
Higher-Order Intensional Type Analysis

Stephanie Weirich

Department of Computer Science, Cornell University
Ithaca, NY 14850, USA

sweirich@cs.cornell.edu

Abstract. Intensional type analysis provides the ability to analyze ab-
stracted types at run time. In this paper, we extend that ability to higher-
order and kind-polymorphic type constructors. The resulting language
is elegant and expressive. We show through examples how it extends the
repertoire of polytypic definitions and the domain of valid types for those
definitions.

1 Polytypic Programming

Some functions are naturally defined by examining the type structure of their
arguments. For example, a polytypic pretty printer can format any data struc-
ture by decomposing it into basic parts, guided by its argument’s type. Without
such analysis, one must write a separate pretty printer for every data type and
constantly update each one as the data types evolve. Polytypic programming,
on the other hand, simplifies the maintenance of software by allowing functions
to automatically adapt to changes in the representation of data. Other clas-
sic examples of polytypic operations include debuggers, comparison functions
and mapping functions. The theory behind describing such operations has been
developed in a variety of frameworks [1, 2, 4, 8, 12, 14, 17, 18, 27, 28, 30, 31].

Nevertheless, no single existing framework encompasses all polytypic defini-
tions. These systems are limited by what polytypic operations they may express
and by what types they may examine. These deficiencies are unfortunate because
advanced languages depend crucially on these features. Only some frameworks
for polytypism may express operations over parameterized data structures, such
as maps and folds [14, 17, 18, 27]. Yet parametric polymorphism is essential to
modern typed programming languages. It is intrinsic to functional programming
languages, such as ML [21] and Haskell [24], and also extremely important to
imperative languages such as Ada [16] and Java [3, 11]. Furthermore, only some
frameworks for polytypism may examine types with binding structure, such as
polymorphic or existential types [2, 4, 30]. However, these types are becoming in-
creasingly more important. Current implementations of the Haskell language [19,
29] include a form of existential type and first class polymorphism. Existential
types are particularly useful for implementing dynamically extensible systems
that may be augmented at run time with new operations and new types of
data [13]. Also, the extension of polytypic programming to an object-oriented
language will require the ability to examine types with binding structure.



What is necessary to accommodate all types and all operations? First, be-
cause a quantified type hides type information, the semantics of the language
must provide that information at run time to examine polymorphic and existen-
tial types. Second, the class of polytypic operations including mapping functions,
reductions, zipping functions and folds must be defined in terms of higher-order
type constructors instead of types. Such type constructors are “functions” such
as list or tree, that are parameterized by other types.1

There is no reason why one system should not be able to define polytypic
operations over both type constructors and quantified types. In fact, the two
abilities are complementary if we represent quantified types with type construc-
tors, using higher-order abstract syntax [25, 30]. For example, we may represent
the type ∀α.α → α as the constant ∀? applied to the type function (λα:?.α → α).

In this paper, we address the previous limitations of polytypic programming
and demonstrate how well these abilities fit together by extending Harper and
Morrisett’s seminal type-passing framework of intensional type analysis [12] to
higher-order polytypism. In their language λML

i , polytypic operations are defined
by run-time examination of the structure of first-order types with the special
term typerec. In λML

i , an analyzable type is either int , string , a product type
composed of two other types, or a function type composed of two other types.
As these simple type constructors form an inductive datatype, typerec defines
a fold (or catamorphism) over its type argument. For example, the result of
analyzing types such as τ1 × τ2 is defined in terms of analyses of τ1 and τ2.
With the inclusion of type constructors that take a higher-order argument (such
as ∀? with argument of kind ? → ?) the type structure of the language is no
longer inductive. Previously, Trifonov et al . [30] avoided this issue by using the
kind-polymorphic type constructor ∀ of kind ∀χ.(χ → ?) → ? instead of ∀? to
represent kind-polymorphic types. As the argument of ∀ does not have a negative
occurrence of the kind ?, the type structure remains inductive.

Hinze [14] has observed that we may define polytypic operations over type
constructors by viewing a polytypic definition as an interpretation of the entire
type constructor language, instead of a fold over the portion of kind type. How-
ever, his framework is based on compile-time definitions of polytypic functions
(as opposed to run-time type analysis) and so cannot instantiate these func-
tions with polymorphic or existential types. Here, we use this idea to extend
Harper and Morrisett’s typerec to a run-time interpreter for the type language,
and extend it to higher-order type constructors and quantified types.

In the rest of this section, we review λML
i and Hinze’s framework for polytypic

programming. In Section 2 we extend typerec to constructors of function kind.
Because a polytypic definition is a model of the type language, it inhabits a
unary logical relation indexed by the kind of the argument type constructor.
A simple generalization in Section 3 extends this typerec to inhabit multi-place
logical relations. Furthermore, in Section 4 we generalize typerec to constructors

1 Just as terms are described by types, type constructors are described by kinds κ.
The kind ? contains all types. Higher-order constructors (functions from kind κ1 to
kind κ2) have kind κ1 → κ2.



of polymorphic kind. This extension admits the analysis of the ∀ constructor
and encompasses as a special case the previous approach of Trifonov et al . [30].
Also, incorporating kind polymorphism enables further code sharing; without it,
polytypic definitions must be duplicated for each kind of type argument. Finally,
in Sections 5 and 6 we compare our approach with other systems and conclude
with ideas for future extension.

