FPH: First-class Polymorphism for Haskell

Declarative, Constraint-free Type Inference for Impredicative Polymorphism

Dimitrios Vytiniotis Stephanie Weirich
University of Pennsylvania
{dimitriv,sweirich }@cis.upenn.edu

Abstract

Languages supporting polymorphism typically have ad-hoc restric-
tions on where polymorphic types may occur. Supporting “first-
class” polymorphism, by lifting those restrictions, is obviously de-
sirable, but it is hard to achieve this without sacrificing type infer-

ence. We present a new type system for higher-rank and impred-

icative polymorphism that improves on earlier proposals: it is an
extension of Damas-Milner; it relies only on System F types; it has
a simple, declarative specification; it is robust to program trans-

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

e The quantified type variable in the type of ($) is instanti-
ated to the polymorphic typ€s.ST s Int. Allowing the in-
stantiation of quantified type variables with polytypes is called
impredicativepolymorphism.

Our goal, which we share with other authors (Le Botlan aBthR
2003; Leijen 2008a), is to make such programs “just work” by
lifting the restrictions imposed by the Damas-Milner type system.

Although there are several competing designs with the same gen-
eral goal, the design space is now becoming clear, so this paper is

formations; and it enjoys a complete and decidable type inference not simply “yet another impenetrable paper on impredicative poly-

algorithm.

Categories and Subject DescriptorsD.3.3 [PROGRAMMING

morphism”. We give a detailed comparison in Section 7, but mean-
while the distinctive feature of our system is this: rather than max-
imizing expressiveness or minimizing implementation complexity,

LANGUAGES® Language Constructs and Features—abstract data e focus on programmer accessibility ijnimizing the complex-

types, polymorphism
General Terms Languages, Theory

Keywords impredicativity, higher-rank types, type inference

1. Introduction

Consider this program fragmént
($) :: forall a b. (a->b) -> a > b
runST :: forall r. (forall s. ST s r) ->r
foo :: forall s. Int -> ST s Int

...(runST $ foo 4)...

Here ($), whose type is given, is the apply combinator, often

used by Haskell programmers to avoid writing parenthé$aem

a programmer’s point of view there is nothing very complicated

about this program, yet it goes well beyond the traditional Damas-
Milner type system (Damas and Milner 1982), by using two distinct
forms of first-class polymorphism:

e runST takes an argument of polymorphic typesaST has a
higher-ranktype.

1We use Haskell syntax, and will often prefix examples with tyigeatures
for any functions used in the fragment.

2The example is equivalent tarunST (foo 4)).

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubiritati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

ICFP’08, September 22—-24, 2008, Victoria, BC, Canada.
Copyright(© 2008 ACM 978-1-59593-919-7/08/09. .. $5.00

ity of the specificationMore specifically, we make the following
contributions:

¢ We describe and formalize a new type systéfH, based on
System F, capable of expressing impredicative polymorphism
(Section 3). We show thdtPH can express all of System F
(Section 3.4).

FPH is unusually small and simple for its expressive power. It
can be explained informally in a few paragraphs (Section 2),
and in particular has the following delightfully simple rule for
when a type annotation is requireatype annotation may be
required only for alet-binding or A-abstraction that has a
non-Damas-Milner typgSection 2.2). For example, a nested
function call, such agf (g x) (b (t y))), may involve
lots of impredicative instantiation, but never requires a type
annotation.

We give a syntax-directed variant of the type system (Section 4),
and prove it sound and complete with respect to the earlier
declarative rules.

We have a sound and complete inference algorithnFfid,
which we sketch in Section 5. Internally, this implementation
uses type schemes with bounded quantification in the style of
MLF (Le Botlan and Rmy 2003), but this internal sophistica-
tion is never shown to the programmer; it is simply the mecha-
nism used by the implementation to support the simple declar-
ative specification.

Our system is fully compatible with the standard idea of propagat-
ing annotations via a so-called bidirectional type system. We dis-
cuss this and other design variants in Section 6. Finally, with the
scaffolding now in place, Section 7 amplifies our opening remarks
by showing in detail how the various current designs relate to each
other.

Auxiliary material and proofs can be found in the first author’s
dissertation (Vytiniotis 2008).

2. Type inference for first-class polymorphism str :: [Char]

. e L . ids :: [forall a. a->a]
To describe the main difficulty with first-class polymorphism, we length :: forall b. [b] -> Int

first distinguish between Damas-Milner types (types permitting
only top-level quantification) andch types (types withv quan- 11
tifiers under type constructors). For exampiet — Int and 12
Va.a — a are Damas-Milner types; bunt — [Va.a — a
andva.(Vb.b) — [a] are rich types.

length str
length ids

First consider type inference farl. The polymorphiclength re-
turns the length of its argument list, where the tyjpé@ means “list
Both forms of first-class polymorphism (higher-rank and impred- of b, In the standard Damas-Milner type system, one instantiates
icative) result in a lack of principal types for expressions: a sin- the type oflength with Char, so that the occurrence béngth has

gle expression may be typeable with two or mareomparable type [Char] — Int, which marries up correctly withength’s
types, where neither is more general than the other. As a conse-argumentstr. In Damas-Milner, a polymorphic function can only
quence, type inference cannot always choose a single type and us@e instantiated with monotypes, where a monotyjiea type con-

it throughout the scope of ret-bound definition. taining no quantification (we ug¢ for lists):
1. With higher-rank polymorphism, functions that accept poly- ri=a | o1 | [7]
morphic arguments may be typed with two or more incompara- _ . o i
ble System F types. For example, consider the fundtioalow: This Damas-Milner restriction means the2 is untypeable, be-

cause here we must instantiatength with Va.a — a. We can-
not simply lift the Damas-Milner restriction, because that directly
leads to the problem identified at the start of this section: different
choices can lead to incomparable types. Howel2ralso shows
that there are benign uses of impredicative instantiation. Although
(Int, Tnt) are valid types fo, but there exists ngrincipal we need an impredicative instantiat_ion to makdype che(_:k, there

) y is no danger here—the type o will always beInt. It is only

type for£ such that all others follows from it by a sequence of o 21 ot hinding can be assigned two or more incomparable
instantiations and generalizations. Previous work has suggesteqypeS that we run into trouble

that the programmer should be required to suppltype an-) i i o o
notationfor any function argument that must be polymorphic, Our idea is to mark impredicative instantiations so that we know
so that the type of is no longer ambiguous—the above code When an expression may be typed with different incomparable
would fail to type check, but the annotation below would fix the types. Technically, this means that we instantiate polymorphic

f get = (get 3, get True)
It is clear thatget must be assigned a polymorphic type in
the environment, since we must be able to apply it to both
3 and True. But what is the exact type of? For example,
both (Va.a — a) — (Int,Bool), and(Va.a — Int) —

problem: functions with a form of typer’ that is more expressive than a
f (get :: forall a. a->a) = (get 3, get True) mere monotype, but less expressive than an arbitrary polymorphic
2. The presence of impredicative instantiation of type variables tyPe:
leads to a second case of incomparable types. For example: T ou= e lm—n | [P @
choose :: forall a. a -> a —> a o u= Vao |a|o—o||[d]
id :: forall b. b -=> b Unlike a monotyper, aboxy monotype’ may contain quantifica-
g = choose id tion, but only inside a box, thyg]. Idea 1 is this: a polymorphic

function is instantiated with boxy monotypes. A boxy type marks
typeVh.(b — b) — (b — b). However, ifchoose may be the place in the type where “guessing” is required to fill in a type

instantiated with a polymorphic typgjs also typeable with the ~ that makes the rest of the typing derivation go through.
incomparable typ€vb.b — b) — (Vb.b — b). This problem Now, when typingl2 we may instantiatéength with [Ya.a — al.

