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Abstract
Generalized algebraic data types (GADTs), sometimes known as
“guarded recursive data types” or “first-class phantom types”, are a
simple but powerful generalization of the data types of Haskell and
ML. Recent works have given compelling examples of the utility
of GADTs, although type inference is known to be difficult. Our
contribution is to show how to exploit programmer-suppliedtype
annotations to make the type inference task almost embarrassingly
easy. Our main technical innovation iswobbly types, which express
in a declarative way the uncertainty caused by the incremental
nature of typical type-inference algorithms.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—abstract data
types, polymorphism

General Terms Languages, Theory

Keywords generalized algebraic data types, type inference

1. Introduction
Generalized algebraic data types (GADTs) are a simple but potent
generalization of the recursive data types that play a central role
in ML and Haskell. In recent years they have appeared in the
programming language literature with a variety of names (guarded
recursive data types [25], first-class phantom types [5], equality-
qualified types [18], and so on), although they have a much longer
history in the dependent types community. Any feature with so
many names must be useful—and indeed these papers and others
give many compelling examples.

It is time to turnGADTs from a specialized hobby into a main-
stream programming technique, by incorporating them as a con-
servative extension of Haskell (a similar design would workfor
ML). The main challenge is integratingGADTs with type inference,
a dominant feature of Haskell and ML.

Rather than seeking a super-sophisticated inference algorithm,
an increasingly popular approach is to guide type inferenceusing
programmer-supplied type annotations. With this in mind, our cen-
tral focus is this:we seek a declarative type system for a language
that includes bothGADTs and programmer-supplied type annota-
tions, which has the property that type inference is straightforward.
Our goal is a type system that ispredictableenough to be used by
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ordinary programmers; andsimpleenough to be implemented with-
out heroic efforts. We make the following specific contributions:

• We specify a programming language that supportsGADTs and
programmer-supplied type annotations (Section 4). The keyin-
novation in the type system is the notion of awobbly type(Sec-
tion 3), which models the places where an inference algorithm
would “guess”. The idea is that type refinements induced by
GADTs never refine wobbly types, and hence type inference is
insensitive to the order in which the algorithm traverses the ab-
stract syntax tree.

• Like any system making heavy use of type annotations, we offer
support for lexically scoped type variables that can be bound
by both polymorphic type signatures and signatures on patterns
(Section 4.5 and 5.5). There is no rocket science here, but we
think our design is particularly simple and easy to specify,
certainly compared to our earlier efforts.

• We explore a number of extensions to the basic system, includ-
ing improved type checking rules for patterns and case expres-
sion scrutinees, and nested patterns (Section 5).

• We prove that our type system is sound, and that it is a con-
servative extension of a standard Hindley-Milner type system
(Section 6). Moreover our language can express all programs
that an explicitly-typed language could express.

• We sketch a type inference algorithm for our type system thatis
a modest variant of the standard algorithm for Hindley-Milner
type inference. We prove that this algorithm is sound and com-
plete (Section 6.3).

Space restrictions prohibit a complete presentation of these con-
tributions. The details of the algorithm and related technical mate-
rial are given in a companion technical report [23]1.

We have implemented type inference forGADTs, using wobbly
types, in the Glasgow Haskell Compiler (GHC). GHC’s type checker
is already very large; not only does it support Haskell’s type classes,
but also numerous extensions, such as functional dependencies,
implicit parameters, arbitrary-rank types, and more besides. An
extension that required all this to be re-engineered would be a non-
starter, and it is here that the simplicity of ourGADT inference
algorithm pays off. In particular, we have successfully extended
GHC to supportboth GADTs and impredicative polymorphism
(described in a companion paper in this volume [22]), without
undesirable interactions with each other, or with existingfeatures.

Our implementation has already received heavy use. The re-
leased implementation inGHC uses a more complicated scheme
than that described here, originally given in an earlier version of
this paper (see Section 7). We are in the midst of re-engineering the
implementation to match what we describe in this revised, simpler
version.

1www.cis.upenn.edu/~dimitriv/dimitriv-inference.html
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2. Background
By way of background, we use a standard example to remind the
reader of the usefulness ofGADTs. Here is a declaration of aTerm
data type for a simply-typed language:

data Term a where
Lit :: Int -> Term Int
Inc :: Term Int -> Term Int
IsZ :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
Fst :: Term (a,b) -> Term a
Snd :: Term (a,b) -> Term b

Term has a type parametera that indicates the type of the term it
represents, and the declaration enumerates the constructors, giving
each an explicit type signature. We note that the type parametera is
a “dummy” parameter used only to indicate the kind ofTerm, and
does not scope over the types of the constructors. All type variables
in the types of constructors are implicitly universally quantified.
We adopt this convention for the examples appearing in the rest of
this paper. Equivalently one could write

data Term :: * -> * where ...

The type signatures of the constructors only allow
one to construct well-typed terms; for example, the term
(Inc (IsZ (Lit 0))) is rejected as ill-typed, because
(IsZ (Lit 0)) has typeTerm Bool and that is incompatible
with the argument type ofInc.

An evaluator for terms is stunningly direct:

eval :: Term a -> a
eval (Lit i) = i
eval (Inc t) = eval t + 1
eval (IsZ t) = eval t == 0
eval (If b t e) = if eval b then eval t else eval e
eval (Pair a b) = (eval a, eval b)
eval (Fst t) = fst (eval t)
eval (Snd t) = snd (eval t)

It is worth studying this definition. Note that the right hand
side of the first equation patently has typeInt, not a. But, if
the argument toeval is a Lit, then the type parametera must
beInt (because theLit constructor only produces terms of type
Term Int), and so the right hand side has typea also. Similarly,
the right hand side of the third equation has typeBool, but in a
context in whicha must beBool. And so on.

The key ideas of the semantics forGADTs are these:

• A generalized data type is declared by enumerating its construc-
tors, giving an explicit type signature for each. In conventional
data types in Haskell or ML, the result type of a data construc-
tor must be the type constructor applied to all of the type pa-
rameters of the data constructor. In a generalized data type, the
result type must still be an application of the type constructor,
but the argument types are arbitrary. For exampleLit mentions
no type variables,Pair has a result type with structure(a,b),
andFst mentions some, but not all, of its universally-quantified
type variables.

• The data constructors are functions with ordinary polymorphic
types. There is nothing special about how they are used to
construct terms, apart from their unusual types.

• All the excitement lies in pattern matching. Matching against a
constructor may induce atype refinementin the case alternative.
For example, in theLit branch ofeval, we can refinea toInt.

• The dynamic semantics is unchanged. Pattern-matching is done
on data constructors only and there is no run-time type passing.

Theeval function is a somewhat specialized example, but earlier
papers have given many other applications ofGADTs, including

generic programming, modeling programming languages, main-
taining invariants in data structures (e.g. red-black trees), express-
ing constraints in domain-specific embedded languages (e.g. secu-
rity constraints), and modeling objects [8, 25, 5, 18, 16, 17]. The
interested reader should consult these works; meanwhile, for this
paper we simply take it for granted thatGADTs are useful.

3. The key idea
Our goal is to combine the flexibility of Hindley-Milner typeinfer-
ence with the expressiveness ofGADTs, by using the programmer’s
annotations to guide type inference. Furthermore, we seek asystem
that gives as much freedom as possible to the inference algorithm.
For example, we would like to retro-fitGADT inference to existing
compilers, as well as use it in new ones.

The difficulty with type inference forGADTs is well illustrated
by the eval example of Section 2. In the absence of the type
signature foreval, a type inference engine would have to anti-
refine theInt result type for the first two equations, and theBool
result type of the third (etc.), to guess that the overall result should
be of typea. Such a system would certainly lack principal types.
Furthermore, polymorphic recursion is required: for example, the
recursive call toeval in the second equation is at typeInt, nota.
All of these problems go away when the programmer supplies the
type ofeval.

Furthermore, the complete type of a function that usesGADTs
is required, because, even if the return type is clear, type inference
may still be challenging. Here is another variant:

f x y = case x of
Lit i -> i + y
other -> 0

There are at least two types one could attribute tof, namely
Term a → Int → Int andTerm a→ a→ Int. The latter works
because type refinement induced by the pattern match onx refines
the type ofy. Alas, neither is more general than the other. Again, a
programmer-supplied type signature would solve the problem.

Thus motivated, our main idea is the following:

Type refinement applies only to user-specified types.

