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Abstract

Languages supporting polymorphism typically have ad-hoc restric-
tions on where polymorphic types may occur. Supporting “first-
class” polymorphism, by lifting those restrictions, is obviously de-
sirable, but it is hard to achieve this without sacrificing type infer-
ence. We present a new type system for higher-rank and impred-
icative polymorphism that improves on earlier proposals: it is an
extension of Damas-Milner; it relies only on System F types; it has
a simple, declarative specification; it is robust to program trans-
formations; and it enjoys a complete and decidable type inference
algorithm.

Categories and Subject DescriptorsD.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—abstract data
types, polymorphism

General Terms Languages, Theory

Keywords impredicativity, higher-rank types, type inference

1. Introduction

Consider this program fragment1:

($) :: forall a b. (a->b) -> a -> b
runST :: forall r. (forall s. ST s r) -> r
foo :: forall s. Int -> ST s Int

...(runST $ foo 4)...

Here ($), whose type is given, is the apply combinator, often
used by Haskell programmers to avoid writing parentheses.2 From
a programmer’s point of view there is nothing very complicated
about this program, yet it goes well beyond the traditional Damas-
Milner type system (Damas and Milner 1982), by using two distinct
forms of first-class polymorphism:

• runST takes an argument of polymorphic type—runST has a
higher-ranktype.

1 We use Haskell syntax, and will often prefix examples with typesignatures
for any functions used in the fragment.
2 The example is equivalent to(runST (foo 4)).
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• The quantified type variablea in the type of($) is instanti-
ated to the polymorphic type∀s.ST s Int. Allowing the in-
stantiation of quantified type variables with polytypes is called
impredicativepolymorphism.

Our goal, which we share with other authors (Le Botlan and Rémy
2003; Leijen 2008a), is to make such programs “just work” by
lifting the restrictions imposed by the Damas-Milner type system.

Although there are several competing designs with the same gen-
eral goal, the design space is now becoming clear, so this paper is
not simply “yet another impenetrable paper on impredicative poly-
morphism”. We give a detailed comparison in Section 7, but mean-
while the distinctive feature of our system is this: rather than max-
imizing expressiveness or minimizing implementation complexity,
we focus on programmer accessibility byminimizing the complex-
ity of the specification. More specifically, we make the following
contributions:

• We describe and formalize a new type system,FPH, based on
System F, capable of expressing impredicative polymorphism
(Section 3). We show thatFPH can express all of System F
(Section 3.4).

• FPH is unusually small and simple for its expressive power. It
can be explained informally in a few paragraphs (Section 2),
and in particular has the following delightfully simple rule for
when a type annotation is required:a type annotation may be
required only for alet-binding or λ-abstraction that has a
non-Damas-Milner type(Section 2.2). For example, a nested
function call, such as(f (g x) (h (t y))), may involve
lots of impredicative instantiation, but never requires a type
annotation.

• We give a syntax-directed variant of the type system (Section 4),
and prove it sound and complete with respect to the earlier
declarative rules.

• We have a sound and complete inference algorithm forFPH,
which we sketch in Section 5. Internally, this implementation
uses type schemes with bounded quantification in the style of
MLF (Le Botlan and Ŕemy 2003), but this internal sophistica-
tion is never shown to the programmer; it is simply the mecha-
nism used by the implementation to support the simple declar-
ative specification.

Our system is fully compatible with the standard idea of propagat-
ing annotations via a so-called bidirectional type system. We dis-
cuss this and other design variants in Section 6. Finally, with the
scaffolding now in place, Section 7 amplifies our opening remarks
by showing in detail how the various current designs relate to each
other.

Auxiliary material and proofs can be found in the first author’s
dissertation (Vytiniotis 2008).



2. Type inference for first-class polymorphism

To describe the main difficulty with first-class polymorphism, we
first distinguish between Damas-Milner types (types permitting
only top-level quantification) andrich types (types with∀ quan-
tifiers under type constructors). For example,Int → Int and
∀a.a → a are Damas-Milner types; butInt → [∀a.a → a]
and∀a.(∀b.b) → [a] are rich types.

Both forms of first-class polymorphism (higher-rank and impred-
icative) result in a lack of principal types for expressions: a sin-
gle expression may be typeable with two or moreincomparable
types, where neither is more general than the other. As a conse-
quence, type inference cannot always choose a single type and use
it throughout the scope of alet-bound definition.