has been identified in th&IL® work and circumvented by ~ Then the applicatioriength ids has a function expecting an
extendinghe type language to include instantiation constraints. argument of typel[Va.a — all, applied to an argument of type
This extended type language can express a principal type for [Va.a — al. Do these types marry up? Yes, they do, because
g, namelyV(a > Vb.b — b).a — a. However, if one of Idea 22 when comparing types, discard all boxes. The sole
wants to remain within the type language of System F, the purpose of boxes is to mark polytypes that arise from impredicative
type system must specify which of these incomparable types instantiations. That completes the typinglat

is assigned tg. In FPH, g is typeable with its best Damas- Boxes are ignored when typing an application, but they play a criti-

In a traditional Damas-Milner type syster,would get the

Milner typeVb. (b — b) — (b — b), but the type(vb.b — cal role inlet polymorphismlidea 3is this: to make sure that there
b) — (Vb.b — b) is also available by using an explicit type s no ambiguity about guessed polytypes, the type environment
signature, as follows: contains no boxes. Let us return to the example choose id

g = choose id :: (forall b.b->b) -> (forall b.b->b) given above. If we instantiatechoose with the boxy monotype

The focus of this paper is on impredicativity (item (2) above), [Va.a — al, the application(choose id) would marry up fine,
since earlier work has essentially solved the question of higher-rank but its result type would b§/a.a — a] — [Va.a — a]. However,
types (Peyton Jones et al. 2007). The core type system we presentdea 3prevents that type from entering the environment as the type
in Section 3 therefore does not supparabstractions with higher- for g, so this instantiation fochoose is rejected. If we instead in-
rank types, focusing exclusively on impredicative instantiations. A Stantiatechoose with ¢ — ¢, the application again marries up (this
practical system must accommodate higher-rank types as well, andtime by instantiating the type dfd with c), so the application has
we describe how previous work can be adapted to our setting in type (¢ — ¢) — ¢ — ¢, which can be generalized and then enter

Sections 3.4 and 6.1. the environment as the type @f This type is the principal Damas-
Milner type of g—all Damas-Milner types fog are also available
2.1 Marking impredicative instantiation without annotation. What we have achieved effectively is that, in-

stead of having two or more incomparable types gowe have
We present a flavor dfPH in this section, and use several examples allowed only a subset of the possible System F typing derivations
to motivate its design principles. Consider this program fragment: for g that does admit a principal type.

However, if the programmer actually wanted the other, rich, type

for g, she can use a type annotation: Types o = Va.p
g = choose id :: (forall b.b->b) -> (forall b.b->b) P =T | og—0
T = a ‘ T—T

Such type annotations usdea 2—when typing an annotated ex-
pressione: : o, ignore boxes ore’s type when comparing with Boxy Types 'oa= Va.p
o (which is box-free, being a programmer annotation). Now we I

q
|

/ / !/
T g — 0
may instantiatehoose with [Va.a — al, because the type annota- f/ — 4 “@ |7/ = 1!
tion is compatible with the type ofchoose id), -
Va.a — al Environments I' == T, (z:0) |-
2.2 Expressive power Figure 1: Syntax

As we have seen, a type annotation may be required bata

bound expression, but annotations are never required on function2.3 Limitations of FPH

applications, even when they are nested and higher order, or involve

impredicativity. Here is the example from the Introduction, with Although theFPH system, as we have described it so far, is ex-
some variants: pressive, it is also somewhat conservative. It requires annotations
in a few instances, even when there is only one type that can be

runST :: forall a. (forall s. ST s a) -> a . T .

app . forall a b. (a ->b) ->a -> b assigned to aet-binding, as the following example demonstrates.

revapp :: forall a b. a -> (a ->b) -> Db f :: forall a. a -> [a] -> [a]

arg :: forall s. ST s Int ids :: [forall a. a -> a]

hO = runST arg hi =f (\x -> x) ids -- Not typeable

hl = app runST arg h2 = £ (\x -> x) ids :: [forall a. a->a]l] -- OK

h2 = revapp arg runST Heref is a function that accepts an element and a list and returns a
All definitions h0, h1, h2 are typeable without annotation because, list (for example £ could becons). Definitionh1 is not typeable in
in each case, the return type is a (non-boxy) monofipe FPH. We can attempt to instantiatewith [Va.a — al, but then

the right hand side ofi1 has type[[Ya.a — all, and that type
cannot enter the environment. The problem can of course be fixed
by adding a type annotation, AS shows.

Actually, we have a much more powerful guideline for program-
mers, which does not even require them to think about boxes:

Annotation Guideline. Write your programs as you like,
without type annotations at all. Then you are required to
annotate only thoseet-bindings and\-abstractions that
you want to be typed with rich types.

You may think that it is silly to require a type annotatiorhizy after

all, h1 manifestly has only one possible type! But suppose that
had typeVab.a — b — [al, which is a more general Damas-
Milner type than the type above. With this type farour example

For instance, for a term consisting of applications and variables to h1 now hastwo incomparable typesnamely [Va.a — a] as

be let-bound (without any type annotations),dbes not matter before, and/a.[a — a]. Without any annotations we presumably
what impredicative instantiations may happen to type it, provided have to choose the same type as the Damas-Milner type system
that the result type is an ordinary Damas-Milner type! For exam- would; and that might make occurrenceshafill typed. In short,

ple, the argumenthoose id to the functiont below involves an making the type of more general (in the Damas-Milner sense) has

impredicative instantiation (in fact for bothand choose), but no caused definitions in the scopelof to become ill-typed! This is
annotation is required whatsoever: bad; and that is the reason that we rejeigtrequiring an annotation

f :: forall a. (a -> a) -> [a] —> a as Inh2.

g = £ (choose id) ids Requiring an annotation dr2 may seem an annoyance to program-
In particular choose id gets typelVa.a — a] — [Va.a — al. mers, but it is this conservativity 6PH that results in a simple and
However, f's arguments types can be married up usidga declarative high-level specificatioRPH allows1let-bound defini-

2, and its result type (ignoring boxes) is a Damas-Milner type tions to enter environments with many different types, as is the case
(Wa.a — al), and hence no annotation is requiredgor in the Damas-Milner type system.

Since the Annotation Guideline does not require the programmer] o
to think about boxes at all, why does our specification use boxes?3. Declarative specification of the type system
Because the Annotation Guideline is conservative: it guarantees to

make the program typeable, but it adds more annotations than are/Ve now turn our attention to a systematic treatmeritiii, begin-
necessary. For example: ning with the basic syntax of types and environments in Figure 1.

Types are divided into box-free types, p-, andr-types, and boxy
typesa’, p’, andr’ types. Polymorphic types; ando’, may con-

tain quantifiers at top-level, whereasand p’ types contain only
Notice that the rich result typEforall b. b -> b] is hon-boxy, nested quantifiers. The important difference between box-free and
and hence no annotation is required for. In general, even if boxy types occurs at the monotype level. Following previous work
the type of alet-bound expression is rich, if that type does not by Rémy et al. (Garrigue and Bmy 1999; Le Botlan and &ny
result from impredicative instantiation (which is the common case), 2003),7" may include boxes containing (box-free) polytypes. As
then no annotations are required. Boxes precisely specify whatwe discussed in Section 2.1, these boxes represent the places where
“that type does not result from impredicative instantiation” means. “guessed instantiations” take place. Note that we do not include
Nevertheless, a box-free specification is an attractive alternative syntax for type constructors other than as their treatment is very
design, as we discuss in Section 6.3. similar to the treatment of>. The syntax of type environments,

£’ :: forall a. [a] -> [forall b. b -> b]
g’ = £’ ids

directly expresseklea 3in Section 2.1 by allowing only box-free
typeso.

3.1 Typing rules

The declarative (i.e. not syntax-directed) specificatiorFBH is
given in Figure 2. As usual, the judgement fofht- e : o’ assigns

the typeo’ to the expressior in typing environment'. A non-
syntactic invariant of the typing relation is that, in the judgement
' e: Va.p’, no box may intervene between a variable quantified
insidep’ and the occurrences of that variable. Thus, for example,
cannot be of form(vb.[b]) — Int, because the quantified variable

b appears inside a box. The top-level quantified variables may,
however, appear inside boxes.

Generalization ¢eN) takes the conventional form, whew#T’
means thagw is disjoint from the free type variables ©f. In this
rule, note that the generalized variabiemay appear inside boxes
in p’, so that we might, for example, infér- e : Va.[a] — a.