In the case off, since there are no type annotations, no type
refinement will take place:x must have typeTerm Int andy will
get typeInt. However, if the programmer adds a type annotation,
the situation is quite different:

f :: Term a -> a -> Int
f x y = case x of

Lit i -> i + y
other -> 0

Now it is “obvious” thatx has typeTerm a andy has typea. Be-
cause the scrutinee of thecase has the user-specified typeTerm a,
the case expression does type refinement, and in the branch the
type system knows thata = Int. Because the type ofy is also
user-specified, this type refinement is applied wheny occurs in the
right hand side.

To summarise, our general approach is this:

• Instead of “user-specified type”, we use the briefer termrigid
type to describe a type that is completely specified, in some
direct fashion, by a programmer-supplied type annotation.

• A wobbly typeis one that is not rigid. There is no such thing as
a partly-rigid type; if a type is not rigid, it is wobbly2.

• A variable is assigned a rigid type if it is clear,at its binding
site, precisely what its type should be.

2 In an earlier version of this paper, types were allowed to have both rigid
and wobbly components (Section 7).
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—Source language syntax—
Atoms c ::= x | C
Terms t, u ::= c | \x.t | t u

| let x = u in t
| let x::sig = u in t

| case t of p -> t
Patternsp ::= x | C p | p::tau

Type annotationssig ::= forall a.tau
tau ::= tau → tau | a | T tau

Polytypes σ ::= ∀a.τ
Monotypes τ, υ ::= τ→τ | a | T τ

—Meta language syntax—
Environments Γ, ∆ ::= · | Γ, c :m σ | Γ, a →֒ τ

Modifiers m,n ::= w | r
Refinementsθ,ψ ::= [a 7→τ]

Triples K, L ::= (a, ∆, θ)

—Annotation translation—
[[a]]Γ = Γ (a)
[[tau1 → tau2 ]]Γ = [[tau1 ]]Γ → [[tau2]]Γ

[[T tau]]Γ = T [[tau]]Γ
[[forall a.tau]]Γ = ∀a.[[tau]]Γ,a→֒a a fresh

—Refinement application—
θr(σ) = θ(σ)
θw(σ) = σ

θ(·) = ·
θ(Γ, c :m σ) = θ(Γ ), c :m θm(σ)
θ(Γ, a →֒ τ) = θ(Γ ),a →֒ θ(τ)

Figure 1: Syntax of source language and types

• A case expression performs type refinement in each of its
alternatives only if its scrutinee has a rigid type.

• The type of a variable occurrence is refined by the current type
refinement only if the variable has a rigid type.

But exactly when is a type “completely specified by a type an-
notation”? After all, no type annotation decorates the binding
for x in the definition off above, nor is thecase expression
adorned with a result type, and yet we argued above that both
should be rigid. Would it make any difference if we had written
case (id x) of ..., whereid is the identity function?

To answer these questions, we need a precise and predictable
description of what it means for a type to be rigid, which is what
our type system provides.

4. The type system
The syntax of a language withGADTs is shown in Figure 1, and is
entirely conventional. We use· to represent a sequence of elements.
For example,p abbreviates the sequence of patternsp1 . . . pn . We
assume that data types are declared by simply enumerating the
constructors and their types (as in Section 2), and those typings
are used to pre-populate the type environmentΓ . Thelet binding
form is recursive. Pattern matching is performed only bycase
expressions, but we will occasionally take the liberty of writing
\p.t instead of\x.case x of p→ t.

The language of types is also entirely conventional, stratified
into polytypesσ and quantifier-freemonotypesτ. We abbrevi-
ate polytypes that bind no type variables (∀.τ) as τ. We use a
different syntactic domain for programmer-supplied type annota-
tions,sig andtau. Such annotations appear in the syntax of the
source language in two places: alet definition may be anno-
tated with a polytype, or a pattern may be annotated with a mono-
type. Haskell also allows an expression to be annotated witha

Γ ⊢ t :m τ

c :
n ∀a.τ ∈ Γ

ATM
Γ ⊢ c :

m
[a 7→υ]τ

Γ ⊢ t :w τ1→τ2
Γ ⊢ u :w τ1 APP
Γ ⊢ t u :

m
τ2

Γ, x :m τ1 ⊢ t :m τ2 ABS
Γ ⊢ \x.t :

m
τ1→τ2

Γ, x :w τ1 ⊢ u :w τ1
a = ftv(τ1) − ftv(Γ ) Γ, x :w ∀a.τ1 ⊢ t :m τ2 LET-W

Γ ⊢ (let x = u in t) :
m
τ2

[[forall a.tau]]Γ = ∀a.τ1 a#ftv(Γ )
Γ, x :r ∀a.τ1, a →֒ a ⊢ u :r τ1 Γ, x :r ∀a.τ1 ⊢ t :m τ2 LET-R

Γ ⊢ (let x::forall a.tau = u in t) :
m
τ2

Γ ⊢ u : τp ↿
mp

Γ ⊢ p→ t :〈mp,mt〉 τp→τt
CASE

Γ ⊢ (case u of p->t) :
mt τt

Γ ⊢ t : τ ↿m

v :
m
τ ∈ Γ

SCR-VAR
Γ ⊢ v : τ ↿

m

Γ ⊢ t :
w
τ

SCR-OTHER
Γ ⊢ t : τ ↿

w

Γ ⊢ p→ t :〈mp,mt〉 τp→τt

C :r ∀a.τ1→ T τ2 ∈ Γ a#ftv(Γ, τp , τt)
ac = a ∩ ftv(τ2) θ = [ac 7→υ] θ(τ2) = τp

Γ, x :w θ(τ1) ⊢ t :m τt
PCON-W

Γ ⊢ C x→ t :
〈w,m〉

T τp→τt

C :r ∀a.τ1→ T τ2 ∈ Γ a#ftv(Γ, τp , τt)
θ ∈ fmgu(τp

.
= τ2)

θ(Γ, x :r τ1) ⊢ t :m θm(τt)
PCON-R

Γ ⊢ C x→ t :
〈r,m〉

T τp→τt

Figure 2: Typing rules and case alternatives

type, thus(e::sig). We interpret this form as syntactic sugar for
(let x::sig = e in x). We often use the termtype signature
for a programmer-supplied type annotation.

The type environmentΓ is more unusual. Each variable (or
constructor) bindingc :m σ is annotated with a modifier,m, which
indicates whether the type is rigid (r) or wobbly (w). Types of
constructors are always closed and rigid. Furthermore the type
environment mapslexically scoped type variables, a, to rigid types,
as we discuss in Section 4.5. This last binding form allows usto
translate a (possibly open) type annotationsig to an internal type
σ, which we write as[[sig]]Γ = σ. We writeΓ (a) = τ whenever
a →֒ τ ∈ Γ .

A type refinement, θ, is simply a substitution mapping type
variables to monotypes. (One can also represent the type refinement
as a set of constraints, an alternative that we discuss in Section 4.3.)
The operationθ(Γ ) applies the type refinementθ to the contextΓ ,
and is also defined in Figure 1. The key thing to note is that only
the rigid bindings inΓ are affected. We writedom(θ) for the finite
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set of type variables for whichθ is not the identity. Concretely,
we represent a substitution by listing the non-identity mappings
[a 7→ τ], and useǫ for the identity-everywhere substitution.

We useftv(τ) to denote the free type variables of the typeτ.
Abusing the notation we writeftv(τ) to denote the union of the
sets of free variables of everyτ in τ. Additionally, we writeftv(Γ )
for the free type variables appearing in the environmentΓ , either
in the types that lexical variables bind, or in the types thatterm
variables bind. We writedom(Γ ) to refer to the collection of all
lexical and term variables bound inΓ .

4.1 Typing rules: overview

The typing rules for the language are syntax-directed and are given
in Figure 2. The main judgement has the formΓ ⊢ t :m τ. The
unusual feature is the modifierm, which indicates whether the type
τ is rigid. In algorithmic terms,Γ ⊢ t :r τ checks thatt has typeτ
when we knowτ completely in advance, whereasΓ ⊢ t :w τ checks
that t has typeτ without that assumption—τ may be partially or
entirely unknown.

The modifierm propagates information about type rigidity. For
example, in ruleLET-R we see that atype-annotatedlet binding
causes the right hand sideu to be type-checked in a rigid context
(. . . ⊢ u :r τ). (The notationa#ftv(Γ ) means that the type
variablesa do not appear inΓ .) Furthermore, when typechecking
u, the environmentΓ is extended with a rigid binding forx, giving
its specified, polymorphic type, thereby permitting polymorphic
recursion, which is very often necessary inGADT programs (e.g.
eval in Section 2).