1. With higher-rank polymorphism, functions that accept poly-
morphic arguments may be typed with two or more incompara-
ble System F types. For example, consider the functionf below:
f get = (get 3, get True)

It is clear thatget must be assigned a polymorphic type in
the environment, since we must be able to apply it to both
3 and True. But what is the exact type off? For example,
both (∀a.a → a) → (Int, Bool), and(∀a.a → Int) →
(Int, Int) are valid types forf, but there exists noprincipal
type forf such that all others follows from it by a sequence of
instantiations and generalizations. Previous work has suggested
that the programmer should be required to supply atype an-
notationfor any function argument that must be polymorphic,
so that the type off is no longer ambiguous—the above code
would fail to type check, but the annotation below would fix the
problem:
f (get :: forall a. a->a) = (get 3, get True)

2. The presence of impredicative instantiation of type variables
leads to a second case of incomparable types. For example:
choose :: forall a. a -> a -> a
id :: forall b. b -> b

g = choose id

In a traditional Damas-Milner type system,g would get the
type∀b.(b → b) → (b → b). However, ifchoose may be
instantiated with a polymorphic type,g is also typeable with the
incomparable type(∀b.b → b) → (∀b.b → b). This problem
has been identified in theMLF work and circumvented by
extendingthe type language to include instantiation constraints.
This extended type language can express a principal type for
g, namely∀(a ≥ ∀b.b → b).a → a. However, if one
wants to remain within the type language of System F, the
type system must specify which of these incomparable types
is assigned tog. In FPH, g is typeable with its best Damas-
Milner type∀b.(b → b) → (b → b), but the type(∀b.b →
b) → (∀b.b → b) is also available by using an explicit type
signature, as follows:

g = choose id :: (forall b.b->b) -> (forall b.b->b)

The focus of this paper is on impredicativity (item (2) above),
since earlier work has essentially solved the question of higher-rank
types (Peyton Jones et al. 2007). The core type system we present
in Section 3 therefore does not supportλ-abstractions with higher-
rank types, focusing exclusively on impredicative instantiations. A
practical system must accommodate higher-rank types as well, and
we describe how previous work can be adapted to our setting in
Sections 3.4 and 6.1.

2.1 Marking impredicative instantiation

We present a flavor ofFPH in this section, and use several examples
to motivate its design principles. Consider this program fragment:

str :: [Char]
ids :: [forall a. a->a]
length :: forall b. [b] -> Int

l1 = length str
l2 = length ids

First consider type inference forl1. The polymorphiclength re-
turns the length of its argument list, where the type[b] means “list
of b”. In the standard Damas-Milner type system, one instantiates
the type oflengthwith Char, so that the occurrence oflength has
type [Char] → Int, which marries up correctly withlength’s
argument,str. In Damas-Milner, a polymorphic function can only
be instantiated with monotypes, where a monotypeτ is a type con-
taining no quantification (we use[·] for lists):

τ ::= a | τ1 → τ2 | [τ ]

This Damas-Milner restriction means thatl2 is untypeable, be-
cause here we must instantiatelength with ∀a.a → a. We can-
not simply lift the Damas-Milner restriction, because that directly
leads to the problem identified at the start of this section: different
choices can lead to incomparable types. However,l2 also shows
that there are benign uses of impredicative instantiation. Although
we need an impredicative instantiation to makel2 type check, there
is no danger here—the type ofl2 will always beInt. It is only
when alet-binding can be assigned two or more incomparable
types that we run into trouble.

Our idea is to mark impredicative instantiations so that we know
when an expression may be typed with different incomparable
types. Technically, this means that we instantiate polymorphic
functions with a form of typeτ ′ that is more expressive than a
mere monotype, but less expressive than an arbitrary polymorphic
type:

τ ′ ::= a | τ ′
1 → τ ′

2 | [τ ′] | σ
σ ::= ∀a.σ | a | σ → σ | [σ]

Unlike a monotypeτ , aboxy monotypeτ ′ may contain quantifica-
tion, but only inside a box, thusσ . Idea 1 is this: a polymorphic
function is instantiated with boxy monotypes. A boxy type marks
the place in the type where “guessing” is required to fill in a type
that makes the rest of the typing derivation go through.