Instantiation (NST) is conventional, but it follow$dea 1 by allow-

ing us to instantiate with Boxy monotyper’. However, we need

to be a little careful with substitution iNST: sincep’ may con-
taina inside boxes, a naive substitution might leave us with nested
boxes, which are syntactically ill-formed. Hence, we define a form
of substitution that preserves the boxy structure of its argument.

Definition 3.2 (Monomorphic substitutions) We use letterp for
monomorphic substitutionghat is, ¢ denotes finite maps of the
form [a — 77]. We letftv(y) be the set of the free variables in the

The rules in Figure 2 are modest (albeit carefully-chosen) variants range and domain ap. We define the operation of applyingo a

of the conventional Damas-Milner rules. Indeed rukR is pre-
cisely as usual, simply returning the type of a variable from the
environment.

Rule App infers a function typer; — o5 for e, infers a typess

for the argumengz, and checks that the argument type matches the
domain of the function typenodulo boxy structurgmplementing
Idea 2 of Section 2.1. This compatibility check is performed by
stripping the boxes fromv] and a3, then comparing for equality.
The notation| ¢’ | denotes the non-boxy type obtained by discard-
ing the boxes iw’:

Definition 3.1 (Stripping) We define the strip functign| on boxy
types as follows:

la] = a

L@/J ! - g / /

ot —o2] = |o1] — [o2] _
|Va.p' | = Vab.p where|p'| =Vb.p

Stripping is also used in rulenN, which handles expressions with
explicit programmer-supplied type annotations. It infers a boxy
type for the expression and checks that, modulo its boxy structure
it is equal to the type required by the annotatonin effect, this
rule converts the boxy type] that was inferred for the expression
to a box-free type . If the annotated term is the right-hand side of
alet bindingx = e::0, this box-free typer can now enter the
environment as the type af(whereass’ could not, byldea 3).

Rule ABs infers types for\-abstractions. It first extends the envi-
ronment with amonomorphic, box-freg/ping z : 7, and infers a
p-type for the body of the function. Notice that we insist (syntac-
tically) that the result type both (a) has no top-level quantifiers,

typeco’ as follows:

/

(a) = 7T where[a — 7] € ¢
¢(@) = |lelo)]

p(o1 —a3) = p(o1) — p(o3)

e(Va.p') = Va.p(p') wherea# ftv ()

We write[a — 7']¢’ for the application of theéa — 7] to o”’.
3.2 The subsumption rule
The final rule,suBs is tricky but important. Consider below:

Example 3.1 (Boxy instantiation)

head :: forall a.
h = head ids 3

[a]l] -> a

Temporarily ignoring rulesuss in Figure 2,head ids can get
type [Va.a — a, and only that type. Hence, the application
(head ids) 3 cannot be typed. This situation would be rather
unfortunate as one would, in general, have to use type annotations
"to extract polymorphic expressions out of polymorphic data struc-
tures. For example, programmers would have to write:

h = (head ids :: forall b. b -> b) 3

This situation would also imply that some expressions which con-
sist only of applications of closed terms, and are typeable in System
F, could not be typed ifPH.

Rule suBs addresses these limitations. RuideBs modifies the
types of expression in two ways with the relatigh-, which is the
composition of two relationsg, andC. The relation=, calledboxy

and (b) is box-free. We exclude top-level quantifiers (a) because weinstantiation simply instantiates a polymorphic type within a box.
wish to attribute the same types as Damas-Milner for programs that The relation, calledprotected unboxingemoves boxes around
are typeable by Damas-Milner, that is, we avoid “eager generaliza- monomorphic types and pushes boxes congruently down the struc-

tion” (Peyton Jones et al. 2007). Choice (b), that-abstraction

must return a box-free type, may require more programmer anno-

tations, but turns out to permit a much simpler type inference algo-
rithm. We return to this issue in Section 6.3.

ture of types. The most important rules of this relation ageXx
and REFL. The first simply removes a box around a monomor-
phic type, while the second ensures reflexivity. |f’atype con-
tains only boxes with monomorphic information, then these boxes

RuleABs is the main reason that the type system of Figure 2 cannot &1 b€ completely dropped along therelation to yield a box-free
type all of System F, even with the addition of type annotations: type. Finally, nothece that the addition of arbitrary constructors is a

ABS allows only abstractions of type — p, whereas System F
has A-abstractions of type1 — o2. Rule ABS is however just

straightforward adaptation of the rules for function types.
BecausesuBsuses=<L instead of merel\C_, h in Example 3.1 is

enough to demonstrate our approach to impredicative instantiationtypeable. When we infer a type farad ids, we may have the

(the contribution of this paper), while previous work (Peyton Jones
et al. 2007) has shown how to address this limitation. It is easy to
combine the two, as we show in Section 3.4.

Following Idea 3 of Section 2.1, rule_eT first infers abox-free
type o for the right-hand side expressian and then checks the
body pushing the binder with type o in the environment.

following derivation:

I'Fhead ids:|Va.a — a
Va.a » a|X[@=aCa—a

I'headids:a — a

SUBS

GEN

'+ head ids : Va.a — a

(z:0) €T F'ker:of >0 Thex:oy |of] = |o1] I(zm)Fe:p Ttu:o T,(zio)bFe:p
——— VAR APP ABS LET
I'tz:0 T'kFejes:oh I'EXx.e:m—p 'Fletz=wuine:p
'ke:Va.p F'ke:p a#l F'kte:of |oll=0c C'ke:p) p) 2Cph
—— INST ——F GEN ANN SUBS
T'ke:la— 710 I'ke:Va.p 't (e::0):0 T'ke:ph

Figure 2: The FPH system

! /

ol Cof oy Coay
TBOX REFL CONG
mET o' Ca oy »ahbCoal — ol

p/ C p//
aunboxeding’. p” o CONBOX
va.p Cva.p” [ET=02E o} — o

—F Bl
Frd= =

—— BR
o' <o

Figure 3: Protected unboxing and boxy instantiation relation

Therefore, no annotation is requiredorincidentally, because the
C relation can remove boxes around monomorphic types, it also

follows that the definition
f = head ids

is typeable. More generally, we have the following lemma.
Lemma3.2If T e:[Va.7|thenl' e : Va.T.

Proof: by ruleBl we can instantiat&’a .~ with (monomorphic)
fresha, use rulerBoxX to strip boxes, and finally use ruen.

3.3 Properties

The FPH system is type safe with respect to the semantics of
System F. The following lemma is an easy induction after observing

that wheneves; <C ob, itis the case thaf lo1] < |oz], where
H is the System Rype instance relationThe relatiorr specifies

Lemma 3.4 (Extension of Damas-Milner)Assume thatl’ only
contains Damas-Milner types and is annotation-free. Then

r™e.o impliesthatl" - e : o.

We conjecture that the converse direction is also true, that is, unan-
notated programs in contexts that use only Damas-Milner types are
typeable in Damas-Milner if they are typeableriiH, but we leave

this result as future work.

3.4 Higher rank types and System F

As we remarked in the discussion of rides in Section 3.1, the
system described so far deliberately does not suppalistractions
with higher-rank types, and hence cannot yet express all of System
F. For example:

Example 3.5
f :: forall a. a -> [a] -> Int
foo :: [Int -> forall b.b->b]

bog = £ (\x y ->y) foo

Here,foo requires the\-abstraction\x y -> y to be typed with
typeInt — Vb.b — b, but no such type can be inferred for the
A-abstraction, as it is not of the form— p. We may resolve this
issue by adding a new syntactic form, the annotatedbstraction,
thus(Az.e ::: o1 — o2). This construct provides an annotation
for both argumentd;, instead of a monotype) and result ¢-
instead ofp). Its typing rule is simple:

T, (z:01) Fe:0h |oh] =02

ABS-ANN

F'(Az.e:::01 —02):01 — 02
With this extra construct we can translate any implicitly-typed Sys-
tem F term into a well-typed term iRPH, using the translation
of Figure 4. This type-directed translation of implicitly typed Sys-

tem F is specified as a judgemdﬁtﬁ er : o ~ e wheree is
a term that type checks in our language. Notice that the translation

typeability of an expression of one type with another type through requires annotatiorsnly on A-abstractions that involve rich types

a series of instantiations and generalizations, and is given by the

rule below:
b#ftu(Va.p)
4 Va.p <Vb.[a=alp

FSUBS

Lemma3.31f T F e : o' thenl I ¢ : |0’ |, wheree® simply

removes the type annotations framand H is the typing relation
of implicitly typed System F.