Then, in ruleABS we see that to type check an abstraction\x.t
we extend the environmentΓ with a binding forx that is rigid if the
context is rigid, and vice versa. For example, consider the term

let f::(forall a.Term a→a→a) = \x.\y.u in t

The bodyu of the abstraction will be type checked in an environ-
ment that has rigid bindings for bothx andy (as well asf).

The APP rule always typechecks both function and argument
in a wobbly context: even if the result type is entirely known, the
function and argument types are not. One might wonder whether
the function might provide a rigid context for its argument,or
vice versa, butAPP does not attempt such sophistication (but see
Section 5.1).

Rule ATM does not use the modifiern of the variable (or con-
structor) type in the environment. It merely checks that thetype of
the variable (or constructor) in the environment can be instantiated
to the type given by the judgement.

The really interesting rule is, of course, that forcase, which we
discuss next. For the moment we restrict ourselves to flat patterns,
of formC x, leaving nested patterns for Section 5.4.

4.2 Pattern matching

A case expression only performs type refinement if the scrutinee
has a rigid type. The auxiliary judgementΓ ⊢ t : τ ↿m , defined
in Figure 2, determines whether the scrutinee is rigid. Rather than
pushing the modifier inwards as the main judgement does, itinfers
the modifier. The judgement has just one interesting case, the one
for variables. RuleSCR-VAR returns the modifier found for the
variable in Γ ; otherwise the judgement conservatively returns a
wobbly modifierw (SCR-OTHER)3. We will extend this judgement
later, in Section 5.1.

RuleCASE first uses this new judgement to typecheck the scru-
tineeu and then typechecks each alternative, passing in both the

3 To be truly syntax-directed,SCR-OTHER would need a side condition to
exclude the variable case.

rigidity of the scrutinee,mp , and the rigidity of the result type,
mt .

Thecase-alternative rules are also given in Figure 2. There are
two cases to consider. RulePCON-W is used when the scrutinee has
a wobbly type. In that case, we use ordinary Hindley-Milner type
checking. We look up the constructorC in the type environment,
α-rename its quantified type variables to avoid ones that are in
use, and then find a substitutionθ that makes the result type of
the constructorT τ2 match the type of the patternT τp . Finally,
we extendΓ with wobbly bindings for the variablesx (obtained by
instantiating the constructor’s type), and type check the right hand
side of the alternative,t.

One subtle point is that the constructor may bindexistentialtype
variables. For example, supposeMkT :: ∀ab.a→ (a→ b) → T b.
Then the type variablea is existentially bound by a pattern for
MkT, becausea does not appear in the result typeT b. Clearly,
we must not substitute fora; for example, this term is ill-typed,
if x : MkT Bool:

case x of MkT r s -> r+1

We must form the substitution[b 7→ Bool] to make the result type
of the constructor match that ofx, buta is simply a fresh skolem
constant. That is whyPCON-W first computesac , the subset ofC’s
quantified variables that appear in its result type, and permits only
these variables in the domain ofθ.

RulePCON-W gives a wobbly type toall the bound variablesx,
which is safe but pessimistic; for example above,r could have a
rigid type. We return to this question in Section 5.3.

4.3 Type refinement

Now we consider rulePCON-R, which is used when the scrutinee of
thecase has a rigid type. In that case we compute a type refinement
with the judgementθ ∈ fmgu(τp

.
= τ2). We return to the details

of this judgement in Section 4.4—for now let us only assume that
the returnedθ is a substitution thatunifiesthe type of the pattern,
T τp , and the result type of the constructor,T τ2.

Unlike rulePCON-W, θ can contain in its domain type variables
mentioned in the type of the pattern,T τp , as well as type variables
mentioned in the return type of the constructor,T τ2. Now we
apply the type refinement to the environment, and to the result
type, before type-checking the right hand side of the branch. When
applying the refinement to the environment, we only refine rigid
bindings (see Figure 1), and similarly we only refine the result
typeτt if it is rigid (henceθm(τt)). We do not need to apply the
refinement to the term: if the term contains open type annotations,
the scoped type variables of these annotations must be boundin the
environment, in which we do apply the refinement.

If unification fails to compute a type refinement, then thecase
alternative cannot possibly match, and the type system rejects the
program. Another possible design choice is to accept statically-
inaccessible alternatives without even type-checking theright hand
side (since it can never be reached). However, we think that we are
more likely to help programmers by rejecting such programs than
by silently accepting them.

The appearance of unification is slightly unusual for a declara-
tive type system, although not without precedent [9]. The best way
to think about it is that a successful pattern match implies the truth
of an equality constraint of formT τp

.
= T τ2 , and the case al-

ternative should be checked under that constraint. We express this
idea by solving the constraint to get its most general unifier, and ap-
plying the unifier to the entire judgement (modulo the rigid/wobbly
distinctions).

Most other authors choose to deal with the constraint sets ex-
plicitly, using a judgement of formC, Γ ⊢ t : τ, whereC is a set
of constraints, and type equality is taken modulo these constraints
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[25, 5, 19, 15]. That approach is more general, but it is less con-
venient in our context, because by the time that type equality is
invoked, the provenance of the types (and in particular whether or
not they are rigid) has been lost. For example, we do not want this
judgement to hold:

a
.
= Int, xs :

w
[a] ⊢ (3:xs) : [Int]

It should not hold becausexs has a wobbly type. But the type
equality arises from instantiating the call to cons(:), and by
that time the fact that its second argument had a wobbly type has
been lost. A solution would be to embody wobbliness in the types
themselves, as an earlier version of this paper did, but the approach
we give here is significantly simpler.

4.4 Fresh “most general” unifiers

What unifiers should be used in rulePCON-R for refinement? First,
will any unifier θ do? No: we must not make up any substitution
beyond those justified by the constraints. For example, consider the
program

f :: forall a. (a,b) -> Int
f = \x. case x of (p,q) -> p+1

It would obviously be wrong to substituteInt for a in the case
alternative! Nor, just as in rulePCON-W, can we refine the types of
existential variables.4

Hence, choosingθ to be a most general unifier (mgu), guaran-
teed not to introduce any spurious equalities, seems reasonable to
ensure sound type inference. Alas, sometimes two types can have
more than onemgu and the choice among thesemgus can de-
termine whether the program typechecks. Consider the following
example:

data Eq a b where Refl :: Eq c c

f :: forall a b. Eq a b -> (a->Int) -> b -> Int
f x y z = (\w. case x of Refl -> y w) z

First, note thatw enters the environment with thewobbly type b
(rules APP and ABS). Now, when checking the pattern, we are
faced with the problem of computing aθ such thatθ(Eq c c) =
θ(Eqa b). There are three most general unifiers,[b 7→ a, c 7→ a],
[a 7→ b, c 7→ b], or [a 7→ c, b 7→ c]. Becausew’s type is wobbly,
it will not be refined by the pattern match, buty’s (rigid) type will
be. Hence, the body of thecase will typecheckonly if we choose
the second of the three substitutions. (If the case alternative was
y z instead ofy w, it would typecheck with anymgu, because
z’s binding is rigid.) So if the rules specifyθ is somemgu, there
certainly is anmgu that makes the program typecheck—but it is
hard to see how analgorithmcould know which of the threemgus
to choose.

Since type inference is hard for this case, the thing to do is to
reject this program. But how can we do so? Our solution is to use a
modified form ofmgu, calledfmgu: whenever we have to unify
two variables from the context type, we do not unify them directly;
instead, we make up a fresh variable and map both variables tothe
new one. In our example, the substitution[a 7→ d, b 7→ d, c 7→ d]
(whered is a fresh type variable) is afmgu of Eq c c andEq a b.
The device of choosing a fresh type variable ensures that a wobbly
binding (such asw’s) will neverbe compatible with the refined type,
rather than being compatible under some unifiers but not others. A
fmgu is technically not a most general unifier, because the latter
never involves variables that do not appear in the argument types,
but its definition is very similar to that ofmgu:

4 There is also a dual question: mustθ be a unifier at all? The answer
here is more nuanced: “no” for soundness, but “yes” for completeness: see
Section 6.4.

