follow. Refer to [23] for the cases when
p + q > 1 and p + q = 1.

Proof of Theorem 4: Let P rob
F (k) and P rob

M (k) denote
the probability of false positive and missed detection un-
der the robust decision rule respectively. From Theorem 3,
when p + q < 1, P rob

M (k) = rrob
∑Trob−2

i=0

(
k
i

)
pk−i(1 −

p)i + (1 − rrob)
∑Trob−1

i=0

(
k
i

)
pk−i(1 − p)i and P rob

F (k) =
rrob

∑k
i=Trob−1

(
k
i

)
qi(1− q)k−i + (1− rrob)

∑k
i=Trob

(
k
i

)
qi(1−

q)k−i. Recall that Hrob(k) = (1 − πG)yMP rob
M (k) +

πGyF P rob
F (k). By substituting the expression for rrob in P rob

F (k)
and P rob

M (k), we have yMP rob
M (k) = yF P rob

F (k). By replacing
yF P rob

F (k) by yMP rob
M (k) in Hrob(k), the result follows. Refer

to [23] for the cases when p + q > 1 and p + q = 1.

REFERENCES

[1] Yi an Huang and Wenke Lee. A cooperative intrusion detection system
for ad hoc networks. Proceedings of the ACM Workshop on Security of
Ad Hoc and Sensor Networks (SASN’03), Oct 2003.

[2] F. Anjum and R. Talpade. Packet-drop detection algorithm for ad hoc
networks. In Proc. of 60th IEEE Vehicular Technology Conference, Sept.
2004.

[3] P. Bhagwat, B. Raman, and D. Sanghi. Turning 802.11 inside-out. ACM
SIGCOMM Computer Communication Review, Jan 2004.

[4] S. Buchegger and J. Y. L. Boudec. Performance analysis of the confidant
protocol: Cooperation of nodes - fairness in dynamic ad-hoc networks.
In Proceedings of IEEE/ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHOC), Lausanne, June 2002.

[5] W. Cheswic and W. Bellovin. Firewalls and Internet Security. Addison
Wesley, 1999.

[6] Eric Cole. Hackers Beware. New Riding Publishing, 2001.
[7] D. Denning. An intrusion detection model. In IEEE Transactions on

Software Engineering, volume SE-13, pages 222–232, 1987.
[8] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep

packet inspection using parallel bloom filters. In Micro, IEEE, volume 24,
pages 52–61, Feb. 2004.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman and Company, 2000.

[10] S. Garfinkel and G. Spafford. Practical UNIX and Internet Security.
O’Reilly and Associates, 2nd edition, 1996.

[11] C. Ko, P. Brutch, J. Rowe, G. Tsafnat, and K. Levitt. System health and
intrusion monitoring using a hierarchy of constraints. In 4th International
Symposium, Recent Advances in Intrusion Detection, pages 190–204, Oct.
2001.

[12] H. Luo, R. Ramjee, P. Sinha, L. Li, and S. Lu. Ucan: A unified cellular
and ad-hoc network architecture. In Mobicom, 2003.

[13] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior
in mobile ad hoc networks. In Mobile Computing and Networking, 2000.

[14] John McHugh. Intrusion and intrusion detection. International Journal
of Information Security, 2001.

[15] P. Michiardi and R. Molva. Core: A collaborative reputation mecha-
nism to enforce node cooperation in mobile ad hoc networks. IFIP-
Communication and Multimedia Security Conference, 2002.

[16] David Wagner Nikita Borisov, Ian Goldberg. Intercepting mobile com-
munications: The insecurity of 802.11. In Proceedings of MobiCom’01,
2001.

[17] H. V. Poor. An Introduction to Signal Detection and Estimation. Springer-
Verlag, 2nd edition, 1994.

[18] T. Ptacek and T. Newsham. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical report, an SNI Tech-
nical Report, http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps,
Jan. 1998.

[19] R. Rao and G. Kesidis. Detecting malicious packet dropping using
statistically regular traffic patterns in multihop wireless networks that
are not bandwidth limited. In Proc. IEEE Globecom, San Francisco,
Dec. 2003.

[20] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream control transmission
protocol. RFC 2960, Oct. 2000.

[21] D. Subhadrabandhu, F. Anjum, S. Kannan, and S. Sarkar. Domination
and coverage guarantees through distributed computation. In Proceedings
of 43rd Annual Allerton Conference on Communication, Control, and
Computing, Champaign, IL, Sep. 2005.

[22] D. Subhadrabandhu, S. Sarkar, and F. Anjum. Efficacy of misuse
detection in adhoc networks. In Proceedings of IEEE SECON’04, Oct.
2004.

[23] D. Subhadrabandhu, S. Sarkar, and F. Anjum. Misuse
detection with imperfect defenders in adhoc networks.
Technical report, University of Pennsylvania Technical Report,
http://www.seas.upenn.edu/∼swati/publication.htm, Apr. 2005.

[24] D. Subhadrabandhu, S. Sarkar, and F. Anjum. A framework for misuse
detection in ad hoc networks - part i. In IEEE Journal on Selected
Areas in Communications Special Issue on Security in Wireless Ad Hoc
Networks, 2006.

[25] D. Subhadrabandhu, S. Sarkar, and F. Anjum. A framework for misuse
detection in ad hoc networks - part ii. In IEEE Journal on Selected
Areas in Communications Special Issue on Security in Wireless Ad Hoc
Networks, 2006.

[26] V. Vazirani. Approximation Algorithms. Springer, 2001.