1.1 Intensional Type Analysis

Harper and Morrisett’s language λML
i [12] introduced intensional type analysis

with the typerec term. For example, typetostring (of type ∀α: ? . string) uses
typerec to produce a string representation of any type.2

typetostring = Λα: ? . typerec[λβ: ? . string ] α
int ⇒ "int"

string ⇒ "string"

→ ⇒ Λβ: ? .λx: string .Λγ: ? .λy: string ."(" ++ x ++ " -> " ++ y ++ ")"

× ⇒ Λβ: ? .λx: string .Λγ: ? .λy: string ."(" ++ x ++ " * " ++ y ++ ")"

The annotation [λβ: ? . string ] on typerec above is used for type-checking. If
α, the argument to typerec, is instantiated with the type int or string , this term
immediately returns the appropriate string. If αis a product or function type
(in the × and → branches), typerec inductively calls itself to provide the strings
of the subcomponents of the type. In these branches, the type variables β and
γ are bound to the subcomponent types, and the term variables x and y are
bound to the inductively computed strings. The rules below show the operation
of typerec over various arguments, providing the inductively computed results to
the product and function branches.

typerec[c] int e 7→ eint

typerec[c] string e 7→ estring

typerec[c] (c1 × c2) e 7→ e× [c1] (typerec[c] c1 e) [c2] (typerec[c] c2 e)
typerec[c] (c1 → c2) e 7→ e→ [c1] (typerec[c] c1 e) [c2] (typerec[c] c2 e)

The symbol e abbreviates the branches of the typerec (int ⇒ eint , string ⇒
estring ,→⇒ e→,× ⇒ e×). In this paper we will be deliberately vague about what
type constructors comprise these branches and add new branches as necessary.

What is the return type of a typerec term? The typing judgment below reflects
that this term is an induction over the structure of the analyzed type, c′. The
annotation c applied to the argument type c′ forms the return type of the typerec
expression. For example, in typetostring above, the result type is (λβ:? . string)α
or string . In each branch, c′ is specialized. For example, the int branch is of
type c int , while the product branch takes two arguments of type c α and c β to
an expression of type c(α × β). The context Γ contains assumptions about the
types and kinds of the free type and term variables found inside c, c′ and e.

Γ ` c′ : ? Γ ` c : ? → ? Γ ` eint : c int Γ ` estring : c string
Γ ` e→ : ∀α: ? .c α → ∀β: ? .c β → c(α → β)
Γ ` e× : ∀α: ? .c α → ∀β: ? .c β → c(α× β)

Γ ` typerec[c] c′ e : c c′

2 We use ++ as an infix function for string concatenation.



size〈α〉η = η(α)
size〈λα:κ.c〉η = Λα:κ.λx:S ize〈κ〉α.(size〈c〉η{α 7→ x})
size〈c1c2〉η = (size〈c1〉η) [c2] (size〈c2〉η)
size〈int〉η = λx: int .0
size〈string〉η = λx: string .0
size〈×〉η = Λα: ? .λx:(α → int).Λβ: ? .λy:(β → int).λv : α× β.x(π1v) + y(π2v)
size〈+〉η = Λα: ? .λx:(α → int).Λβ: ? .λy:(β → int).

λv : α + β. case v(inj 1 w ⇒ xw | inj 2 w ⇒ yw)

Fig. 1. size

However, typerec may not express all polytypic definitions. For example, we
cannot use it to define a term of type ∀α:? → ?.∀β:? .α β → int , that counts the
number of values of type β in a data structure of type α β. Call this operation
fsize. For example, if c1 = λα: ? .α× int and c2 = λα: ? .α×α, then fsize[c1] and
fsize[c2] are constant functions returning 1 and 2 respectively. If α is instantiated
with list, fsize[list] is the standard length function.

As α is of higher-kind, we must apply it to some type in order to analyze it.
We might try to define fsize as

fsize = Λα:? → ?.Λβ: ? . typerec[λγ.γ → int ](α β) . . .

However, this approach is not correct. At run time, β will be instantiated
before typerec analyzes (α β). The value returned by typerec will depend on
what β is replaced with. If β is instantiated by int , then c1β and c2β will be the
same type, and analysis cannot produce different results. Therefore, to define
fsize we must analyze α independently of β.

1.2 Higher-Order Polytypism

How should we extend typerec to higher-order type constructors? What should
the return type of such an analysis be? Hinze [14] observed that a polytypic
definition should be an interpretation of the type language with elements of
the term language. This interpretation must sound — i .e. when two types are
equal, their interpretations are equal — so that we can reason about the be-
havior of a polytypic definition. A sound interpretation of higher-order types
is to interpret type functions as term functions and type application as term
application. Then β-equality between types (i .e.(λα:κ.c1)c2 = c2{c1/α}) will be
preserved by β-equality in the term language. The constants of the type lan-
guage (int , string ,→,×) may be mapped to any term (of an appropriate type)
providing the flexibility to define a number of different polytypic operations.

For example, the definition of the polytypic operation size is in Figure 1.
This operation is defined by induction over a type constructors c. It is also
parameterized by a finite map η (an environment) mapping type variables to
terms. We use ∅ as the empty map, extend a map with a new mapping from
the type variable α to the term e with the notation η{α 7→ e}, and retrieve the



mapping for a type variable with η(α). All variables in the argument of size
should be in the domain of η. The first three lines of the definition in this figure
are common to polytypic definitions. The definition for variables is determined
by retrieving the mapping of the variable from environment. The environment is
extended in the definition of size for type functions (λα:κ.c). As a type function
is of higher kind, it is defined to be a polymorphic function from the size of
the type argument, to the size of the body of the type constructor, with the
environment updated to provide a mapping for the type variable occurring in
the body. The type of x is determined by the kind of αand is explained in the
following. Because a type function maps to a polymorphic term function, a type
application produces a term application.