DEFINITION 4.1 (fmgu). An idempotent substitutionθ is a fresh
most general unifier ofτ1 andτ2, writtenθ ∈ fmgu(τ1

.
= τ2),

iff

(i) θ is a unifier ofτ1 andτ2 , that is,θ(τ1) = θ(τ2).
(ii) For any idempotent unifierφ of τ1 andτ2 there exists a sub-

stitutionψ such thatφ(a) = ψ(θ(a)) for all a ∈ ftv(τ1 , τ2).
(iii) For everya, b ∈ ftv(τ1), with a 6= b, θ(a) 6= b. For every
a, b ∈ ftv(τ2), witha 6= b, θ(a) 6= b.

(iv) dom(θ) ⊆ ftv(τ1, τ2) and all type variables inrange(θ)
are either inftv(τ1, τ2) or are fresh (disjoint from variables
introduced by the typing judgment that usesθ).

Conditions (i) and (ii) resemble the corresponding properties of
most general unifiers.5 Condition (iii) is the distinctive feature of
fmgu: it guarantees that no two variables from the context type or
the constructor type are directly equated to each other; instead, this
can only happen through a third fresh variable. Finally condition
(iv) ensures thatθ does not include any extra spurious equalities
for variables that appear free elsewhere in the typing derivation.
To simplify the exposition, we state this freshness condition infor-
mally here and only make it precise in the companion technical
report [23].

It is not hard to come up with a procedure to calculate such
fresh most general unifiers. Figure 3 gives one implementation,
fmgu, with the property that iffmgu(τ1

.
= τ2) = θ thenθ ∈

fmgu(τ1
.
= τ2). Thefmgu procedure in turn calls the auxiliary

procedurefmgu∗, and then restricts the domain of the unifier it
returns to ensure that it is contained inftv(τ1 , τ2) — the restriction
is written|ftv(τ1,τ2) in Figure 3. In a call of the formfmgu∗(E ,B)
the setE represents type equalities that must be satisfied, of the
form τ1

.
= τ2 . The setB is used to determine which variables

must not be unified to each other: Iffmgu∗(E ,B) = θ then no
two variables fromB are directly equated throughθ and no two
variables fromftv(E) − B (which were not introduced as fresh
by the algorithm) are directly equated throughθ. A subtle point
in this algorithm is that the setB also adds “directionality” to the
unifier, namely that variables fromB are preferred in the domain
of the returned substitution. Thefmgu procedure is initialized with
B = ftv(τ2), hence preferring variables ofτ2 in the domain of the
returned substitution, for reasons that we describe in Section 4.6.

4.5 Lexically scoped type variables

Any polymorphic language that exploits user type annotations, as
we do here, must support lexically scoped type variables, sothat a
type signature can mention type variables that are bound “further
out”. This feature is curiously absent from Haskell 98, and its
absence is often awkward. For example:

prefix :: forall a. a -> [[a]] -> [[a]]
prefix x yss = let xcons :: [a] -> [a]

xcons ys = x : ys
in map xcons yss

This program is rejected by Haskell, because the type signature for
xcons is implicitly quantified to mean∀a.[a] → [a]. What we
want here is anopentype signature forxcons that mentions a type
variable bound by the definition ofprefix.

5 If θ is anmgu of τ1 andτ2 , then for any other unifier ofτ1 andτ2 ,
φ, there exists a substitutionψ such thatφ(a) = ψ(θ(a)) for all a.
The difference here is that condition (ii) requires equality only for a in
the free type variables ofτ1 andτ2 . This allows “fresh” type variables to
appear in the domains ofφ, θandψ. Moreover we work with the lattice of
idempotent substitutions, as it is technically more tractable, but condition
(ii) could be recast in terms of arbitrary unifiers.
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fmgu(τ1
.
= τ2) = θ fmgu(τ1

.
= τ2) = fmgu∗({τ1

.
= τ2}, ftv(τ2)) |ftv(τ1,τ2)

fmgu∗(E ,B) = θ E = · | (τ1
.
= τ2) ∪ E

1. fmgu∗(∅,B) = ǫ
2. fmgu∗(a

.
= a ∪ E ,B) = fmgu∗(E ,B)

3. fmgu∗(a
.
= b ∪ E ,B) = fmgu∗([a 7→ b]E ,B) · [a 7→ b] a ∈ B, b /∈ B

4. fmgu∗(b
.
= a ∪ E ,B) = fmgu∗([a 7→ b]E ,B) · [a 7→ b] a ∈ B, b /∈ B

5. fmgu∗(a
.
= b ∪ E ,B) = fmgu∗([a 7→ c, b 7→ c]E ,B) · [a 7→ c, b 7→ c]

where(a, b /∈ B ∨ a, b ∈ B) andc fresh
6. fmgu∗(a

.
= τ ∪ E ,B) = fmgu∗([a 7→ τ]E ,B) · [a 7→ τ] wherea /∈ ftv(τ) andτ 6= b

7. fmgu∗(τ
.
= a ∪ E ,B) = fmgu∗([a 7→ τ]E ,B) · [a 7→ τ] wherea /∈ ftv(τ) andτ 6= b

8. fmgu∗((T τ1
.
= T τ2) ∪ E ,B) = fmgu∗(τ1

.
= τ2 ∪ E ,B)

9. fmgu∗((τ1 → τ2
.
= τ3 → τ4) ∪ E ,B) = fmgu∗({τ1

.
= τ3, τ2

.
= τ4} ∪ E ,B)

Figure 3: An implementation offmgu

In our small language, we therefore allow the programmer to
annotate alet definition with a polymorphic type,forall a.tau.
The type variables that are lexically in scope are those bound by the
environmentΓ (see the syntax in Figure 1); in a full-blown system,
the environment would also record their kinds. RuleLET-R first
uses the bindings of scoped type variables in the environment Γ to
translate the typing annotation to an internal type, with the judge-
ment [[forall a.tau]]Γ = ∀a.τ. It also requires thata#ftv(Γ ),
and extends the environment with the new bindingsa →֒ a, to
bringa in scope. The right-hand side is checked under this extended
environment.

The idea that the quantified type variables of a type signature
should scope over the right hand side of its definition is not new:
it is used in Mondrian [12] and Chameleon [20]. It seems a little
peculiar, and we resisted it for a long time, but it is extremely direct
and convenient, and we now regard it as the Right Thing.

The job is not done, though. We still need a way to name
existentially-boundtype variables. For example, consider this
(slightly contrived) example:

data T where MkT :: [a] -> (a->Int) -> T
f::T -> Int
= \x. case x of

MkT ys g -> let y::?? = head ys
in g y

What type can we attribute toy in the innerlet binding? We
need a name for the existential type variable that is bound bythe
pattern(MkT ys g). Pattern annotations provide such functional-
ity. For example:

f::T -> Int
= \x. case x of

MkT (ys::[a]) g -> let y::a = head ys
in g y

The pattern(ys::[a]) brings the type variablea into scope
so that it can be used in thelet binding fory. In general, a type-
annotated pattern(p::tau) brings into scope the type variables
of tau that are not yet bound in the environment. These variables
then scope overtau, p, all patterns to the right of the binding site,
and the right hand side of the case alternative. The typing rules of
Figure 2 only deal with simple flat patterns; we formalize type-
annotated patterns when we discuss nested patterns in Section 5.4.

Lexically-scoped type variables are always bound to typevari-
ables, and hence enterΓ with a binding of form(a →֒ a) (seeLET-
R). However, in a type-refining case alternative, we apply there-
finement to the type environment,including the bindings for scoped

type variables, so now a type variable may be bound to an arbitrary
type. For that reason, bindings inΓ take the form(a →֒ τ).

In a real programming language, such as Haskell, quantification
is often implicit. For example, the “forall a” quantification in a
let binding might be determined by calculating the type variables
that are mentioned in the type, but are not already in scope. (In-
deed, we adopt this convention for many of the types we write in
this paper.) However, for our formal material we assume thatquan-
tification is explicit.

4.6 Type inference

It is very straightforward to perform type inference for oursystem.
One algorithm that we have worked out in detail is based on the
standard approach for Hindley-Milner systems [4, 13]. The infer-
ence engine maintains an ever-growing substitution mapping meta
type variables to monotypes. Whenever the inference engineneeds
to guess a type (for example in ruleABS) it allocates a fresh meta
type variable; whenever it must equate two types (such as rule APP)
it unifies the types and extends the substitution.

Modifying the type inference algorithm for Hindley-Milnersys-
tems to supportGADTs is simple. Bindings in the type environment
Γ carry a boolean rigid/wobbly flag, as does the result type. The
implementation of pattern-matching can be read directly from rules
PCON-R andPCON-W.