Now, when typingl2 we may instantiatelength with ∀a.a → a .
Then the applicationlength ids has a function expecting an
argument of type[∀a.a → a ], applied to an argument of type
[∀a.a → a]. Do these types marry up? Yes, they do, because
of Idea 2: when comparing types, discard all boxes. The sole
purpose of boxes is to mark polytypes that arise from impredicative
instantiations. That completes the typing ofl2.

Boxes are ignored when typing an application, but they play a criti-
cal role inlet polymorphism.Idea 3 is this: to make sure that there
is no ambiguity about guessed polytypes, the type environment
contains no boxes. Let us return to the exampleg = choose id
given above. If we instantiatedchoose with the boxy monotype
∀a.a → a , the application(choose id) would marry up fine,
but its result type would be∀a.a → a → ∀a.a → a . However,
Idea 3prevents that type from entering the environment as the type
for g, so this instantiation forchoose is rejected. If we instead in-
stantiatechoose with c → c, the application again marries up (this
time by instantiating the type ofid with c), so the application has
type(c → c) → c → c, which can be generalized and then enter
the environment as the type ofg. This type is the principal Damas-
Milner type ofg—all Damas-Milner types forg are also available
without annotation. What we have achieved effectively is that, in-
stead of having two or more incomparable types forg, we have
allowed only a subset of the possible System F typing derivations
for g that does admit a principal type.



However, if the programmer actually wanted the other, rich, type
for g, she can use a type annotation:

g = choose id :: (forall b.b->b) -> (forall b.b->b)

Such type annotations useIdea 2—when typing an annotated ex-
pressione::σ, ignore boxes one ’s type when comparing with
σ (which is box-free, being a programmer annotation). Now we
may instantiatechoose with ∀a.a → a , because the type annota-
tion is compatible with the type of(choose id), ∀a.a → a →
∀a.a → a .

2.2 Expressive power

As we have seen, a type annotation may be required on alet-
bound expression, but annotations are never required on function
applications, even when they are nested and higher order, or involve
impredicativity. Here is the example from the Introduction, with
some variants:

runST :: forall a. (forall s. ST s a) -> a
app :: forall a b. (a -> b) -> a -> b
revapp :: forall a b. a -> (a -> b) -> b
arg :: forall s. ST s Int

h0 = runST arg
h1 = app runST arg
h2 = revapp arg runST

All definitionsh0, h1, h2 are typeable without annotation because,
in each case, the return type is a (non-boxy) monotypeInt.

Actually, we have a much more powerful guideline for program-
mers, which does not even require them to think about boxes:

Annotation Guideline. Write your programs as you like,
without type annotations at all. Then you are required to
annotate only thoselet-bindings andλ-abstractions that
you want to be typed with rich types.

For instance, for a term consisting of applications and variables to
be let-bound (without any type annotations), itdoes not matter
what impredicative instantiations may happen to type it, provided
that the result type is an ordinary Damas-Milner type! For exam-
ple, the argumentchoose id to the functionf below involves an
impredicative instantiation (in fact for bothf andchoose), but no
annotation is required whatsoever:

f :: forall a. (a -> a) -> [a] -> a
g = f (choose id) ids

In particularchoose id gets type∀a.a → a → ∀a.a → a .
However, f’s arguments types can be married up usingIdea
2, and its result type (ignoring boxes) is a Damas-Milner type
(∀a.a → a ), and hence no annotation is required forg.

Since the Annotation Guideline does not require the programmer
to think about boxes at all, why does our specification use boxes?
Because the Annotation Guideline is conservative: it guarantees to
make the program typeable, but it adds more annotations than are
necessary. For example:

f’ :: forall a. [a] -> [forall b. b -> b]
g’ = f’ ids

Notice that the rich result type[forall b. b -> b] is non-boxy,
and hence no annotation is required forg’. In general, even if
the type of alet-bound expression is rich, if that type does not
result from impredicative instantiation (which is the common case),
then no annotations are required. Boxes precisely specify what
“that type does not result from impredicative instantiation” means.
Nevertheless, a box-free specification is an attractive alternative
design, as we discuss in Section 6.3.