The last four cases determine the behavior of size. Intuitively, size produces
an iterator over a data structure that adds the “sizes” of all of its parts. We would
like to use this operation in the definition of fsize as follows. Because list is a
type constructor, the specialization size〈list〉 maps a function to compute the
“size” of values of some type β, to a function to compute the “size” of the entire
list of type list β. If we supply the constant function λx:β.1 for the list elements,
we produce the desired length function for lists. Therefore, we may define fsize
specialized by any closed type constructor c as Λβ:?.size〈c〉[β](λx:β.1).3 For base
types, such as int or string , size produces the constant function λx.0, because
they should not be included in computing the size. The type constructors + and
× are both parameterized by the two subcomponents of the + or × types (α
and β) and functions to compute their sizes (x and y).

For example, we can use many of the above definitions to compute size〈λα.α×
string〉. The slightly simplified result, when all of the definitions have been ap-
plied, is below. It is a function that when given an argument to compute the
size of terms of type α, should accept a pair and apply this argument to the first
component of the pair. (As the second component of the pair is of type string ,
its size is 0).

size〈λα.α× string〉 = Λα: ? .λw:(α → int).λv:(α× string).w(π1v) + 0

Because type functions are mapped to term functions, the type of the polytypic
definition (such as size) will be determined by the kind of the type constructor
analyzed. In each instance, the definition of size〈c〉 will be of type S ize〈κ〉c
where κ is the kind of c and S ize〈κ〉c is defined by induction on the structure of
κ. If the constructor c is of kind ?, then S ize〈?〉c, is a function type from c to int .
Otherwise, if c is of higher kind then size is parameterized by a corresponding
size argument for the type argument to c.

S ize〈?〉c = c → int
S ize〈κ1 → κ2〉c = ∀α:κ1.S ize〈κ1〉α → S ize〈κ2〉(cα)

Why does the definition of size make sense? Though size is determined by
the syntax of a type, a type is actually an equivalence class of syntactic expres-
sions. To be well-defined, a polytypic function must return equivalent terms for
3 Unlike λML

i where types are analyzed at run time, in this framework polytypic func-
tions are created and specialized to their type arguments at compile-time, so we may
not make fsize〈c〉 polymorphic over c.



all equivalent types, no matter how the types are expressed. For example, size
instantiated with (λα: ? .α× string) int must be equal to size 〈int × string〉 be-
cause these two types are equal by β-equality. Because the term functions provide
the necessary equational properties, the definition of size is sound. Therefore,
though the interpretations of the type operators (int ,→,×) may change for each
polytypic operation, the interpretations of functions (λα:κ.c), variables α, and
applications (c1c2) remain constant in every polytypic definition. As a result,
the types of polytypic operations can be expressed using the following notation.

Definition 1. A polykinded type, written c〈κ〉c′, where c is a type constructor
of kind ? → ?, and c′ a type constructor of kind κ, is defined by induction on
the structure of the kind κ by:

c〈?〉c′ = cc′ c〈κ1 → κ2〉c′ = ∀α:κ1.c〈κ1〉α → c〈κ2〉(c′α)

For example, we express S ize〈κ〉c in this notation as (λα: ? .α → int)〈κ〉c.

2 The Semantics of Higher-Order typerec

Hinze’s framework specifies how to define a polytypic function at compile time by
translating closed types into terms. However, in some cases, such as in the pres-
ence of polymorphic recursion, first-class polymorphism, or separate compilation
it is not possible to specialize all type abstractions at compile time. Therefore,
we extend a language supporting run-time type analysis to polytypic definitions
over higher-order type constructors. We do so by changing the behavior of λML

i ’s
typerec to be an interpreter of the type language at run time.

There is a close correspondence between the polykinded types and the typ-
ing judgment for typerec. Each of the branches of typerec may be written as
a polykinded type. For example, the branch e× is of type c〈? → ? → ?〉× =
∀α: ? .cα → ∀β: ? .cβ → c(α× β). Carrying the analogy further suggests that we
may extend typerec to all type constructors by relaxing the restriction that the
argument to typerec be of kind ?, and by using a polykinded type to describe
the result of typerec. We use ⊕ to notate arbitrary type constructor constants
(such as int ,→,×, called operators) and assume each ⊕ is of kind κ⊕.

Γ ` c′ : κ Γ ` c : ? → ? Γ ` e⊕ : c〈κ⊕〉 ⊕ (∀e⊕ ∈ e)

Γ ` typerec[c] c′e : c〈κ〉c′

Unfortunately, this judgment is not complete. As in the definition of size〈c〉η,
the operational semantics for higher-order typerec must involve some sort of
environment η and the typing judgment must describe that environment.

In the following, we introduce higher-order typerec and describe how to type-
check a typerec term. We conclude this section with a number of examples demon-
strating typerec extended to type constructors with binding constructs. To make
these examples concrete, we change the semantics of the typerec term of λML

i .
The syntax of this language appears in Figure 2; we refer the reader to other
sources [12, 23] for the semantics not involved with typerec. Type constructors



(kinds) κ ::= ? | κ1 → κ2 (op′s) ⊕ ::= int |→| × | + | . . .
(con′s) c ::= α | λα:κ.c | c1c2 | ⊕ (types) σ ::= T (c) | int | σ → σ | ∀α:κ.σ | . . .
(exp′s) e ::= i | x | λx:σ.e | e1e2 | fix x:σ.e | Λα:κ.e | e[c] | typerec[c][Γ, η, ρ] c e | . . .