There is one subtlety, which lies in the implementation of
fmgu. Consider the possible type derivations for

x :
r

(a, b) ⊢ (case x of (p,q) -> p) :
w
a

The pair constructor has type∀cd.c→d→ (c, d), the unification
problem inPCON-R is to compute afmgu for (a, b)

.
= (c, d).

There are severalfmgus of this constraint, and not all of them are
useful. For example, the substitution[a 7→ c, b 7→ d] will not type
this program because the type ofp will be c which does not match
the result typea. Alternatively, thefmgu [c 7→a, b 7→d] succeeds.
The key idea is that, given a choice,the unifier should eliminate the
freshly-bound type variables, in this casec andd.

Our inference engine therefore uses a “biased”fmgu algo-
rithm, based on Figure 3, that preferentially eliminates freshly-
bound type variables. To achieve this we simply require thatthe
procedurefmgu∗ of Figure 3 is called with an initialB that con-
tains the required freshly-introduced type variables. In rule PCON-
R, these variables are the free type variables ofτ2 , therefore the
implementation makes a call tofmgu(τp

.
= τ2), which results in

passing theftv(τ2) asB.
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We have proven that if a program type checks with anyfmgu
then it typechecks with the biased implementation. Therefore we
have complete type inference without searching for an appropriate
fmgu (see Section 6.3). Additionally, the biased implementation
has the property thatfmgu(T τ

.
= T b) = [b 7→ τ], when the

lengths ofτ andb are the same. This property ensures that our
system conservatively extends Haskell (Section 6.6).

5. Variations on the theme
The type system we have described embodies a number of some-
what ad hocdesign choices, which aim to balance expressiveness
with predictability and ease of type inference. In this section we
explore the design space a bit further, explaining several variations
on the basic design that we have found useful in practice.

5.1 Smart application
The rules we have presented will type many programs, but there are
still some unexpected failures. Here is an example6 (c.f. [3]):

data Equal a b where
Eq :: Equal a a

data Rep a where
RI :: Rep Int
RP :: Rep a -> Rep b -> Rep (a,b)

test :: Rep a -> Rep b -> Maybe (Equal a b)
test RI RI = Just Eq
test (RP s1 t1) (RP s2 t2)
= case (test s1 s2) of

Nothing -> Nothing
Just Eq -> case (test t1 t2) of

Nothing -> Nothing
Just Eq -> Eq

A non-bottom valueEq of typeEqual a b is a witness that the
typesa andb are the same; that is why the constructor has type
∀a.Equal a a. Consider the outercase expression intest. The
programmer reasons that since the types ofs1 ands2 are rigid,
then so is the type of(test s1 s2), and hence thecase should
perform type refinement; and indeed,test will only pass the type
checker if both itscase expressions perform type refinement.

The difficulty is that the scrutinee-typing rules of Figure 2
conservatively assume that an application has a wobbly type, so
neithercase expression will perform type refinement. We could
solve the problem by adding type annotations, but that is clumsy:

test :: Rep a -> Rep b -> Maybe (Equal a b)
test RI RI = Just Eq
test (RP (s1::Rep a1) (t1::Rep b1))

(RP (s2::Rep a2) (t2::Rep b2))
= let r1 :: Maybe (Equal a1 a2) = test a1 a2

r2 :: Maybe (Equal b1 b2) = test b1 b2
in case r1 of
Nothing -> Nothing
Just Eq -> case r2 of

Nothing -> Nothing
Just Eq -> Eq

(However, note the importance of pattern-binding the type vari-
ablesa1, a2 etc, so that they can be used to attribute a type to
s1, t1 etc.) To avoid this clumsiness, we need a way to encode
the programmer’s intuition that iftest’s argument types are rigid,
then so is its result type. More precisely, if all of the type variables
in test’s result appear in anargumenttype that is rigid, then the
result type should be rigid. Here is the rule, which extends the scru-

6 We take the liberty of using pattern matching on the left-hand side and
separate type signatures, but they are just syntactic sugar.

tinee typing rules of Figure 2:

c :r ∀a.τ→τr ∈ Γ Γ ⊢ ui : [a 7→υ]τi ↿
mi

ar = {a ∈ a | ∃i.a ∈ ftv(τi) ∧mi = r}

m =

{
r if ftv(τr) ⊆ ar
w otherwise

SCR-APP
Γ ⊢ c u : [a 7→υ]τr ↿

m

The rule gives special treatment to applicationsc u of an atomc
to zero or more argumentsu, wherec has a rigid type inΓ . In that
case,SCR-APP recursively uses the scrutinee typing judgement to
infer the rigiditymi of each argumentui . Then it computes the
subsetar of v’s quantified type variables that appear in at least one
rigid argument. We can deduce (rigidly) how these variablesshould
be instantiated. Hence, if all the type variables free in theresult type
of c are inar then the result type of the call is also known rigidly.

One could easily imagine adding further scrutinee-typing rules.
Notably, if the language supported type annotations on terms,
(t::sig), then one would definitely also want to add a scrutinee-
typing rule to exploit such annotations:

[[tau]]Γ = τ Γ ⊢ t :
r
τ

SCR-SIG
Γ ⊢ (t::tau) : τ ↿

r

Now, in any place where acase expression has a wobbly scrutinee,
the programmer can make it rigid by adding an annotation, thus:
(case (t::tau) of . . .). Beyond that, we believe that there is
little to be gained by adding further rules to the scrutinee-typing
rules.

5.2 Smart let

Consider these two terms, where(f x) is determined to be rigid
by SCR-APP:

case f x of let s = f x
MkT a b -> .. in case s of

MkT a b -> ...

With the rules so far, the left-handcase would do refinement, but
the right handcase would not, becauses would get a wobbly type.
This is easily fixed by re-using the scrutinee judgement for the right
hand side of alet:

Γ, x :w τ ⊢ u : τ ↿n

a = ftv(τ) − ftv(Γ ) Γ, x :n ∀a.τ ⊢ t :m τ
LET-W

Γ ⊢ (let x = u in t) :
m
τ

This change means that introducing alet does not gratuitously
lose rigidity information. An interesting property is thatif LET-W
infers a rigid type forx, thenx is monomorphic anda is empty:

THEOREM5.1. If Γ ⊢ u : τ ↿r thenftv(τ) ⊆ ftv(Γ ).

Why is this true? Because the only wayu could get a rigid type is
by extracting it fromΓ .

5.3 Smart patterns

Consider rulePCON-W in Figure 2, used when the scrutinee has a
wobbly type. It gives a wobbly type toall the variablesx bound by
the pattern. However, if some of the fields of the constructorhave
purely existential types, then these types are definitely rigid, and it
is over-conservative to say they are wobbly.

This observation motivates the following variant ofPCON-W

C :r ∀a.τ1→ T τ2 ∈ Γ a#ftv(Γ, τp, τt)
ac = a ∩ ftv(τ2) θ = [ac 7→υ] θ(τ2) = τp

mi =

{
r if ftv(τ1i)#ac
w otherwise

Γ, x :mi θ(τ1i) ⊢ t :m τt
PCON-W

Γ ⊢ C x :
〈w,m〉

T τp→τt
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bindings(∆) = a

bindings(·) = ∅
bindings(∆, a →֒ a) = {a} ∪ bindings(∆)
bindings(∆, x :m σ) = bindings(∆)

Γ ⊢ p→ t :〈mp,mt〉 τp→τt

Γ, (∅, ·, ∅) ⊢ p :mp τp ◮ (a, ∆, θ)
ftv(Γ, τp, τt)#a bindings(∆) ⊆ a

θ(Γ ∪ ∆) ⊢ t :mt θmt(τt)
PAT

Γ ⊢ p→ t :
〈mp,mt〉 τp→τt

Γ, K1 ⊢ p :m τ ◮ K2

x /∈ dom(∆)
PVAR

Γ, (a, ∆, θ) ⊢ x :
m
τ ◮ (a, ∆, x :

m
τ, θ)

C :r ∀b.τ1→ T τ2 ∈ Γ b#a
bc = b ∩ ftv(τ2) ψ = [bc 7→υ] τ3 = ψ(τ2)

mi =

{
r ftv(τ1i)#bc
w otherwise

Γ, (ab, ∆, θ) ⊢
fold

pi :mi ψ(τ1i) ◮ K
PCON-W

Γ, (a, ∆, θ) ⊢ C p :
w
T τ3 ◮ K

C :r ∀b.τ1→ T τ2 ∈ Γ b#a
θ(τ) = T τ3 ψ ∈ fmgu(τ3

.
= τ2)