Types σ ::= ∀a.ρ
ρ ::= τ | σ → σ
τ ::= a | τ → τ

Boxy Types σ′ ::= ∀a.ρ′

ρ′ ::= τ ′ | σ′ → σ′

τ ′ ::= a | σ | τ ′ → τ ′

Environments Γ ::= Γ, (x :σ) | ·

Figure 1: Syntax

2.3 Limitations of FPH

Although theFPH system, as we have described it so far, is ex-
pressive, it is also somewhat conservative. It requires annotations
in a few instances, even when there is only one type that can be
assigned to alet-binding, as the following example demonstrates.

f :: forall a. a -> [a] -> [a]
ids :: [forall a. a -> a]

h1 = f (\x -> x) ids -- Not typeable
h2 = f (\x -> x) ids :: [forall a. a->a] -- OK

Heref is a function that accepts an element and a list and returns a
list (for example,f could becons). Definitionh1 is not typeable in
FPH. We can attempt to instantiatef with ∀a.a → a , but then
the right hand side ofh1 has type[∀a.a → a ], and that type
cannot enter the environment. The problem can of course be fixed
by adding a type annotation, ash2 shows.

You may think that it is silly to require a type annotation inh2; after
all, h1 manifestly has only one possible type! But suppose thatf
had type∀ab.a → b → [a], which is a more general Damas-
Milner type than the type above. With this type forf, our example
h1 now hastwo incomparable types, namely[∀a.a → a] as
before, and∀a.[a → a]. Without any annotations we presumably
have to choose the same type as the Damas-Milner type system
would; and that might make occurrences ofh1 ill typed. In short,
making the type off more general (in the Damas-Milner sense) has
caused definitions in the scope ofh1 to become ill-typed! This is
bad; and that is the reason that we rejecth1, requiring an annotation
as inh2.

Requiring an annotation onh2may seem an annoyance to program-
mers, but it is this conservativity ofFPH that results in a simple and
declarative high-level specification.FPH allowslet-bound defini-
tions to enter environments with many different types, as is the case
in the Damas-Milner type system.

3. Declarative specification of the type system

We now turn our attention to a systematic treatment ofFPH, begin-
ning with the basic syntax of types and environments in Figure 1.
Types are divided into box-free typesσ-, ρ-, andτ -types, and boxy
typesσ′, ρ′, andτ ′ types. Polymorphic types,σ andσ′, may con-
tain quantifiers at top-level, whereasρ andρ′ types contain only
nested quantifiers. The important difference between box-free and
boxy types occurs at the monotype level. Following previous work
by Rémy et al. (Garrigue and Ŕemy 1999; Le Botlan and Ŕemy
2003),τ ′ may include boxes containing (box-free) polytypes. As
we discussed in Section 2.1, these boxes represent the places where
“guessed instantiations” take place. Note that we do not include
syntax for type constructors other than→, as their treatment is very
similar to the treatment of→. The syntax of type environments,Γ,



directly expressesIdea 3 in Section 2.1 by allowing only box-free
typesσ.

3.1 Typing rules

The declarative (i.e. not syntax-directed) specification ofFPH is
given in Figure 2. As usual, the judgement formΓ ⊢ e : σ′ assigns
the typeσ′ to the expressione in typing environmentΓ. A non-
syntactic invariant of the typing relation is that, in the judgement
Γ ⊢ e : ∀a.ρ′, no box may intervene between a variable quantified
insideρ′ and the occurrences of that variable. Thus, for example,ρ′

cannot be of form(∀b. b ) → Int, because the quantified variable
b appears inside a box. The top-level quantified variables may,
however, appear inside boxes.

The rules in Figure 2 are modest (albeit carefully-chosen) variants
of the conventional Damas-Milner rules. Indeed ruleVAR is pre-
cisely as usual, simply returning the type of a variable from the
environment.

Rule APP infers a function typeσ′
1 → σ′

2 for e1, infers a typeσ′
3

for the argumente2, and checks that the argument type matches the
domain of the function typemodulo boxy structure, implementing
Idea 2 of Section 2.1. This compatibility check is performed by
stripping the boxes fromσ′

1 andσ′
3, then comparing for equality.

The notation⌊σ′⌋ denotes the non-boxy type obtained by discard-
ing the boxes inσ′:

Definition 3.1 (Stripping) We define the strip function⌊·⌋ on boxy
types as follows:

⌊a⌋ = a
⌊σ ⌋ = σ
⌊σ′

1 → σ′
2⌋ = ⌊σ′

1⌋ → ⌊σ′
2⌋

⌊∀a.ρ′⌋ = ∀ab.ρ where⌊ρ′⌋ = ∀b.ρ

Stripping is also used in ruleANN, which handles expressions with
explicit programmer-supplied type annotations. It infers a boxy
type for the expression and checks that, modulo its boxy structure,
it is equal to the type required by the annotationσ. In effect, this
rule converts the boxy typeσ′

1 that was inferred for the expression
to a box-free typeσ. If the annotated term is the right-hand side of
a let bindingx = e::σ, this box-free typeσ can now enter the
environment as the type ofx (whereasσ′ could not, byIdea 3).