Fig. 2. Syntax

and types are separate syntactic classes in this language, with an injection T (c)
between the type constructors of kind ? and the types. Consequently, we must
slightly modify the definition of the base case of a polykinded type so that it
produces a type instead of a type constructor: c〈?〉c′ = T (cc′).

We define the operational semantics for higher-order typerec by structural
induction on its type constructor argument.

typerec[c][Γ ′, η, ρ] α e 7→ η(α)
typerec[c][Γ ′, η, ρ] (c1c2) e 7→ (typerec[c][Γ ′, η, ρ] c1 e)[ρ(c2)](typerec[c][Γ ′, η, ρ] c2 e)
typerec[c][Γ ′, η, ρ] (λα:κ.c) e 7→

Λβ:κ.λx:c〈κ〉β. typerec[c][Γ ′{α 7→ κ}, η{α 7→ x}, ρ{α 7→ β}] c e
typerec[c][Γ ′, η, ρ] ⊕ e 7→ e⊕

The environment component η of typerec interprets the free type variables in
its argument. For type checking (see below) the context Γ ′ lists the kinds of
these variables. When analysis reaches a variable, typerec uses η to provide the
appropriate value. For the analysis of type application c1c2, typerec applies the
analyzed constructor function c1 to the analyzed argument c2. In this rule, we
must be careful that the free type variables in c2 do not escape their scope, so we
replace all of the free type variables occurring in c2. For this substitution, we add
an additional environment ρ mapping type variables to types. We substitute of all
free variables of c2 in the domain of ρ with ρ(c2). When the argument to typerec is
a type constructor abstraction, the context and the term and type environments
are extended. For operators, typerec returns the appropriate branch.

A reassuring property of this typerec is that it derives the original operational
rules. For example, λML

i ’s typerec has the following evaluation for product types:

typerec[c] (c1 × c2) e 7→ e×[c1] (typerec[c] c1 e) [c2] (typerec[c] c2 e)

With higher-order type analysis, because c1 × c2 is the operator × applied to c1

and c2, the rule for type-constructor application generates the same behavior.
To typecheck a typerec term the context Γ ′ below describes the kinds of the

variables in the domain of η and ρ. To check that Γ ′, η and ρ are well-formed,
we formulate a new judgment Γ ; c ` Γ ′ | η | ρ. This judgment is derived from
two inference rules. The first rule states that the empty context and the empty
environments are always valid.

Γ ; c ` ∅ | ∅ | ∅
Γ ; c ` Γ ′ | η | ρ Γ ` c′ : κ Γ ` e : c〈κ〉c′ α 6∈ Dom(Γ, Γ ′)

Γ ; c ` Γ ′{α 7→ κ} | η{α 7→ e} | ρ{α 7→ c′}

In the second rule, if we add a new type variable α of kind κ to Γ ′, its
mapping in ρ must be to a type constructor c′ also of kind κ, and its mapping



in η must be to a term with type indexed by κ. Note that as we add to Γ ′ only
type variables that are not in Γ , the domains of Γ and Γ ′ must be disjoint. With
this judgment, we can state the formation rule for typerec.

Γ ` c : ? → ? Γ ; c ` Γ ′ | η | ρ Γ, Γ ′ ` c′ : κ′ Γ ` e⊕ : c〈κ⊕〉 ⊕ (∀e⊕ ∈ e)

Γ ` typerec[c][Γ ′, η, ρ] c′ e : c〈κ′〉(ρ(c′))

This rule and the rules for the dynamic semantics are appropriate because
they satisfy type preservation. Looking at the four operational rules for typerec,
we can see that no matter which one applies, if the original term was well-typed
then the resulting term also has the same type. Furthermore, a closed, well-typed
typerec term is never stuck; for any type constructor argument, one of the four
operational rules must apply. These two properties may be used to syntactically
prove type safety for this language [32].

We may implement size with higher-order typerec below (when Γ ′, η and ρ
are empty, we elide them):

size = Λα:? → ?. typerec[λβ: ? .β → int ] α
int ⇒ λy: int .0
string ⇒ λy: string .0
× ⇒ Λβ: ? .λx:β → int .Λγ: ? .λy:γ → int .λv:β × γ. x(π1v) + y(π2v)
+ ⇒ Λβ: ? .λx:β → int .Λγ: ? .λy:γ → int .

λv:β + γ. case v (inj 1 z ⇒ x(z) | inj 2 z ⇒ y(z))

This example demonstrates a few deficiencies of the calculus presented so far.
First, what about recursive types? We cannot compute size for lists and trees
without them. What about polymorphic or existential types? Must we limit size
to constructors of kind ? → ?, even though typerec can operate over constructors
of any kind? We address these limitations in the rest of the paper.