Moreover,FPH is an extension of the Damas-Milner type system.

The idea of the following lemma is that instantiationtotypes
always subsumes instantiation#tdypes.

A subtle point is that the translation may genemgentype anno-
tations. For example, consider the implicitly typed System F term
below:

FAx.e:Va.(Vb.b —a) — a
Translating this term using Figure 4 gives
F(Az.e::: (Vb.b — a) — a)
Note that the type annotation mentiomsvhich is nowhere bound.

Although we have not emphasized this poF®RH already accom-
modates such annotations.

30f course, it would be fine to annotaggery\-abstraction, but the trans-
lation we give generates smaller terms.

F

(z:0) €T THe:ofi—oa~we THe:iop~e FI—FG:VE.pwel F)—Fe:pwel a#l
3 VAR F APP F INST 3 GEN
' z:0~2 I'E ej ea:00~ €3 ey 'k e:[a—olp~a 'k e:Va.p~ e
F F
I, (z:m)F e:ma2~ e T, (z:o1)F e:o2~ e
g ABSO F ABSl
' Az.e:T4 — T2~ AT.e1 'k Az.e:o1 — o2~ (Az.ep 101 — 02)

Figure 4: Type-directed translation of System F

The following theorem captures the essence of the type-directed
translation.

Theorem 3.61f T' e : : o' for someo’
such that o’ | = 0.

o ~ e1 thenT + ¢

In practice, however, we do not recommend adding annotated
abstractions as a clunky new syntactic construct. Instead, with a

bound with only one of the two incomparable types (in fact only
withVo. (b — b) — b — b).

However, notice that if an expression is typed with a box-free type
at each of its occurrences in a context, it maylbe-bound out of
the context. For example, sindeabstractions are typed with box-
free types, ifC[\z . €] is typeable, wheré€ is a multi-hole context,
then itis always the case theét f = (A\z.e) in C[f] is typeable.

bidirectional typing system we can get the same benefits (and more

besides) from ordinary type annotations:o, as we sketch in
Section 6.1.

3.5 Predictability and robustness

A key feature of FPH is that it is simple for the programmer
to figure out when a type annotation is required. We gave some
intuitions in Section 2, but now we are in a position to give some
specific results. The translation of System FRH of Section 3.4
shows that one needs only annotaée-bindings or\-abstractions
that must be typed with rich types. This is a result of combining
Theorem 3.6 and Lemma 3.2.

For example, every applicative expression—one consisting only of

variables, constants, and applications—that is typeable in Systemronment, using the auxiliary Judgemeht

F is typeable inFPH without annotations. We began this paper
with exactly such an example, involvingnST, and it would work
equally well if we had used reverse application instea$l. of

Theorem 3.7 If e is an applicative expression ait- e o, then
Tk e: o' for somes’ with [o’] = 0.

It is easy to see this result by inspecting the rules of Figure 2.
Functions may be instantiated with an arbitrary boxy type, but rule
APPignores the boxes.

Additionally, alet-binding can always be inlined at its occurrence
sites. More precisely if" - let =z w in e : o, then
Tk [z — u]e : o’. This follows from the following lemma:

Lemma38IfT'+ u: oandl,(z:0
ule : o',

) e:o' thenl + [z —

The converse direction cannot be true in general (although it is
true for ML andMLF) because of the limited expressive power of
System F types, as we discussed briefly in Section 2.0het=
(Vo.b — b) — (Vb.b — b), 02 =Vb.(b — b) — b — b,

fi 1 01 — Int,andf; : 02 — Int. One can imagine a program of
the form:

.. (fi (choose id))...(f2 (choose id))...

which may be typeable, but it cannot be the case that: z =
choose id in...(fi z)...(f z)...is typeable, as: can be

4. Syntax-directed specification

We now show howFPH may be implemented. The first step in
establishing an algorithmic implementation is to specify a syntax-

dlrected version of the type system, with the Judgenfemf e:

’, where uses of the non-syntax-directed rulesgs, INST, and
GEN) have been pushed to appropriate nodes inside the syntax-tree.
Subsequently we may proceed with a low-level implementation of
the syntax-directed system (Section 5). Our syntax-directed presen-
tation appears in Figure 5.

Rule SDVAR instantiates the type of a vanable bound in the envi-

/. The latter
instantiates the top-level quantifiersfto yleld ap’ type. How-
ever, we instantiate with boxes insteadrotypes, which is closer

to the actual algorithm as boxes correspond to fresh “unification”
variables.

Rule sparPdeals with applications. It infers a typéfor the func-

tion, and uses< (Figure 3) and=—"" (a subset of2) to expose an
arrow constructor. The latter step is call@gow unification Then
SDAPPinfers apj type for the argument of the application, gen-
eralizes over free variables that do not appear in the environment
and checks that the result is more polymorphic (along the System
F type instance) than the required type. FinayaPpPinstantiates

the return type.

Rule sbaBs uses ar type for the argument of thg-abstraction,

and then forces the returned typefor the body to be unboxed to

a p-type usingp’ <C p. Finally, we consider all the free variables
of the abstraction type that do not appear in the environment, and
substitute them with arbitrary boxes. The returned type forthe

abstraction iga — [@] (T — p).

This last step, of generalization and instantiation, is perhaps puz-
zling. After all rule ABs (in the declarative specification of Fig-
ure 2) seems to only forck-abstractions to have box-free types.
Here is an example to show why it is needed:

Example 4.1 (Impredicative instantiations in A-abstractions)
The following derivation holdd' F (Az.z) ids : |[Va.a — al|

(z:0) €T Hst o < pf

por — SDVAR
TFE z:p

LE e s pf P (RC7)oy — o)
d —_
PP e :ph a= fto(py) — fro(T)

F inst
F |Va.ph] < |of = L < pl
Lva.ps) _SdLU1J 92> P2 opapp
' e e :p'2
T, (z:71) e pf
P (Z20)p @= ftv(r — p) — fto(T')
SDABS

r e Az.e:[a—[@(r — p)

rEtu:p p/(20)p
a = ftv(p) — ftv(T) T, (z:Va.p) e A

por SDLET
't letz=wuine:p)
d —_
r i e:p) a=ftu(/1t) — fto(T)
Fivap <o F™o <y
Lva plst =7 7= spann
T'F (e::0):p
Finst o’ S p/
et SDINST
Fova.p < [a— @)
o' T~ of — o}
BOXUF

NBOXUF
o' C™ o

[61 = 02| 7 [61] — [o2]

Figure 5: Syntax-directed Constrained Boxy Types system

To construct a derivation for Example 4.1 observe that we can
instantiate\z . z with a polymorphic argument type, as follows:
I(z:a)Fz:a
———————— ABS
I'HFXx.z:a—a

GEN
I'FXz.z:Va.a— a

IN
I'tXz.z:|[Va.a — a]] = |[Va.a — a]

The use ofGEN andINST are essential to make the term applicable
to ids : [Va.a — al. The generalization and instantiationsn-
ABS ensure tha6EN andINST are performed at eachrabstraction,
much assDLETensures thatENis performed at eachet-binding.

Rule sDLET is straightforward; after inferring a type far which
may contain boxes, we check that the boxes can be removedby

to get ap-type, which can subsequently be generalized and pushed

in the environment.
Finally, rule sDANN infers a typep; for the expressior, general-

Theorem 4.2 (Soundness 6f*) If T K ¢ : p/ thenD' - e : p.

The proof is a straightforward induction over the derivation tree.
The most interesting case is application which makes use of an
auxiliary Lemma 4.3, given next, together with the fact that

is a subset of-.