Rule ABS infers types forλ-abstractions. It first extends the envi-
ronment with amonomorphic, box-freetyping x : τ , and infers a
ρ-type for the body of the function. Notice that we insist (syntac-
tically) that the result typeρ both (a) has no top-level quantifiers,
and (b) is box-free. We exclude top-level quantifiers (a) because we
wish to attribute the same types as Damas-Milner for programs that
are typeable by Damas-Milner, that is, we avoid “eager generaliza-
tion” (Peyton Jones et al. 2007). Choice (b), that aλ-abstraction
must return a box-free type, may require more programmer anno-
tations, but turns out to permit a much simpler type inference algo-
rithm. We return to this issue in Section 6.3.

RuleABS is the main reason that the type system of Figure 2 cannot
type all of System F, even with the addition of type annotations:
ABS allows only abstractions of typeτ → ρ, whereas System F
hasλ-abstractions of typeσ1 → σ2. Rule ABS is however just
enough to demonstrate our approach to impredicative instantiation
(the contribution of this paper), while previous work (Peyton Jones
et al. 2007) has shown how to address this limitation. It is easy to
combine the two, as we show in Section 3.4.

Following Idea 3 of Section 2.1, ruleLET first infers abox-free
type σ for the right-hand side expressionu, and then checks the
body pushing the binderx with typeσ in the environment.

Generalization (GEN) takes the conventional form, wherea#Γ
means thata is disjoint from the free type variables ofΓ. In this
rule, note that the generalized variablesa may appear inside boxes
in ρ′, so that we might, for example, inferΓ ⊢ e : ∀a. a → a.

Instantiation (INST) is conventional, but it followsIdea 1by allow-
ing us to instantiate with aboxymonotypeτ ′. However, we need
to be a little careful with substitution inINST: sinceρ′ may con-
taina inside boxes, a naive substitution might leave us with nested
boxes, which are syntactically ill-formed. Hence, we define a form
of substitution that preserves the boxy structure of its argument.

Definition 3.2 (Monomorphic substitutions) We use letterϕ for
monomorphic substitutions, that is, ϕ denotes finite maps of the
form [a 7→ τ ′]. We letftv(ϕ) be the set of the free variables in the
range and domain ofϕ. We define the operation of applyingϕ to a
typeσ′ as follows:

ϕ(a) = τ ′ where[a 7→ τ ′] ∈ ϕ

ϕ(σ ) = ⌊ϕ(σ)⌋
ϕ(σ′

1 → σ′
2) = ϕ(σ′

1) → ϕ(σ′
2)

ϕ(∀a.ρ′) = ∀a.ϕ(ρ′) wherea#ftv(ϕ)

We write[a 7→ τ ′]σ′ for the application of the[a 7→ τ ′] to σ′.

3.2 The subsumption rule

The final rule,SUBS, is tricky but important. Consider below:

Example 3.1 (Boxy instantiation)

head :: forall a. [a] -> a
h = head ids 3

Temporarily ignoring ruleSUBS in Figure 2,head ids can get
type ∀a.a → a , and only that type. Hence, the application
(head ids) 3 cannot be typed. This situation would be rather
unfortunate as one would, in general, have to use type annotations
to extract polymorphic expressions out of polymorphic data struc-
tures. For example, programmers would have to write:

h = (head ids :: forall b. b -> b) 3

This situation would also imply that some expressions which con-
sist only of applications of closed terms, and are typeable in System
F, could not be typed inFPH.

Rule SUBS addresses these limitations. RuleSUBS modifies the
types of expression in two ways with the relation¹⊑, which is the
composition of two relations,¹, and⊑. The relation¹, calledboxy
instantiation, simply instantiates a polymorphic type within a box.
The relation⊑, calledprotected unboxing, removes boxes around
monomorphic types and pushes boxes congruently down the struc-
ture of types. The most important rules of this relation areTBOX
and REFL. The first simply removes a box around a monomor-
phic type, while the second ensures reflexivity. If aρ′ type con-
tains only boxes with monomorphic information, then these boxes
can be completely dropped along the⊑ relation to yield a box-free
type. Finally, nothece that the addition of arbitrary constructors is a
straightforward adaptation of the rules for function types.