2.1 Recursive Types

We have two choices to add recursive types to our system. Both versions are
created with the type constructor µ? (of kind (? → ?) → ?). In the first case, an
equi-recursive type is definitionally equivalent to its unrolling, i .e. µ?c = c(µ?c).
Therefore, we must make analysis of (µ?c) equal to that of (c(µ?c)). We do so
with an evaluation rule for typerec that takes the fixed point of its argument as
the interpretation of a recursive type4

typerec[c][Γ, η, ρ] µ? e 7→ Λα:? → ?.λx:(c〈? → ?〉α).fix f :(c〈?〉µ?α). (x[µ?α]f)

The alternative is to include iso-recursive types: those that require explicit
term coercions. In other words, there is no equational rule for µ?, but the calculus
includes two terms that witness the isomorphism.

rollµ?c : c(µ?c) → µ?c unroll : µ?c → c(µ?c)
4 In a call-by-value calculus this rule is ill-typed because we are taking the fixed point

of an expression that is not necessarily of function type. To support this rule in such
a calculus we would require that c return a function type for any argument.



With iso-recursive types, we have the most flexibility in the definition of poly-
typic functions. Without an equivalence rule governing µ?, we are free to in-
terpret it in any manner, as long as its branch in typerec has the correct type
determined by the kind of µ?. For a given c, this type is

c〈(? → ?) → ?〉µ? = ∀α:? → ?.[∀β: ? .T (cβ) → T (c(αβ))] → T (c(µ?α))

In most polytypic terms, the typerec branch for iso-recursive µ? will match the
evaluation rule for equi-recursive µ?.5 For example, the µ? branch for size is
below. The difference between it and the rule for equi-recursive types is an η-
expansion around x[µ?α]f that allows the explicit unroll coercion.

µ? ⇒ Λα:? → ?.λx:(∀β: ? .T (β → int) → T (αβ → int)).
fix f :T (µ?α → int).λy:T (µ?α). x [µ?α] f (unroll y)

In this branch, α is the body of the recursive type, and x is the result of typerec
over that body. The definition of size for a recursive type should be a recur-
sive function that accepts an argument y of recursive type, unrolls it to type
T (α(µ?α)), and calls x to produce size for this object. The call to x needs an
argument that computes the size of µ?α. This argument is the result we are
computing in the first place. Therefore, we use fix to name this result f and
supply it to x.

2.2 F2 Polymorphism

The type constructor constants ∀? and ∃? (of kind (? → ?) → ?) use higher-order
abstract syntax [25] to describe polymorphic and existential6 types of F2 [10,
26, 22]. These types are a subset of the polymorphic and existential types of
λML

i — they may only abstract constructors of kind ? instead of any kind. The
relationship between these type constructors and the corresponding types are:

T (∀?c) = ∀α: ? .T (cα) T (∃?c) = ∃α: ? .T (cα)

We can extend size with a branch for ∃?. For this branch, we must provide
a function to calculate the size of the hidden type. We use the constant function
zero, as that is result of size for types.

∃? ⇒ Λα:? → ?.λr:(∀β: ? .T (β → int) → T (αβ → int)).

λx:T (∃α). let〈β, y〉 = unpack x in r [β] (λx:β.0) y

With size we were fortunate that we could compute the value of size for
the hidden type of an existential without analyzing it, as it was a constant
function. However, for many polytypic functions, the function we pass to operate
on the hidden type may itself be polytypic. Often it is the polytypic function
5 In Section 3 we discuss a example that does not.
6 We create an object of existential type (∃α:κ.σ) with the term pack〈c, e〉 as ∃α:κ.σ

(where e has type σ{c/α}) and destruct the existentially typed e1 with the term
let〈β, x〉 = unpack e1 in e2 which binds β and x to the hidden type and term of e1

within e2.



Γ ` e : σ
Γ ; c ` Γ ′ | η | ρ1 | . . . | ρn

Γ, Γ ′ ` c′ : κ Γ ` c : ?n → ?
Γ ` e⊕ : c〈κ⊕〉n⊕ . . .⊕ (∀e⊕ ∈ e)

Γ ` typerecn[c][Γ ′, η, ρ1 . . . ρn] c′ e : c〈κ〉nρ1(c
′) . . . ρn(c′)

e 7→ e′ typerecn[c][Γ ′, η, ρ1, . . . , ρn] ⊕ e 7→ η⊕
typerecn[c][Γ ′, η, ρ1, . . . , ρn] α e 7→ η(α)

typerecn[c][Γ ′, η, ρ1, . . . , ρn] (c1c2) e 7→ (typerecn[c][Γ ′, η, ρ1, . . . , ρn] c1 e)
[ρ1(c2)] . . . [ρn(c2)] (typerecn[c][Γ ′, η, ρ1, . . . , ρn] c2 e)

typerecn[c][Γ ′, η, ρ1, . . . , ρn] (λα:κ.c′) e 7→ Λβ1:κ. . . . Λβn:κ.λx:c〈κ〉nβ1 . . . βn.
(typerecn[c][Γ ′{α 7→ κ}, η{α 7→ x}, ρ1{α 7→ β1}, . . . , ρn{α 7→ βn}] c′ e)

Fig. 3. Semantics for multi-place typerec

itself, called recursively. This fact is not surprising considering the impredicative
nature of ∀? and ∃? types: since the quantifiers range over all types we need an
appropriate definition at all types.