Lemma4.31f T I e : o) andF |o}| < |ob] thenD - e : o}
such thatlo3 | = |05].

Conversely, the syntax-directed system is complete with respect to
the declarative system, as the following theorem shows.

Theorem 4.4 (Completeness dfd) If T+ e: p thenl L
p6 such thatp) <C p'.

Proving this theorem is more difficult than soundness. We actually
have to generalize the statement of Theorem 4.4, using the predica-

tive restriction of the- relation, given below:
b#fu(Va. p)

- _ SHSUBS
F o Va.p<Vb.[a—=T7)p

We writeF>" Ty < Ty if for every (z:01) € T'1, there exists a

such that(z:02) € I's, and" o, < o1. We can now state the
more general completeness statement.

Lemma 4.5 Assume thal'; + e : Va.p'. Then, for allTy with

M Ty < Ty and for all& there exists @ such thafl's e 00
andpy <C [a — [@]p’.

We also state one further corollary, which is a key ingredient to
showing the implementability of the syntax-directed system by a
low-level algorithm (to be described in Section 5).

Corollary 4.6 (Strengthening) If Ty F e A and>™ Ty <y
thenT, K e : p) such thah <C p).

The proof is a combination of Theorem 4.2 and Lemma 4.5.

Corollary 4.6 means that if we change the types of expressions in
the environments to be the most general according to the predica-
tive I—DM, typeability is not affected. This property is important for
type inference completeness for the following reason: All types that
are pushed in the environment are box-free and hence can only dif-
fer from each other according to the" relation—their polymor-

phic parts are determined by annotations. In fact the algorithm will
choose the most general of them accordin@Dt“g. Therefore, if

an expression is typeable in the declarative type system with bind-
ings in the environments thdb not have their most general types
the above corollary shows that the expression will also be typeable
if these bindings are assigned their most general types, that is, the
types that the algorithm infers for them.

5. Algorithmic implementation

The syntax-directed specification of Figure 5 can be implemented

izes over its free variables not in the environment, and checks thatby a low-level constraint-based algorithm, which resembles the

this type is more polymorphic than the annotations. As the final
step, the annotation type is instantiated.

algorithm of MLF. A proof-of-concept implementation, as well as
the description of the algorithm invariants and properties can be

We can now establish the soundness of the syntax-directed systen{ound at

with respect to the declarative one.

www.cis.upenn.edu/~dimitriv/fph/

Like Hindley-Damas-Milner type inference (Damas and Milner
1982; Milner 1978), our algorithm creates freshification vari-
ablesto instantiate polymorphic types, and to use as the argu-
ment types of abstractions. In Hindley-Damas-Milner type infer-

ence these variables are unified with other types. Hence, a Hindley-

Damas-Milner type inference engine maintains a seéafality
constraintsthat map each unification variable to some type, up-
dating the constraints as type inference proceeds.

Our algorithm uses a similar structure to Hindley-Damas-Milner
type inference, but maintains both equality @amgtance constraints
during type inference, so we use the teramstrained variablén-
stead of unification variable. A constrained variable in the algo-
rithm corresponds to a box in the high-level specification. To dis-
tinguish between constrained variables and (rigid) quantified vari-
ables, we use greek lettetis 3, for the former. Therefore, the al-
gorithm manipulates types with the following syntax:

T = e Tt =1«
p* — 7_* | U* s U*
ot u= Va.p*

The need for instance constraints can be motivated by the typing of

choose ids from the introduction. First, sincehoose has type
Ya.a — a — a, We may instantiate the quantified variable
with a fresh constrained variabte However, when we meet the
argumentid, it becomes unclear whethershould be equal t —

(3 (that would arise from instantiating the typeiaf), orvb.b — b

(if we do not instantiateid). In the high-level specification we
can clairvoyantly make a (potentially boxed) choice that suits us.
The algorithm does not have the luxury of clairvoyance, so rather
than making a choice, it must instead simply recordrestance
constraint In this case, the instance constraint specifiesdhedn

be any System F instanaaf Vb.b — b. To express this, at first
approximation, we need constraints of the fau> o*.

However, we need to go slightly beyond this constraint form. Con-
sider the progrant (choose id) wheref has typevc.c — c.
After we instantiate the quantified variabtewith a fresh variable

~, we must constraify by the type ofchoose id, thus

~ > (principal type ofchoose id)

But, the principal type oéhoose id must be a type that is quanti-
fied and constrained at the same tinfe: > Vb.b — b]=a — a.
Following MLF (Le Botlan and Rmy 2003), thischemeaptures
thesetof all types forchoose id, suchas/d.(d — d) — (d —
d)or(vb.b — b) — (Vb.b — b). We hence extend the bounds
of constrained variables to include> ¢, wheres is a schemé.

Schemes ¢ = [e1y...,cn]=p"
Constraints ¢c = a=0"|a>¢ | al
Constraintsets C,D,E == {ci,...,cn} (n>0)

The constrainty L means that is unconstrained. Ordinary Sys-
tem F types can be viewed as schemes whose quantified variable
are unconstrained, and hence the tyjppeb — b can be written as

[8 L]=8 — B. The meaning of the constraift> ¢ is thaty be-
longs in theset of System F types thatepresentswhich we write

[<]. For example, it = [« > ([8 L]=8 — B)]=(a — «), then

we have:

(Vb.b —b) — (Vb.b —b) € []
Ve (c—c)—ec—c € [q]
Ve ([e) = [e]) =[] =[] € [s]

4The actual form of constraints is slightly more complicatedease we
have to ensure that variables entering the environment a%er eguated
to types with quantifiers, but we do not present it here fovibyeof the

exposition.

5.1 Inference implementation

The functioninfer implements our type inference algorithm, fol-
lowing the syntax-directed presentation of Figure 5. This function
has the following signature

infer : Constraint x Env x Term — Constraint * Type

accepting a constrain€;, an environment’, and a terme. A

call to infer(C1, T, e) either fails withfail or returns an updated
constraintC> and a typep*. The most interesting case, which
demonstrates the power of schemes, is in the implementation of
applications:

infer(C, T, e1 e2)

= FE1,p} =infer(C,T, e1)

Es, 0] — 0% = instFun(E1,T, p})
E3, p3 = infer(E2,T, e2)

E4,s3 = generalize(T', E3, p3)

E5 = subsCheck(E4,<3,07)
inst(Es, 05)

(
(
(
(
(
(

DU W
N NSNS NN NI

In a call toinfer(C, T, e1 e2) we peform the following steps:

(1) We first infer a typep; for e; and an updated constraift by
calling infer(C,T, e1).

(2) However, typep; may itself be a constrained type variable,
that is, it may correspond to a single box in the syntax-directed
specification. The functiomstFun(E1, T, p7) is the low-level
implementation of the relatiog C .

(3) Subsequently, we infer a type and an updated constraint for the
argumentez with Es, p5 = infer(FEs>, T, e2).

(4) At this point we need to compare the function argument gype
to the type that we have inferred for the argument. However, we
do not yet know the precise type of the argument and hence
we call generalize(T', E3, p3) to get back a new constraint
E4 and a schemes. The schemes expresses the set all
possible typesf the argument,. The functiongeneralize is
an appropriate generalization of the ordinary generalization of
Hindley-Damas-Milner, adapted to our setting.

(5) Now that we have a schemg expressing all possible types
of the argument, we must check that the required typg
belongs in the set that expresses. This is achieved with the
call to subsCheck(Es,<s,07), which simply returns an up-
dated constrainks wheno; belongs in the set thag denotes
under the constraints.

(6) Finally, typeo2> may be equal to some typéz . p5, which we
instantiate tda — a]p5 for fresha. This is achieved with the

call to inst(Es, 03), which implements the™™ judgement of
the syntax-directed presentation.

One may observe that in an applicatien ez, the argumene, is
generalized. Actually, this step is not required in a bidirectional im-
plementation where the argumentcan becheckedagainst the ex-
pected type that; requires. We return to this point in Section 6.1.