Γ, (ab, ∆, ψ · θ) ⊢
fold

pi :r τ1i ◮ K
PCON-R

Γ, (a, ∆, θ) ⊢ C p :
r
τ ◮ K

b = ftv(tau) − dom(Γ, ∆)

b distinct b#bindings(∆) b#dom(θ)
[[tau]]Γ,∆,b→֒b = τs θ(τs) = θm(τ)

Γ, (a, (∆, b →֒ b), θ) ⊢ p :r τs ◮ K
PANN

Γ, (a, ∆, θ) ⊢ (p::tau) :
m
τ ◮ K

Γ, K1 ⊢
fold

pi :mi τi ◮ K2

F-BASE
Γ, K ⊢

fold
· ◮ K

Γ, K1 ⊢ p :m τ ◮ K2

Γ, K2 ⊢
fold

pi :mi τi ◮ K3
F-REC

Γ, K1 ⊢
fold

(p :
m
τ), pi :mi τi ◮ K3

Figure 4: Source language pattern typing

Here we attribute a rigid type toxi if xi ’s type does not mention
any of the type variablesac that are contaminated by appearing in
the result type of the constructor; that is,xi is rigid if its type is
purely existential.

To be honest, this elaboration ofPCON-W is motivated more by
the fact that it is easy to describe and implement, and its symmetry
with SCR-APP, rather than because we know of useful programs
that would require more annotation without it.

5.4 Nested patterns

In Section 4 we treated only flat patterns, and we did not handle
pattern type signatures (introduced in Section 4.5). Handling nested

patterns introduces no new technical or conceptual difficulties, but
the rules look substantially more intimidating, which is why we
have left them until now. The rules for nested patterns are given in
Figure 4. The main new judgement typechecks a nested pattern, p:

Γ, K1 ⊢ p :
m
τ ◮ K2

HereK is a triple(a, ∆, θ), with three components (Figure 1):

• a is the set of type variables bound by the pattern. We need
to collect these variables so that we are sure to choose unused
variables when instantiating a constructor, and so that we can
ensure that none of the existential variables escape.

• ∆ gives the typings of term variables bound by the pattern,
and the lexically-scoped type variables brought into scopeby
pattern type signatures; we use∆ to extendΓ before typing the
body of the case alternative.

• θ is the type refinement induced by the pattern.

This triple K is threaded through the judgement:K1 gives the
bindings from patterns to the left ofp, andK2 is the result of
augmentingK1 with the bindings fromp.

With that in mind, rulePAT is easy to read (compare it with
PCON-R from Figure 2): it invokes the pattern-checking judgement,
starting with an emptyK, checks that none of the existential type
variables escape, and typechecks the bodyt of the case alternative
after extending the type environment with∆ and applying the type
refinementθ. The premisebindings(∆) ⊆ a specifies that the
scoped type variables introduced in∆ may only bind internal vari-
ables introduced by this particular pattern (bindings is defined in
Figure 47). The premise maintains the invariant that scoped type
variables can only be introducedcloseto their quantification sites,
an issue to which we return in Section 5.5.

Rule PVAR is also straightforward; the testx 6∈ dom(∆) pre-
vents a single variable from being used more than once in a single
pattern match.

The constructor rulesPCON-W andPCON-R are similar to those
in Figure 2, with the following differences. First, the sub-patterns
are checked using an auxiliary judgement⊢

fold
, which simply

threads theK triple through a vector of patterns. Second, inPCON-
R the incoming substitutionθ is composedwith the unifier,ψ, to
obtain(ψ · θ). In PCON-W, however, the instantiationψ has only
the fresh variablesbc in its domain, so there is no need to extend
the global type refinementθ.

There is one tricky point. Consider the following example:

data T where C :: Rep a -> a -> T
data Rep a where RI :: Rep Int

RB :: Rep Bool
f :: T -> Bool
f (C RB True) = False
f (C RI 0) = False
f other = True

Should this program typecheck? The constructorC binds an exis-
tential variablea. The patternRB induces a type refinement that
refinesa to Bool; and hence, in our system, the patternTrue type-
checks, and the program is accepted. There is a left-to-right order
implied here, and our system would reject the definition if the order
of arguments toC were reversed. Furthermore, accepting the pro-
gram requires that the operational order of pattern matching must
also be left-to-right. In a lazy language like Haskell, termination
considerations force this order anyhow, so no new compilation con-

7 Notice that in Figure 4 there is no case for bindings of the form a →֒
τ; the reason is that we never apply the refinement to the environment
during checking the same pattern, therefore lexical variables only bind type
variables at the point of the call tobindings(∆) in rule PAT.
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straints are added by our decision. In a strict language, however,
one might argue for greater freedom for the compiler, and hence
less type refinement.

This left-to-right ordering shows up in the way that the type
refinement is threaded through the sub-patterns of a constructor
by ⊢

fold
. It also requires one subtlety inPCON-R. Notice that the

conclusion ofPCON-R does not sayC p : T τ3 , as inPCON-W;
instead, the conclusion says simplyC p : τ, with θ(τ) = T τ3 as
a premise. The reason is apparent from the above example. When
typechecking the patternTrue, we must establish the judgement

Γ, (a, ·, [a 7→Bool]) ⊢ True : a ◮ (a, ·, [a 7→Bool])

That is, we must check that the patternTrue has typea (notBool).
Hence the need to apply the current substitution (coming from
patterns to the left) before requiring the pattern type to beof the
form T τ3 .

5.5 Pattern type signatures

Figure 4 also enhances the type checking of patterns to accom-
modate pattern type signatures, which we introduced informally in
Section 4.5. First, it is worth articulating our main designchoices:

• At its binding site, a scoped type variable stands for a
type variable, not a type. For example, given the constructor
Lit :: Int -> Term Int, the patternLit (x::a) is illegal
becausea must bind toInt. Of course, after type refinement a
scoped type variable may be bound to a type, but it seems odd
to allow this at its binding site.

• Furthermore, at its binding site, a scoped type variable must
stand for a type variable that is not already in scope. For exam-
ple, givenMkT :: forall a. a -> a -> T a, the pattern
MkT (x::b) (y::c) would be illegal becausex andy must
have the same type. Again, after type refinement two scoped
type variables may indeed stand for the same type (variable).

• Lastly, at all times a scoped type variable stands for arigid type,
so that we may regard type annotations as rigid. For example,
we reject the patternJust (x::a) when the scrutinee has
wobbly type Maybe Int because the type variablea would
be bound to the guessed typeInt, and any type annotation
containinga would not be rigid.

With that in mind, let us look at rulePANN, which deals with type
signatures in patterns, in the following stages:

• First we identify the lexical variables that the pattern brings into
scope,b, by removing from the free variables of the annotation
those that are already bound inΓ ∪ ∆.

• Next, we “guess” distinct type variablesb to create the bindings
b →֒ b. We require that these variables be disjoint from the
bindings of∆ to avoid binding the same type variable twice.
We need not requireb to be disjoint from the bindings ofΓ
because rulePAT requires that the bindings of∆ (which include
b) are subset of the variables introduced by the pattern—and
the latter must not appear inΓ . Additionally we require thatb
have not yet been refined byθ, with the conditionb#dom(θ),
an issue which is related to type inference completeness and
that we explain below.

• Using the new bindings,b →֒ b, we translate the annotation
typetau to the internal typeτs . Then, we check that the typeτ
of the pattern and the signatureτs are identical when the current
type refinement is applied. Since type signatures are always
translated to rigid types, we always apply the refinement to the
signature. However, we conditionally apply the refinement to τ
depending on its rigidity flag.

• Finally, we check the pattern against the annotation typeτs.

We do not allow scoped type variables to be bound after they
have been refined (the conditionb#dom(θ) above) to ensure that
our algorithm is complete. The following example illustrates why.

data T c where MkT :: T Int
data Y where MkY :: T a -> a -> Y
f (y::Y) = case y of

MkY MkT (z::b) -> True

In this example, thefmgu refinesa to Int. Algorithmically we
determine what variableb should bind to by examiningθ(a). The
implementation would then fail, sinceb would have to get bound
to a type, Int. However without the conditionb#dom(θ), the
specification allowsb to map toa and succeeds.