For example, consider the simple function copy that creates an identical ver-
sion of its argument. At base types, it is an identity function, at higher types, it
breaks apart its argument and calls itself recursively.

fix copy : (∀α : ?.T (α → α)).
Λα : ?. typerec[λα: ? .α → α] α
int⇒ λi: int .i
→⇒ Λα: ? .λrα:T (α → α).Λβ: ? .λrβ :T (β → β).λf :T (α → β).rβ ◦ f ◦ rα

× ⇒ Λα: ? .λrα:T (α → α).Λβ: ? .λrβ :T (β → β).λx:T (α× β).〈rα(π1x), rβ(π2x)〉
µ? ⇒ Λα:? → ?.λr:∀β: ? .T (β → β) → T (αβ → αβ).

fix f :T (µ?α → µ?α).λx:T (µ?α). roll (r [µ?α] f (unroll x))
∀? ⇒ Λα:? → ?.λr:∀β: ? .T (β → β) → T (αβ → αβ).

λx:T (∀?α).Λβ: ? .r (copy [β]) (x[β])

∃? ⇒ Λα:? → ?.λr:∀β: ? .T (β → β) → T (αβ → αβ).λx:T (∃?α).

let〈β, y〉 = unpack x in pack〈β, r (copy [β]) y〉 as ∃β: ? .αβ

3 Multi-place Polykinded Types

Unfortunately, with the calculus we have just developed we cannot implement
several important examples of polytypic programming. For example, consider
generic map. Given a function f , this map copies a data-structure parameter-
ized by the type α, replacing every component x of type α, with fx. For example,
if map is specialized to lists, then its type is ∀α: ? .∀β: ? .(α → β) → (list a) →
(list β). However, while the operation of generic map is guided by the struc-
ture of the type constructor list, this type is not a polykinded type of the form
c〈? → ?〉list. By an analogy with logical relations, Hinze observed that by ex-
tending the definition of polykinded types in the following way, we may define
generic map.



Definition 2. A multi-place polykinded type, written c〈κ〉nc1 . . . cn, where c is
of kind ?1 → . . . → ?n → ? and ci is of kind κ for 1 ≤ i ≤ n, is defined by
induction on κ as:

c〈?〉nc1 . . . cn = T (c c1 . . . cn)
c〈κ1 → κ2〉nc1 . . . cn = ∀β1:κ1. . . .∀βn:κ1.c〈κ1〉nβ1 . . . βn → c〈κ2〉n(c1β1) . . . (cnβn)

Now the type of generic map may be expressed as ∀α:? → ?.(→)〈? → ?〉2α α.
If map is instantiated with the type constructor list, we get the expected type:

(→)〈? → ?〉2list list = ∀α: ? .∀β: ? .(α → β) → (list α → list β).

Generalizing the definition of polykinded types forces us to also generalize
typerec to typerecn and expand ρ to a set of type environments ρ1 . . . ρn (see
Figure 3). On type abstraction, n type variables are abstracted and ρ1 . . . ρn

are extended with these variables. We use these environments to provide substi-
tutions for the n type arguments in a type application. With typerec2 we may
implement map, essentially a two-place version of copy.

Surprisingly, we can write useful functions when n is zero, such as a version
of typetostring below.7 In this code, gensym creates a unique string for each
variable name, and let x = e1 in e2 is the usual abbreviation for (λx:σ.e2)e1.

typetostring : ∀α : ?. string.
typetostring = Λα:?. typerec0[string] α

int ⇒ "int"

→ ⇒ λx:string.λy:string. "(" x ++ " -> " ++ y ++ ")"

× ⇒ λx:string.λy:string. "(" x ++ " * " ++ y ++ ")"

µ? ⇒ λr:string →string. let x = gensym () in "mu"++ x ++ "." ++ (r x)
∀? ⇒ λr:string →string. let x = gensym () in "all"++ x ++ "." ++ (r x)
∃? ⇒ λr:string →string. let x = gensym () in "ex"++ x ++ "." ++ (r x)

Note that this example does not follow the pattern of iso-recursive types,
which would be µ? ⇒ λr: string → string .fix f : string .rf. In that case, the
string representation of a recursive type would be infinitely long, witnessing the
fact that a recursive type is an infinitely large type.

4 Kind Polymorphism

Why is there a distinction between types σ, and type constructors c, necessitating
the irritating conversion T ()? The reason is that we cannot analyze all types. In
particular, we cannot analyze polymorphic types where the kind of the bound
variable is not ?. We may analyze only those types created with the constructor
∀?. Trifonov et al .[30] (hereafter TSS) use the term fully-reflexive to refer to a
7 For comparison, we could have also extended the typerec1 version of typetostring (in

Section 1.1). In the new branches, r would be of type ∀α: ? . string → string instead
of string → string as above, so a dummy type argument must be supplied when r is
used.



κ ::= . . . | χ | ∀χ.κ ⊕ ::= . . . | ∀ | ∃ | ∀+ c ::= . . . | Λχ.c | c[κ] | c〈κ〉nc1 . . . cn

σ ::= . . . | ∀+χ.σ e ::= . . . | Λ+χ.e | e[κ]+

Fig. 4. Additions for kind polymorphism

calculus where analysis operations are applicable to all types, and argue that
this property is important for a type analyzing language.

A naive idea to make this language fully-reflexive would be to limit poly-
morphism to that of F2, i .e., allow types only of the form ∀α: ? .σ. However,
then we cannot express the type of the e∀?

branch as it quantifies over a con-
structor of kind ? → ?. We could then extend the language to allow types that
quantify over constructors of kind ? → ?, and add a constructor (∀?→?) of kind
((? → ?) → ?) → ?, but then the e∀?→?

branch would quantify over variables
of kind (? → ?) → ?. In general, we have a vicious cycle: for each type that we
add to the calculus, we need a more complicated type to describe its branch in
typerec. We could break this cycle by adding an infinite number of type construc-
tors ∀κ, thereby allowing construction of all polymorphic types. However, then
typerec would require an infinite number of branches to cover all such types.