é\lotice, too, that schemes make a local appearance in inference:

generalize computes a scheme (4), whidebsCheck consumes it
(5). So our algorithm usedIL" types (which is what our schemes
are) internally, but never exposes them to the programmer. Sec-
tion 7 gives some more details about the correspondence.

Another notable part of the functioinfer is related to forcing
monomorphism of the constrained variables ef-bound expres-
sions, ori-abstraction bodies. Intuitively, after inferring a type for

a let-bound expression we need to implement the instantiation
along=L to a box-free type. This requires that all flexible bounds
inside the type of th@et-bound expression be instantiated, and a
check is performed that all constrained variables of that type are
indeed mapped to monomorphic types. Then, generalization can
proceed just as in ordinary Hindley-Damas-Milner.

5.2 Properties of the algorithmic implementation

We have shown termination, soundness, and completeness of the al

gorithmic implementation (Vytiniotis 2008). To state the soundness
and completeness properties we defioxy substitutionGiven a
substitutiond from constrained variables to constrained-variable-
free types, we define the boxy substitutionéobn o*, denoted
with 8[c*], that substitutes the range &fin a boxed and capture-
avoiding fashion insider™. For example, iff is the substitution

[— o] thenf[a — a] =[] — [@]. We use boxy substitutions

to recover specification types from algorithmic types, provided that
all their constrained variables appear in the domains of the substi-
tutions. We writedo* for the ordinary substitution af ono™.

We also must connect substitutions and constraints. A substitution
0 from constrained variables to System F types is sahtisfya
constraintC' whenever it respects the interpretation of schemes in
C. In particular if(« = 0*) € C then it must be thala = 6c*

and wheneve(a > <) € C then it must be thala € [6<].

With these two definitions, we may state soundness and complete
ness, connecting the syntax-directed specification with the algorith-
mic implementation.

*

Proposition 5.1 (Inference soundnesslf infer(0,-,e) = C,p
then for all@ that satisfyC! it is the case that I ¢ : 0[p].

Proposition 5.2 (Inference completenesdlf - P e o' then

infer(0,-, e) = C, p* and there exists a substitutiérihat satisfies
C and such thad[p*] <C p'.

Together Propositions 5.1 and 5.2 ensure the implementability of
the declarative specification of Figure 2. Notice that, although pro-
grams do not in general have principal types modulo boxes, a corol-

lary of soundness and completeness is that programs with box-free

types do have principal box-free types.

6. Discussion

We present in this section several extensionsRé1, and discuss
alternative designs. Vytiniotis (2008) presents more details and
some additional design choices.

6.1 Bidirectionality

Bidirectional propagation of type annotations may further reduce
the amount of required type annotationskARH. It is relatively

straightforward to add bidirectional annotation propagation to the
specification ofFPH (see e.g. (Peyton Jones et al. 2007)). This

expression against a single box. In this case, we must infer a type
for the expression, as we cannot use its contents.

Annotations no longer reveal polymorphism locally, but rather
propagate the annotation down the term structure. Theanbe-

INF below infers a type for an annotated expressiono by first
checkinge against the annotation:

inst ’

F o<p

rFe (e::0):T

The rule for inferring types fot\-abstractions is similar to rule
SDABS, but the rule forcheckingi-abstractions allows us now to
check a function against a type of the foerh — o5:

sd
FF*e:UU
ANN-INF

d
ol Cor T, (z:01) Fy eV oh
ABS-CHECK

d
re)\x.e:ucri—mré

Notice thato; must be made box-free before entering the environ-
ment, to preserve our invariant that environments are box-free.

With these additions, and assuming support for open type annota-
tions, we can type functions with more elaborate types than simply
T — ptypes, as th& PH original system does. Recall, for instance,
Example 3.5 from Section 3.4.

f :: forall a. a -> [a] -> Int

foo :: [Int -> forall b.b->b]

bog = £ (\x y ->y) foo

Thoughbog is untypeable (even in a bidirectional system), we can
recover it with the (ordinary) annotation:

bog = f (\x y -> y :: Int -> forall b. b -> b) foo

Special forms for annotated-abstractions (Section 3.4) are not
necessary in a bidirectional system. Indeed our implementation is a
bidirectional version of our basic syntax-directed type system.

6.2 n-conversion and deep instance relations

The FPH system is not stable underexpansions, contrary to
System F andILF. In particular, iff:c — Int in the environment,
it is not necessarily the case that.f z is typeable, sinca can
only be assigned a-type.

Unsurprisingly, sincéFPH is based on System F, it is not stable
under n-reductions. If an expressiohz.e z makes a context
Cl[(Az.e z)] typeable, then it is not necessarily the case Hat

is typeable. Consider the code below:

bidirectional annotation procedure can be implemented as a sep-

arate preprocessing pass, provided that we support open type an-

notations, and annotatedabstractions. Alternatively, this proce-

dure can be implemented by weaving an inference judgement of

the formT" F* ¢ :" »/ and a checking judgemeiit F* ¢ ¥ .

Necessarily, this bidirectional system is syntax-directed. A special-
. sd R . .

top level judgement’ =, e :¥ o’ checks an expressi@gainst a

polymorphic types follows:

. FI—Sde:ﬂp/ a#l
T ety apl K va.p/| <o
stie:uVE.p' Fl—sfe:u@

Rule skoL simply removes the top-level quantifiers and checks
the expression against the body of the type. RiBex checks an

SKOL

CBOX

f :: Int -> forall a. a -> a
:: forall a. a -> [a] -> a
1st :: [forall a. Int -> a -> al
gl =g (\x > f x) 1Ist -- 0K
=g f 1lst -- fail!

The application ing2 (untypeable in implicitly typed System F)
fails sincelst requires the instantiation gfwith typeVa.Int —

a — a, wherea< has typelnt — Va.a — a. TheFPH system,
which is based on System F, is not powerful enough to understand
that these two types are isomorphic.

Although such conversions are easier to support in predicative
variants of Mitchell's F; (Mitchell 1988) (e.g. (Peyton Jones et al.
2007)), the presence of impredicativity complicates our ability to
support them. In fact, no type inference system with impredicative
instantiations proposed to date preserves program typeability under

all n-conversions. We are currently seeking ways to extend our 7. Related work

instance relation to some “deep” version that treats quantifiers to

the right of arrows as if they were top-level, but combining that There are several recent proposals for annotation-driven type in-

with impredicative instantiations remains a subject of future work. ference for first-class polymorphism, which differ in simplicity of
specification, implementation, placement of type annotations, and

6.3 Alternative design choices expressiveness. We present an extensive comparison below and a

. : . o quick summary in Table 6.
Our design choices are a compromise between simplicity and ex-

pressiveness. In this section, we briefly present two alternatives. MLF, Rigid MLF, and HML TheMLF language of Le Botlan and

Typing abstractions with more expressive typeRecall that)- Remy (Le Botlan and Bmy 2003; Le Botlan 2004) partly inspired
abstractions are typed with box-free types only. This implies that this work. The biggest difference between this language and other
certain transformations, such #munking may break typeability. ~ @pproaches is that it extends System F types with constraints of
For example, consider the following code: the formV(Q)7 so as to recover principal types for all expressions.