By changing our first two design decisions, we could remove
this restriction. If lexical variables were allowed to map to rigid
types, including other in-scope type variables, we would not have
to rule out the above example. However, we think that this choice
leads to confusing behavior if lexical type variables can name rigid
but not wobbly types. For example, we would reject the pattern
Just (x::a) when the scrutinee has a wobbly typeMaybe Int
but accept it when the scrutinee has a rigid type.

We could then also change our third design decision, by allow-
ing lexical type variables to namewobblytypes, and refining them
selectively just as we do term variable bindings. The type system
remains tractable, but becomes noticeably more complicated, be-
cause we must now infer the rigidity of both scoped type variables
(or, rather, of the types they stand for), and of type annotations.

The choice among these designs is a matter of taste. We have
found the current design to be simplest to specify and reasonabout.

6. Properties of our system
We have proven that our system enjoys the usual desirable prop-
erties: it is sound (Section 6.1); it can express anything that an
explicitly-typed language can (Section 6.2); we have a sound and
complete type inference algorithm (Section 6.3); and it is aconser-
vative extension of the standard Hindley-Milner type system (Sec-
tion 6.6). Although these properties are standard, they areeasily
lost, as we elaborate in this section. All of the results in this section
hold for the most elaborate version of the rules we have presented,
including all of the extensions in Section 5.

6.1 Soundness

We prove soundness by augmenting our typing rules with a type-
directed translation to the predicative fragment of SystemF ex-
tended withGADTs. As usual, type abstractions and applications
are explicit, and every binder is annotated with its type. Inaddition,
in support ofGADTs, we annotate eachcase expression with its
result type. This intermediate language is equipped with a call-by-
name semantics and is type safe.

We augment each source-language typing judgement with a
translation into the target language; for example the main term
judgement becomesΓ ⊢ t :m τ  t ′, wheret ′ is the translation
of t. For example, here is theATM rule, whose translation makes
explicit the type application that is implicit in the sourcelanguage:

c :
n ∀a.τ ∈ Γ

ATM
Γ ⊢ c :

m
[a 7→υ]τ  c υ

The semantics of the source language is defined by this translation.
The soundness theorem then states that if a program is well-typed in
our system then its translation is well-typed in our extended System
F, and hence its execution cannot “go wrong”.

THEOREM6.1 (Type safety).If ⊢ t :m τ  t ′ then⊢F t ′ : τ.

ICFP’06 9 2006/12/15



6.2 Expressiveness

Programmer-supplied annotations are expressive.Anyprogram that
can be expressed by the explicitly-typed System-F-style interme-
diate language can also be expressed in the source language.We
show this result with a systematic translation from the interme-
diate language into the source language, such that any typeable
intermediate-language program translates to a typeable source-
language program. The translation is straightforward: type applica-
tions are merely erased, type abstractions are replaced with anno-
tations that bring into scope the abstraction’s quantified type vari-
ables, every binder is annotated with a signature, and annotations
are added to everycase expression.

6.3 Soundness and completeness of inference

We have a sound and complete type inference algorithm for our
system, as outlined in Section 4.6. We only give a short sketch here.

The algorithm uses notationα, β for unification variables. Uni-
fiers, that is, idempotent substitutions from unification variables to
monotypes, are denoted withδ. An identity-everywhere unifier is
denoted withǫ. The algorithm also makes use of infinite sets of
fresh names, which we denote withA, and callsymbol supplies.
The main inference algorithm can be presented as a deterministic
relation:(δ0,A0)≻Γ ⊢ t :m τ≻ (δ1,A1). The judgement should
be read as: “given an initial unifierδ0 and an initial symbol sup-
ply A0 , check thatt has the typeτ with the modifierm underΓ ,
returning an extended unifierδ1 and the rest of the symbol supply
A1”. Everything is an input exceptδ1 andA1 which are results. A
precondition of the algorithm is that wheneverm = r thenτ con-
tains no unification variables, that is,τ is fully known. This way we
enforce a clean separation between refinement and unification. For
example, consider the algorithmic rule for application:

(A0, δ0)≻Γ ⊢ t :w β→τ2≻ (A1, δ1)
(A1 , δ1)≻Γ ⊢ u :w β≻ (A2, δ2) AAPP

(A0β, δ0)≻Γ ⊢ t u :
m
τ2≻ (A2, δ2)

The function and the argument types contain the unification vari-
ableβ and therefore should be checked with the wobbly modifier.

The algorithm issound; that is, if a term is shown to be well-
typed by the algorithm, there should exist a typing derivation in the
specification that witnesses this fact.

THEOREM 6.2 (Type inference soundness).LetA0 be a supply of
fresh symbols. If(A0 , ǫ)≻⊢ t :w α≻ (A1, δ) then⊢ t :w δ(α).
If (A0 , ǫ)≻⊢ t :r τ≻ (A1, δ) andτ does not contain unification
variables, then⊢ t :r τ.

Since unification variables live only in wobbly parts of a judge-
ment, Theorem 6.2 relies on the following substitution property.

LEMMA 6.3 (Substitution).If dom(φ) is disjoint from the vari-
ables appearing in the rigid parts of the judgementΓ ⊢ t :m τ then
φ[Γ ] ⊢ t :m φ(τ), whereφ[Γ ] means the application ofφ in both
rigid and wobbly parts ofΓ .

The other important property of the algorithm iscompleteness;
that is for all the possible types that the type system can attribute to
a term, the algorithm can infer (i.e. check against a fresh unification
variable) one such that all others are instances of that type.

THEOREM 6.4 (Type inference completeness).Let A0 be a sup-
ply of fresh symbols. If⊢ t :r τ then(A0 , ǫ)≻⊢ t :r τ≻ (A1, δ).
If ⊢ t :w τ, andα is a fresh unification variable then(A0, ǫ) ≻
⊢ t :w α≻ (A1, δ) and∃δr such thatδrδ(α) = τ.

Soundness and completeness, along with determinacy of the
algorithm, give us a principal types property.

THEOREM6.5 (Principal types).If ⊢ t :w τ then there exists a
principal typeτp such that⊢ t :w τp , and for everyτ1 such that
⊢ t :w τ1 it is the case thatτ1 = δ(τp) for some substitutionδ.

A principal types property for the rigid judgement is uninteresting
as rigid types are always known from user type annotations.

6.4 Pre-unifiers and completeness

We remarked in Section 4.4 that inPCON-R it would be unsound
to use just any unifier forθ, asθ could introduce type equalities
that have no justification. But must theθ be a unifier at all? What
about refinements that introduce fewer equalities thanfmgu? For
example, even though thecase expressioncoulddo refinement, no
refinement isnecessaryto typecheck this function:

f :: Term a -> Int
f (Lit i) = i
f other = 0

That motivates the following definition:

DEFINITION 6.6 (Pre-unifier).A substitutionθ is a pre-unifier of
typesτ1 andτ2 iff for every unifierψ of τ1 andτ2, there exists a
substitutionθ ′ s.t.ψ = θ ′ · θ.

That is, a pre-unifier is a substitution that can be extended to be
any unifier. For example, the empty substitution is a pre-unifier of
any two types. A most-general unifier is precisely characterized by
being both (a) a unifier and (b) a pre-unifier. In our explicitly-typed
internal language (Section 6.1), it is sound for rulePCON-R to use
any pre-unifier, rather than a most-general unifier.

Likewise, we can modifyfmgu (Definition 4.1) so that it does
not require the refinement to be a unifier. To our surprise, however,
this flexibility in the source language precludes a completetype
inference algorithm. To see why consider this program:

data T a where C :: T Int

g :: T a -> a -> a
g x y = let v = (case x of C -> y) in v

With our current specification, this program would be ill-typed:v
would getInt, due to the refinement ofy’s type inside thecase
expression, and the typeInt does not match the return typea of g.

But suppose that the specification was allowed to choose the
emptypre-unifier for thecase expression (thereby performing no
refinement). Thenv would get the typea, and the definition ofg
would typecheck. There would be nothing unsound about doing
this, but it is difficult to design a type inference algorithmthat
will succeed on the above program. In short, completeness oftype
inference becomes much harder to achieve.

This was a surprise to us. Our initial system used a pre-unifier
instead of a most-general unifier inPCON-R, on the grounds that
unifiers over-specify the system, and we discovered the above ex-
ample only through attempting a (failed) completeness proof for
our inference algorithm. The same phenomenon has been encoun-
tered by others, albeit in a very different guise [15, section 5.3,6].
Our solution is to use fresh most general unifiers in the specification
as well as the implementation.