TSS avoid having an infinite number of branches for polymorphic types by
introducing kind polymorphism. By holding the kind of the bound variable ab-
stract, they may write one branch for all such types. Furthermore, they require
kind polymorphism to analyze polymorphic types. As their type analysis is based
on structural induction, they cannot handle ∀? with a negative occurrence of ?
in the kind of its argument. With kind polymorphism, the ∀ constructor has
kind ∀χ.(χ → ?) → ?, without such a negative occurrence.

Our version of typerec, as it is not based on induction, can already analyze
∀?. So their second motivation for kind polymorphism does not apply. However,
in this system with kind-indexed types, we do have a separate and additional
reason for adding kind polymorphism – our higher-order typerec term is naturally
kind polymorphic and we would like to express that fact in the type system.

Like TSS, we include two forms of kind polymorphism: First, we extend
the type constructor language to F2 by adding kind variables (χ), polymorphic
kinds (∀χ.κ), and type constructors supporting kind abstraction (Λχ.c) and
application (c[κ]). This polymorphism allows us to express the kind of the ∀ and
∃ constructors. Second, we also allow terms to abstract (∀+χ.e) and apply (e[κ]+)
kinds, so that the ∀ branch of typerec may be polymorphic over the domain kind.
We use the constructor ∀+ to describe the type of kind-polymorphic terms. This
constructor is also represented with higher-order abstract syntax: it is of kind
(∀χ.?) → ?, where its argument describes how the type depends on the abstract
kind χ.

To extend type analysis to polymorphic kinds we must extend the definition
of c〈κ〉α for the new kind forms χ and ∀χ.κ. Therefore, we add polykinded types
to the type constructor language and the following axioms to judge equality of



type constructors, including a new axiom for polymorphic kinds:

Γ ` c〈?〉nc1 . . . cn = cc1 . . . cn : ?
Γ ` c〈κ1 → κ2〉nc1 . . . cn =
∀[κ1](λα1:κ1. . . .∀[κ1](λαn:k1. (c〈κ1〉nα1 . . . αn) → c〈κ2〉n(c1α1) . . . (cnαn)) . . .) : ?

Γ ` c〈∀χ.κ〉nc1 . . . cn = ∀+(Λχ.c〈κ〉n(c1[χ]) . . . (cn[χ])) : ?

Furthermore, we must extend the operational semantics of typerec to cover
arguments that are kind abstractions or kind applications. By the above def-
inition, typerec must produce a kind polymorphic term when reaching a kind
polymorphic constructor. Therefore, an argument to typerec of a polymorphic
kind pushes the typerec through the kind abstraction. Likewise, when we reach
a kind application during analysis, we propagate the analysis through.

typerecn[c][Γ, η, ρ] (Λχ.c) e 7→ Λ+χ. typerecn[c][Γ, η, ρ] (c[χ]) e
typerecn[c][Γ, η, ρ] (c[κ]) e 7→ (typerecn[c][Γ, η, ρ] c e)[κ]+

With kind polymorphism, we express the type of size more precisely as
∀+χ.∀α:χ.T ((λβ: ? .β → int)〈χ〉α). We can also extend size to general existen-
tial types. Before, as ∃? hides type constructors of kind ?, we used the constant
zero function as the size of the hidden type. Here, because the hidden type
constructor may be of any kind, we must use a recursive call to define size.

∃ ⇒ Λ+χ.Λα:χ → ?.λr : ∀β:χ.T (c〈χ〉β) → T (αβ → int).

λx:T (∃[χ]α). let 〈β, y〉 = unpack x in r [β] (size[χ][β]) y

4.1 Example: typetostring

Unfortunately, even though we may analyze the entire type language, we cannot
extend typetostring to create strings of all constructors. As kind polymorphism is
parametric, we cannot differentiate constructors with polymorphic kinds. How-
ever, by giving typetostring a kind-polymorphic type we can produce many string
representations.

typetostring : ∀+χ.∀α:χ.T (string〈χ〉0)
How do we use typetostring to produce strings of higher-order type construc-
tors? When χ is not ?, the result of typetostring is not a string . However, we
may analyze string〈χ〉0 to produce a string when χ is a function kind. Using a
technique similar to type-directed partial evaluation [5] we may reify a term of
type string〈χ〉0 into a string. To do so, we require app and lam to create string
abstractions and applications.

lam : (string → string) → string app : string → (string → string)
lam = λx: string → string . let b = gensym() in

”(lambda” ++b ++”.” ++(xb) ++”)”
app = λx: string .λy: string .

”(” ++x ++” ” ++y ++”)”

Below, let c = λα: ? .(α → string)× (string → α)

ReifyReflect = typerec[c] α
string ⇒ 〈λy: string .y, λy: string .y〉
→ ⇒ Λα1: ? .λr1:cα1.Λα2: ? .λr2:cα2.

let〈reify1, reflect1〉 = r1; 〈reify2, reflect2〉 = r2 in
〈λy:α1 → α2.lam(reify2 ◦ y ◦ reflect1), λy: string .reflect2 ◦ app y ◦ reify1〉



The result of reify , the first component of ReifyReflect above, composed with
typetostring is a string representation of the long βη-normal form of the type
constructor. What if that constructor has a polymorphic kind? We cannot extend
ReifyReflect to analyze string〈∀χ.κ〉0, because parametric kind polymorphism
prevents us from writing the functions klam : (∀+χ. string) → string and kapp :
string → ∀χ+. string .