.. _ _ _ Therefore]et-expansion preserves typeabilityNiL", unlike sys-
f1 :: forall a. (a > a) —> [a] > Int tems that use only System F types. Because the type language is

gl = f (choose id) ids -- OK . F . - . F
more expressiveML" requires strictly fewer annotations. ML",

£2 :: forall ab. (b -> a -> a) -> [a] -> Int annotations are necessary only when some variahledgat two

g2 = £ (\ _ -> choose id) ids -- fails! or more polymorphic types—in contrast, in our language, variables

must be annotated when they afefinedwith rich types. For ex-

ample, the following program
In the example, whilg1 type checks, thunking breaks typeability, . Wing prog

because the tyd¥a.a — al — [Va.a — a] cannot be unboxed. f=1\x ->x ids

An obvious alternative would be to allow arbitrapy types as needs no annotation iNL" becauser is only used onceFPH
results of \-abstractions, and lift our invariant that environments requires an annotation an Hence we are more restrictive.

are box-free to allowr’ types as the arguments of abstractions.
yp 9 A drawback ofMLF is the complexity of its specification: con-

Though such a modification allows for even fewer type annotations . i) .
(the bodies of abstractions could use impredicative instantiations Stra‘?‘ed types appear in the declarative type sy_s_tem_ and the instance
relation ofMLF must include them. ThEPH specification does not

and no annotations would be necessary), we are not aware of a ; - . .
sound and complete algorithm that could implement it. Vytiniotis need a constraint-based instance relation, but our low-level imple-

(2008) gives a more detailed account of the complications. mentation is a variation of th#LF implementation. Because we
do not expose a constraint-based instance relation in the specifica-

A box-free specification A safe approximation of where type tion, we can formalize our algorithm as directly manipulating sets
annotations are necessary id at-bindings or\-abstractions with of System F types. In contradtlL internalizes the subset relation
rich types. Perhaps surprisingly, taking this guideline one step between sets of System F types as a syntactic instance relation, and
further, if wealwaysrequire annotations in bindings with rich types ~ formalizes type inference with respect to this somewhat complex

then we no longer need boxes in the specificatiball! Consider relation. Le Botlan and &my (2007) study the set-based interpre-
the type system of Figure 2 with the following modifications: tation of MLF in a recent report, which inspired our set-theoretic
1. Drop all boxy structure from all typing rules, that is, replace all Intérpretation of schemes.
p', o', types withp ando types, and completely remoeaiBs There are technical parallels betweeRH and MLF. One of the
and=L. Instantiate with arbitrary types in ruleiNsT. key ideas behindML" is that all polymorphic instantiations are
2. Replace r_uIeaET andaBs with their corresponding versions for «piqden” behind constrained type variables. Our type system uses
Damas-Milner types: anonymous boxes for the same purpose. The anonymous boxes
'Fu:Va.r of FPH correspond taigidly constrainedML variables. In fact,
L.(zvVa.m)Fe:ip | ep D.(zm)bFe:m ,pg the FPH type system can be described as a variatiorMaf®
Fkletz=uine:p TFAt.e:Ti — T without flexible bounds (Vytiniotis 2008). Additionally, usages

of boxy instantiation< and protected unboxin@€ in an FPH
typing derivation correspond to usages of ti&" equivalences
F'tu:o T, (zo)Fe:p V(o = 0).a = o and¥(a = 7).0 = [a — T]o respectively in
LET-ANN anMLF derivation for the same program.

3. Add provision for annotatetket-bindings and\-abstractions:

I'letz::o=wuine:p
Finally, MLF is a source language and is translated to an explicitly
L, (z:01) Fe:o2 typed intermediate language, such as explicitly typed System F, us-
ABS-ANN ing coercion terms (Leijen andsh 2005). Coming up with a typed
intermediate language foviL" that is suitable for a compiler and
The resulting type system enjoys sound and complete type infer- does not require term-level coercions is still a subject of research.

?ncei—lby usingtissenti.altlly the same O?Igorith a;EEtHdtype Syts-t' In contrast, becausePH is based on System F, elaboratiRBH
em. However, this variation is more demanding in type annotations ; ;
than the box-baseBPH. For instance, one must annotaeery to System F s straightforward.

let-binding that uses rich types, even if its type did not involve A variation of MLF similar in expressive power BPH is Leijen’s

'(Az.e::i01 —02): 01— 02

any impredicative instantiations. For example: Rigid MLF (Leijen 2007). LikeFPH, Rigid MLF does not include
f :: Int -> (forall a. a -> a) -> (forall a. a -> a) constrained types. Instead, it resolves constraints by instantiating
h = f 42 -- fails! flexible bounds alet-nodes. However RigiL" is specified us-

The binding forh has a rich type and hence must be annotated, ing the MLF instance relation. Consequently, despite the fact that
although no impredicative instantiation took place. Given the fact types in the environment are System F types, to reason about ty-
that this simplification is more demanding in type annotations, we peability one must reason using tht." machinery. Additionally,
believe that it is not really suitable for a real-world implementation. the rules of RigidVIL" require that when instantiating the types of

Specification Implementation | Placement of annotations / typeable programs

HMF Simple, “minimality” restrictions Simple Annotations may be needed onabstractions with rich
types and on arguments that must be kept polymorphig

MLF Heavyweight, declarative Heavyweight Precise, annotations only required for usage of arguments
at two or more types

Boxy Types | Complex, syntax-directed, dark cornersSimple No clear guidelines, not clear what fragment of System F
is typed without annotations

HML Constraint-based, declarative Heavyweight Precise, annotations on polymorphic function arguments

FPH Simple, declarative Heavyweight Precise, annotations aret-bindings and\-abstractions
with rich types, types all applicative System F terms and
more without annotations

Figure 6: Quick summary of most relevant related works

let-bound expressions, the type that is used in the typing deriva- design space. ThdMF system enjoys a particularly simple infer-
tion of the let-bound expression is the most general. Requiring ence algorithm (a variant of Algorithm W), and one that is certainly

programmers to think in terms of most genekdL" constraint- simpler tharFPH. In exchange, the typing rules are somewhat un-
based types may even be more complicated than requiring them toconventional in form, and it is somewhat harder to predict exactly
reason withtMLF constraints, as in the origin®LF proposal. where a type annotation is required and where none is needed.

A promising ML" variation is Leijen’s HML system (Leijen The key feature oHMF is a clever application rule, where impred-
2008b). In particular HML retains flexible bounds and hence en- icative instantiations are determined by a local match procedure. In
joys principal types a#LF, but completely inlines rigid bounds. the type system, this approach imposes certain “minimality” condi-

In contrast toML", annotations must be placed ail function tions that require (i) that all types entering the environment are the
arguments that are polymorphic (asARH), but it requires no an- ~ most general types that can be assigned to programs, and (ii) that
notations onlet-bound definitions (contrary t6PH). The HML all allowed impredicative instantiations of functions are those that

system still involves reasoning with constraints, but in the absence “Minimize” the polymorphism of the returned application.
of rigid bounds there is no need for the introduction of MeF

- . S Lo The local match procedure means tHAtl™ takes eager decisions:
abstraction relation—a significant simplification.

in general, polymorphic functions get instantiated by default, un-
less specified otherwise by the programmer. For example, the pro-
Boxy Types Boxy Types (Vytiniotis et al. 2006) is an earlier gramsingle id (wheresingle has typéva.a — [a]) cannot be
proposal by the authors to address type inference for first-classtyped with type[Va.a — a]. The top-level quantifiers afd are
polymorphism. Like this paper, Boxy Types uses boxed System F instantiated too early, before the local match procedure. Because
types to hide polymorphism. Because boxes provide an elegantwayFPH delays instantiations using constraints, we may type this ex-
to mark impredicativity, we have reused that syntax in this work. pression wit] (but we would still need an annotation

However, boxes play a different role in our previous work. In Boxy 0 Let-bind it). In HM" one may annotate the functienngle, or
Types, boxes merely distinguish the parts of types that were in- SPECify with arigid type annotatiorthat the type ofid must not
ferred from those that result from some type annotation, combin- D€ instantiated(single (id :: forall a. a -> a)).” Note

ing bidirectional annotation propagation with type inference. In a that HM" annotations are different than the annotations found,
Boxy Types judgement of the forii - e : o, thep type should ~ for instance, in Haskell—e.glid :: forall a. a -> a) 42

be viewed as input to the type-checker, which asks for the boxes of IS rejected.

p asi . p '
p_ to getfilled in. In this work, the" type is an output, and boxes | gjjen observes that local match procedures are, in general, not
simply mark where impredicative instantiations took place. robust to program transformations. If only a local match were

Boxy Types were implemented using a relatively simple algorithm t0 be used, the applicatiofcons id) ids would not typeable,
which modestly extends Hindley-Damas-Milner unification with While (revcons ids) id would be (whererevcons has type
local annotation propagation. Because the algorithm does not ma-Va-[a] — a — [a]). Hence, these problems are circumvented
nipulate instance constraints, it cannot delay instantiations. There-in HM" by using anN-ary application typing rule that uses type
fore, the type system must make local decisions. In particular, Boxy information fromall argumentsn an application.