6.5 Wobbliness and completeness

Our initial intuition was that if a term typechecks in a wobbly
context then,a fortiori, it would typecheck in a rigid context. But
not so. SupposeC :: T Int. Then the following holds:

x :
r
T a, y :

w
a ⊢ case x of C -> y :

w
a

However, if we made the binding fory rigid, then the type ofy
would be refined toInt, and the judgement would not hold any
more. (It can be made to hold again by making the return type rigid
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as well.) This implies that there may be some programs that become
untypable when (correct!) type annotations are added, which is
clearly undesirable. Again this unexpected behavior is notunique
to our system [15, section 5.3], and we believe that the examples
that demonstrate this situation are rather contrived.

What this means is that our specification must be careful to
specify exactlywhen a type is wobbly and when it is rigid. We
cannot leave any freedom in the specification about which types are
rigid and which are wobbly. If we did, then again inference would
become much harder and, by the same token, it would be harder for
the programmer to predict whether the program would typecheck.

Since our system is (with one small exception) deterministic,
it already has the required precision. The exception is ruleSCR-
OTHER in Figure 2, which overlaps withSCR-VAR. This is easily
fixed by adding toSCR-OTHER a side condition thatt is not an
atomc.

6.6 Relationship to Hindley-Milner

Our type system is a conservative extension of the conventional
Hindley-Milner type system (augmented with existential types).

THEOREM 6.7 (Conservative extension of HM).Say Γ contains
only conventional data constructors (i.e. constructors with types
of the form∀ab.τ → T a). If Γ ⊢ t :m τ thenΓ ⊢HM t : τ.
Conversely, ifΓ ⊢HM t : τ thenΓ ⊢ t :m τ for anym.

To prove this theorem, we first use the version ofPCON-R that
uses a biased implementation offmgu (Section 4.6). As mentioned
in Section 4.6, any program that is typeable with the original system
is typeable in the system with the biased implementation. Inthe
latter system, it follows that, under the Hindley-Milner restrictions,
the pattern judgement will return a substitution that only refines
freshly-introduced type variables, because each equalitygenerated
will be of form τp

.
= a, wherea is a fresh type variable:

LEMMA 6.8 (Shapes of refinements under HM restrictions).If al-
gebraic datatypes are conventional, the biased implementation is
used, andΓ ⊢ p :m τ ◮ (a, ∆, θ), thendom(θ) ⊆ a.

For the proof of Theorem 6.7 we additionally rely on the fact that if
we apply the refinement returned by the pattern typing judgement
to the extra part of the environment that the pattern introduces,
we get back the part of the environment that the Hindley-Milner
system would introduce. The “conservativity” part is proved using
the intermediate system that uses biasedfmgus and the fact that
this system is equivalent to the original that uses arbitrary fmgus.

7. Related work
In the dependent types community,GADTs have played a central
role for over a decade, under the nameinductive families of data
types[7]. Coquand in his work on dependently typed pattern match-
ing [6] also uses a unification based mechanism for implement-
ing the refinement of knowledge gained through pattern match-
ing. These ideas were incorporated in the ALF proof editor [10],
and have evolved into dependently-typed programming languages
such as Cayenne [1] and Epigram [11]. In the form presented here,
GADTs can be regarded as a special case of dependent typing, in
which the separation of types from values is maintained, with all
the advantages and disadvantages that this phase separation brings.

The idea ofGADTs in practical programming languages dates
back to Zenger’s system of indexed types [27], but Xiet al were
perhaps the first to suggest includingGADTs in an ML-like pro-
gramming language [25]. (In fact, an earlier unpublished work by
Augustsson and Petersson proposed the same idea [2].) Xi’s sub-
sequent work adopts more ideas from the dependent-type world
[26, 24]. Cheney and Hinze examine numerous uses of what they

call first class phantom types[5, 8]. Sheard and Pasalic use a
similar design they callequality-qualified typesin the language
Ωmega [18]. All of these works employ sets of (equality) con-
straints to describe the type system. We use unification instead, for
reasons we discussed in Section 4.3.

Jay’spattern calculus[9] also provides the same kind of type
refinement via pattern matching as ours does, and it inspiredour
use of unification as part of the declarative type-system specifica-
tion. The pattern calculus aims at a different design space than ours,
choosing to lump all all data type constructors into a singlepool.
This allows Jay to relax his rule for typing constructors. Asour in-
tended target is Haskell, where for historical and efficiency reasons
constructors for different datatypes can have overlappingrepresen-
tations in memory, we cannot make this same design choice.

Most of this work concerns typecheckingfor GADTs. Much less
has been done on typeinference. An unpublished earlier version
of this paper originally proposed the idea of wobbly types, but
in a more complicated form than that described here [14]. In that
work, the wobbly/rigid annotations were part of the syntax of types
whereas, in this paper, a type is either entirely rigid or entirely
wobbly. For example, in the present system,case (x,y) of ...
will do no type refinement if eitherx or y has a wobbly type,
whereas before the rigidity of eitherx or y would lead to type
refinement of the corresponding sub-pattern. However, thisfine-
grain attribution of wobbliness gave rise to significant additional
complexity (such as “wobbly unification”), which is not necessary
here, and we believe that the gain is simply not worth the pain.
Furthermore, every program in the language of the earlier draft is
typeable in the current system—perhaps with the addition ofa few
more type annotations.

Inspired by the wobbly-type idea, Pottier and Régis-Gianas
found a way to factor the complexity into three parts: ashape-
inferencephase that propagates rigid type information through-
out the program (introducing type annotations), a straightforward
constraint generationphase that turns annotated program text into
a set of constraints, followed by aconstraint-solvingphase [15].
They call this processstratified type inference. The novelty is in
shape inference; constraint generation and solving for an annotated
language is well established. The shape inference algorithm they
use is more aggressive about propagating rigid types than our type
system—as a result their system can infer types for some programs
that our system would reject. Here is an example, taken from their
paper, of a program that they accept but we reject. (This program
uses theRep type defined in Section 5.4):

double :: Rep a -> [a] -> [a]
= \r xs. map (\x. case r of RI -> x+x) xs

In our system,x would be given a wobbly type, and hence
the case on r does not refine its type, so the program would be
rejected. To fix the problem is easy: annotate the binding ofx.
The price to be paid is that their system is more complicated than
the one we present here; for example, it is non-trivial to figure out
whether the annotation onx is required. In contrast, we think that
wobbly types make it easier to determine whether type information
is available forGADTs, and that the extra annotations required are
barely noticeable. However, we need more experience to be sure.

Another subtle difference between our system and stratifiedtype
inference is the treatment of refinements that create equalities be-
tween type variables. In our system,fmgu ensures that arbitrary
choices between variables do not determine whether a program
type checks. Alternatively, Pottier and Régis-Gianis introduce a to-
tal ordering between variables. When a choice between variables
must be made, they choose the smaller one. We do not find this so-
lution satisfying as resolving ambiguity based on variableordering
means that inference is sensitive to the order in which freshvari-
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ables are chosen during skolemization. Specifying this order seems
a bit much for the specification of a type system. To be fair, this
issue affects a small minority of programs that useGADTs, so the
difference is not that significant. In fact, since rigid typepropaga-
tion is more aggressive in their system, such ambiguities arise even
less frequently than in ours.

Stuckey and Sulzmann also tackle the problem of type inference
for GADTs [19]. They generate constraints and then solve them, but
unlike Pottieret al., they do not require a shape inference phase
to precisely describe necessary type annotations. Instead, their in-
ference algorithm, which also attacks polymorphic recursion, is in-
complete. To assist users whose code does not type check, they
develop a set of heuristics to identify where more type annotations
are required. As a result, their compiler will accept programs with
fewer type annotations than our system (or stratified type inference)
requires, but these programs must be developed with the assistance
of their compiler.

8. Conclusions and further work
We believe that expressive languages will shift increasingly to-
wards type systems that exploit and propagate programmer anno-
tations. Polymorphic recursion and higher-rank types are two es-
tablished examples, andGADTs is another. We need tools to de-
scribe such systems, and the wobbly types we introduce here seem
to offer a nice balance of expressiveness with predictabilty and sim-
plicity of type inference. Furthermore, the idea of distinguishing
programmer-specified types from inferred ones may well be useful
in applications beyondGADTs. The main shortcoming of our imple-
mentation inGHC is that the interaction betweenGADTs and type
classes is not dealt with properly. We plan to address this, along the
lines proposed by Sulzmann [21].
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