We also need ReifyReflect to create string representations of polymorphic
types. In the previous version of typetostring, for the constructor ∀?, the inductive
argument r was of type string → string . With kind polymorphism, the type of
this argument (T (string〈χ〉0)) is dependent on χ the kind abstracted by ∀. In
order to call r, we need to manufacture a value of this type — we need to reflect
a string into the appropriate argument for the inductive call in typetostring:

∀ ⇒ Λ+χ. Λα:χ → ?. λr:T (string〈χ〉0) → string .
let 〈reify , reflect〉 = ReifyReflect [string〈χ〉0]

v = gensym () in "all" ++ v ++ "." ++ (r (reflect v))

Again, because ReifyReflect is limited to kinds of the form ? or κ1 → κ2, we
can only accept the types of Fω [10] (i .e., types such as ∀[? → ?](λα:? → ?.c)
but not ∀[∀χ.κ](λα:∀χ.κ.c)). And just as we cannot extend ReifyReflect to kind-
polymorphic constructors, we cannot extend typetostring to kind-polymorphic
types (those formed by ∀+). While this calculus is fully-reflexive, we cannot
completely discriminate all of the type constructors of this language.

4.2 Analysis of Polymorphic Types

In Section 2, we were reassured when the operation of higher-order typerec over
product types mirrored that of λML

i . How does analysis of polymorphic and exis-
tential types differ when typerec is viewed as a structural induction (as in TSS)
and as an interpretation of the type language?

In the first case (which we distinguish by typereci) we have the following
operational rule for polymorphic types; when c′ is analyzed, its argument β is
also examined with the same analysis.

typereci[c] (∀[κ]c′) e 7→ e∀ [κ]+[c′] (Λβ:κ. typereci[c] (c′β) e)

With higher-order typerec, we may derive the following rule for polymorphic
types. Here, the result of analysis of the argument to c′ may be supplied in x.

typerec[c][Γ ′, η, ρ] (∀[κ]c′) e 7→∗

e∀ [κ]+[c′] (Λβ:κ.λx:T (c〈κ〉β). typerec[c][Γ ′{α 7→ κ}, η{α 7→ x}, ρ{α 7→ β}] (c′α) e)

However, many examples of polytypic functions defined by higher-order typerec
(such as copy) create a fixed point of the Λ-abstracted typerec term, and it is
this fixed point applied to β that eventually replaces x. Therefore, as above, the
argument to c′ is examined with the same analysis. The difference between the
two versions is similar to the difference between iso- and equi-recursive types.
Because we have more expressiveness in the analysis of type constructors with
higher-order typerec, we have more flexibility in the analysis of quantified types.
TSS’s calculus may implement copy (though they must restrict the kind of its
argument to ?) but not typetostring.



5 Related Work

In lifting type analysis to higher-order constructors, this work is related to in-
duction over datatypes with embedded function spaces and, more specifically,
to those datatypes representing higher-order abstract syntax. Meijer and Hut-
ton [20] describe how to extend catamorphisms to datatypes with embedded
functions by simultaneously computing an inverse. Fegaras and Sheard [9] sim-
plify this process, noting that when the analyzed function is parametric, an
inverse is not required. TSS employ their technique for the type level analysis
of recursive types in the language λQ

i [30], using the kind language to enforce
that the argument to µ? is parametric. Likewise, in a language for expressing in-
duction over higher-order abstract syntax, Despeyroux et al . [6, 7], use a modal
type to indicate parametric functions. In this paper, because only terms analyze
types, all analyzed type functions are parametric and so we do not require such
additional typing machinery.

6 Conclusions and Future Work

The goal of this work is to extend polytypic programming to encompass the
features of expressive and advanced type systems. Here, we provide an opera-
tional semantics for type constructor polytypism by extending typerec to cover
higher-order types. By casting these operations in a type-passing framework, we
extend polytypic definitions over type constructors (such as size and map) to
situations where type abstraction cannot be specialized away at compile time.
With type passing, we also extend the domain of polytypic definitions to include
first-class polymorphic and existential types. With the addition of kind polymor-
phism and polykinded types, we allow the types of polytypic operations to be
explicitly and accurately described. Finally, by extending typerec to constructors
of polymorphic kind we allow the analysis of constructors such as ∀ and ∃ in a
flexible manner and provide insight to the calculus of TSS.

We hope to extend this work in the future with type-level type analysis.
The languages λML

i and λQ
i include Typerec that analyzes types to produce other

types. This operator is often important in describing the types of polytypic defi-
nitions. Hinze et al . [15] provide a number of examples of higher-order polytypic
term definitions that require higher-order polytypic type definitions. However,
adding an operator to analyze higher-order constructors will require machinery
at the kind level like TSS’s λQ

i [30] or Despeyroux et al . [6, 7].
This work suggests other areas of future research. First, because this frame-

work depends on a type-passing semantics, it is important to investigate and
develop compiler optimizations that would eliminate unneeded run-time analy-
sis. Furthermore, while intensional type analysis has traditionally been used in
the context of type-based compilation, we would like to incorporate this system
in an expressive user language. Finally, because this language supports the anal-
ysis of types with binding structure, it may be applicable to adding polytypic
programming to object-oriented languages.
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