Types often requires programs to unbox the contents of the boxes
too early. For type inference completeness, if information about
the contents of a box is not locally available, it must contain a example, iff : Va.a — ... andarg : Vb.r, an annotation will

monomorphic type. As a result, the basic Boxy Types system re- be neededf (arg::Vb.T), to instantiates with Vb.7. However

quires many type annotations. Ad-hoc heuristics, suctvaary . . X S
applications, and elaborate type subsumption procedures, relievel 30Me cases, annotation propagation andry applications may

the annotation burden but further complicate the specification and make such annotations redundant.
the predictability of the system. BecauseHM" requires most general types in derivations, there

. are programs typeable iHMF but not in FPH. For example,
Although some programs are typeable with Boxy Types and are not .. % =g appem)i/pids in ... requires an annotation iﬁPFI)-i,

typeable (without annotation) iRPH, and vice versa, we believe whereas it seamlessly typechecksHiM™. On the other hand
that the simpler specification 6PH is a dramatic improvement. flexible instantiation allow§PH to type examples such as ’

In general, annotations are needediM®™ on A-abstractions with
rich types and on arguments that must be kept polymorphic. For

HM" Leijen's HM" system (Leijen 2008a), which is a compan- 5 A final possibility would be for the annotatiofia.a — a to have been
ion paper in this proceedings, is yet another interesting point in the somehowpropagatedo id.

f :: forall a. [a]l -> [a] -> a Jacques Garrigue and DidieeRy. Semi-explicit first-class poly-

g = £ (single id) ids morphism for ML. Journal of Information and Computatipn
whereHMF (even with annotation propagation) fails. Overall, we 155:134-169, 1999.
believe that the placement of required annotatiorfSHh is some- AJ Kfoury and JB Wells. A direct algorithm for type inference
what easier to describe thantitv™. But on the other handdM” in the rank-2 fragment of the second-order lambda calculus. In

posseses a significantly simpler implementation and metatheory. ACM Symposium on Lisp and Functional Programmipages
196-207. ACM, Orlando, Florida, June 1994.

Other works For completeness, we outline some more distantly p | o Botlan and D Rmy. MLF: raising ML to the power of Sys-

connected works. Full type reconstruction for (implicitly typed) tem F. InACM SIGPLAN International Conference on Func-

System F is undecidable (Wells 1999). Kfoury and Wells stratify tional P ing (ICEP'0 27-38. U la. Swed
System F types by rank (polymorhism on the left of function types), Sl(;r;?emrgg:azg(r;;l-ngéwl. pages » Uppsaia, sweden,

and show undecidability of type reconstruction for System F with))
types of rank-3 or higher. On the other hand, the rank-2 fragment Didier Le Botlan.MLF : Une extension de ML avec polymorphisme
of System F is decidable (Kfoury and Wells 1994). de second ordre et instanciation implicitePhD thesis, Ecole

Polytechnique, May 2004. 326 pages, also available in english.
Pfenning (1988) shows that everartial type inferencefor the y q y pag g

n-th order polymorphicA-calculus, where type abstractions and Didier Le Botlan and Didier Bmy. Recasting MLF. Research
the positions of type applications are known but not the types of ~ Report6228, INRIA, Rocquencourt, BP 105, 78 153 Le Chesnay
function arguments, is equivalent teth order unification, which Cedex, France, June 2007.

is undecidable. Recent work (Le Botlan anériy 2007) shows Daan Leijen. HMF: simple type inference for first-class polymor-
that one only needs polymorphic function argument annotations phism. InACM SIGPLAN International Conference on Func-

(and not type abstractions and type applications) to embed all of tjonal Programming (ICFP’08)ACM, 2008a.
System F. On the other hand, there are certain merits in Pfenning’s

proposal: (i) the type inference algorithm seamlessly extends,to F Daan Leijen. Flexible types: robust type inference for first-class

(i) higher-order unification terminates in the common case, and polymorphism. Technical Report MSR-TR-2008-55, Microsoft

(i) annotating type abstractions may be well-suited for languages Research, March 2008b.
with effects. On the other hand, Pfenning’s original implementation Daan Leijen. A type directed translation of MLF to System-

effectively treatd et-bound definitions as inlined in the body of the F. In ACM SIGPLAN International Conference on Functional
definition, which threatens modularity of type inference. Programming (ICFP’07) Freiburg, Germany, 2007. ACM.

A different line of work explores type inference for predica- Daan Leijen and Andresdh. Qualified types for MLF. IFACM
tive higher-rank polymorphism (Odersky anéfer 1996; Pey- SIGPLAN International Conference on Functional Program-
ton Jones et al. 2007;éRny 2005). Odersky andiufer made the ming (ICFP’06) pages 144-155. ACM Press, 2005.

observation that once all polymorphic function arguments are an- g miiner. A theory of type polymorphism in programmingCSS
notated, type inference for predicative higer-rank polymorphism 13(3), December 1978.

becomes decidable, even in the presend&efbound expressions.)) . .

Peyton Jonest al. explore variations of the Oderskyalfer type John C. Mitchell. Polymorphic type inference and containment.

system that support a bidirectional propagation of type annotations. INf- Comput, 76(2-3):211-249, 1988. ISSN 0890-5401.

Finally Rémy proposed a clean separation of the bidirectional prop- M Odersky and K Eufer. Putting type annotations to work.

agation of type annotations, through a phase calteghe inference In 23rd ACM Symposium on Principles of Programming Lan-

performed before type inference. guages (POPL'96)pages 54-67. ACM, St Petersburg Beach,
Florida, January 1996.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and

We h ted a simol ive declarati ification f Mark Shields. Practical type inference for arbitrary-rank types.
e have presented a simple, expressive declarative specification for ;"¢\ "Brooram 17(1):1-82, 2007, ISSN 0956-7968.

type inference for impredicative polymorphism. We have imple-

mented the system in prototype form; next, we plan to retro-fit the Frank Pfenning. Partial polymorphic type inference and higher-

implementation to a full-scale compiler. We intend to address the ~ order unification. InLFP '88: Proceedings of the 1988 ACM

issue of precise and informative type error reporting, a non-trivial ~ conference on LISP and functional programmipgges 153

problem as the algorithmic types are different from those of the =~ 163, New York, NY, USA, 1988. ACM. ISBN 0-89791-273-X.

specification. We also plan to study the interaction with type class pjdier Remy. Simple, partial type inference for System F, based

7.1 Future work and conclusions

constraints. Preliminary work by Leijen anéh (2005) shows how on type containment. IACM SIGPLAN International Confer-
to combineMLF-style unification with qualified types, and we ex- ence on Functional Programming (ICFP'Q5)ages 130-143,
pect no significant difficulties to arise. Tallinn, Estonia, September 2005. ACM.

: P Dimitrios Vytiniotis. Practical type inference for first-class poly-

Acknowledgments The authors would like to thank Didierdry, . ; . - ;

Daan Leijeg, the ICFP 2008 reviewers, and the Penn PLCKJb for morph}sm PhD thesis, U'nl\./ers'lty of Pennsylvanla_, 2008. URL

many useful suggestions. This work was partially supported by ~ ¥¥¥-cis.upenn.edu/~dimitriv/fph. In submission.

NSF grants 0347289, 0702545, 0716469, and DARPA CSSG2. Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.
Boxy types: Inference for higher-rank types and impredicativ-
ity. In ACM SIGPLAN International Conference on Functional

References Programming (ICFP'06)Portland, Oregon, 2006. ACM Press.

Luis Damas and Robin Milner. Principal type-schemes for func- 3B wells. Typability and type checking in system F are equivalent

tional programs. IrConference Record of the 9th Annual ACM and undecidableAnn. Pure Appl. Logic98:111-156, 1999.
Symposium on Principles of Programming Languagesges

207-12, New York, 1982. ACM Press.