BecauseSUBS uses¹⊑ instead of merely⊑, h in Example 3.1 is
typeable. When we infer a type forhead ids, we may have the
following derivation:

Γ ⊢ head ids : ∀a.a → a

∀a.a → a ¹ a → a ⊑ a → a
SUBS

Γ ⊢ head ids : a → a
GEN

Γ ⊢ head ids : ∀a.a → a



Γ ⊢ e : σ′

(x :σ) ∈ Γ
VAR

Γ ⊢ x : σ

Γ ⊢ e1 : σ′
1 → σ′

2 Γ ⊢ e2 : σ′
3 ⌊σ′

3⌋ = ⌊σ′
1⌋

APP
Γ ⊢ e1 e2 : σ′

2

Γ, (x :τ) ⊢ e : ρ
ABS

Γ ⊢ λx.e : τ → ρ

Γ ⊢ u : σ Γ, (x :σ) ⊢ e : ρ′

LET
Γ ⊢ let x = u in e : ρ′

Γ ⊢ e : ∀a.ρ′

INST
Γ ⊢ e : [a 7→ τ ′]ρ′

Γ ⊢ e : ρ′ a#Γ
GEN

Γ ⊢ e : ∀a.ρ′

Γ ⊢ e : σ′
1 ⌊σ′

1⌋ = σ
ANN

Γ ⊢ (e::σ) : σ

Γ ⊢ e : ρ′1 ρ′1 ¹⊑ ρ′2
SUBS

Γ ⊢ e : ρ′2

Figure 2: TheFPH system

σ′
1
⊑ σ′

2

TBOX
τ ⊑ τ

REFL
σ′ ⊑ σ′

σ′
1 ⊑ σ′′

1 σ′
2 ⊑ σ′′

2

CONG
σ′
1 → σ′

2 ⊑ σ′′
1 → σ′′

2

ρ′ ⊑ ρ′′

a unboxed inρ′, ρ′′
POLY

∀a.ρ′ ⊑ ∀a.ρ′′

σ1 ⊑ σ′
1

σ2 ⊑ σ′
2 CONBOX

σ1 → σ2 ⊑ σ′
1 → σ′

2

σ′
1
¹ σ′

2

BI
∀a.ρ ¹ [a 7→ σ]ρ

BR
σ′ ¹ σ′

Figure 3: Protected unboxing and boxy instantiation relation

Therefore, no annotation is required onh. Incidentally, because the
⊑ relation can remove boxes around monomorphic types, it also
follows that the definition

f = head ids

is typeable. More generally, we have the following lemma.

Lemma 3.2 If Γ ⊢ e : ∀a.τ thenΓ ⊢ e : ∀a.τ .

Proof: by ruleBI we can instantiate∀a.τ with (monomorphic)
fresha, use ruleTBOX to strip boxes, and finally use ruleGEN.

3.3 Properties

The FPH system is type safe with respect to the semantics of
System F. The following lemma is an easy induction after observing
that wheneverσ′

1 ¹⊑ σ′
2, it is the case that⊢

F

⌊σ′
1⌋ ≤ ⌊σ′

2⌋, where
⊢
F

is the System Ftype instance relation. The relation⊢
F

specifies
typeability of an expression of one type with another type through
a series of instantiations and generalizations, and is given by the
rule below:

b#ftv(∀a.ρ)
FSUBS

⊢
F

∀a.ρ ≤ ∀b.[a 7→ σ]ρ

Lemma 3.3 If Γ ⊢ e : σ′ thenΓ ⊢
F

e♭ : ⌊σ′⌋, wheree♭ simply
removes the type annotations frome, and⊢

F

is the typing relation
of implicitly typed System F.

Moreover,FPH is an extension of the Damas-Milner type system.
The idea of the following lemma is that instantiation toτ ′ types
always subsumes instantiation toτ types.

Lemma 3.4 (Extension of Damas-Milner)Assume thatΓ only
contains Damas-Milner types ande is annotation-free. Then
Γ ⊢

DM

e : σ implies thatΓ ⊢ e : σ.

We conjecture that the converse direction is also true, that is, unan-
notated programs in contexts that use only Damas-Milner types are
typeable in Damas-Milner if they are typeable inFPH, but we leave
this result as future work.

3.4 Higher rank types and System F

As we remarked in the discussion of ruleABS in Section 3.1, the
system described so far deliberately does not supportλ-abstractions
with higher-rank types, and hence cannot yet express all of System
F. For example:

Example 3.5
f :: forall a. a -> [a] -> Int
foo :: [Int -> forall b.b->b]

bog = f (\x y ->y) foo

Here,foo requires theλ-abstraction\x y -> y to be typed with
typeInt → ∀b.b → b, but no such type can be inferred for the
λ-abstraction, as it is not of the formτ → ρ. We may resolve this
issue by adding a new syntactic form, the annotatedλ-abstraction,
thus(λx.e : : : σ1 → σ2). This construct provides an annotation
for both argument (σ1, instead of a monotypeτ ) and result (σ2

instead ofρ). Its typing rule is simple:

Γ, (x :σ1) ⊢ e : σ′
2 ⌊σ′

2⌋ = σ2

ABS-ANN
Γ ⊢ (λx.e : : : σ1 → σ2) : σ1 → σ2

With this extra construct we can translate any implicitly-typed Sys-
tem F term into a well-typed term inFPH, using the translation
of Figure 4. This type-directed translation of implicitly typed Sys-
tem F is specified as a judgementΓ ⊢

F

eF : σ Ã e wheree is
a term that type checks in our language. Notice that the translation
requires annotationsonlyonλ-abstractions that involve rich types3.

A subtle point is that the translation may generateopentype anno-
tations. For example, consider the implicitly typed System F term
below:

⊢ λx.e : ∀a.(∀b.b → a) → a

Translating this term using Figure 4 gives

⊢ (λx.e : : : (∀b.b → a) → a)

Note that the type annotation mentionsa which is nowhere bound.
Although we have not emphasized this point,FPH already accom-
modates such annotations.

3 Of course, it would be fine to annotateeveryλ-abstraction, but the trans-
lation we give generates smaller terms.



Γ ⊢
F

eF : σ Ã e

(x :σ) ∈ Γ
VAR

Γ ⊢
F

x : σ Ã x

Γ ⊢
F

e1 : σ1 → σ2 Ã e3 Γ ⊢
F

e2 : σ1 Ã e4
APP

Γ ⊢
F

e1 e2 : σ2 Ã e3 e4

Γ ⊢
F

e : ∀a.ρ Ã e1
INST

Γ ⊢
F

e : [a 7→ σ]ρ Ã e1

Γ ⊢
F

e : ρ Ã e1 a#Γ
GEN

Γ ⊢
F

e : ∀a.ρ Ã e1

Γ, (x :τ1) ⊢
F

e : τ2 Ã e1
ABS0

Γ ⊢
F

λx.e : τ1 → τ2 Ã λx.e1

Γ, (x :σ1) ⊢
F

e : σ2 Ã e1
ABS1

Γ ⊢
F

λx.e : σ1 → σ2 Ã (λx.e1 : : : σ1 → σ2)

Figure 4: Type-directed translation of System F

The following theorem captures the essence of the type-directed
translation.

Theorem 3.6 If Γ ⊢
F

e : σ Ã e1 thenΓ ⊢ e1 : σ′ for someσ′

such that⌊σ′⌋ = σ.

In practice, however, we do not recommend adding annotatedλ-
abstractions as a clunky new syntactic construct. Instead, with a
bidirectional typing system we can get the same benefits (and more
besides) from ordinary type annotationse::σ, as we sketch in
Section 6.1.

3.5 Predictability and robustness

A key feature ofFPH is that it is simple for the programmer
to figure out when a type annotation is required. We gave some
intuitions in Section 2, but now we are in a position to give some
specific results. The translation of System F toFPH of Section 3.4
shows that one needs only annotatelet-bindings orλ-abstractions
that must be typed with rich types. This is a result of combining
Theorem 3.6 and Lemma 3.2.

For example, every applicative expression—one consisting only of
variables, constants, and applications—that is typeable in System
F is typeable inFPH without annotations. We began this paper
with exactly such an example, involvingrunST, and it would work
equally well if we had used reverse application instead of$.

Theorem 3.7 If e is an applicative expression andΓ ⊢
F

e : σ, then
Γ ⊢ e : σ′ for someσ′ with ⌊σ′⌋ = σ.

It is easy to see this result by inspecting the rules of Figure 2.
Functions may be instantiated with an arbitrary boxy type, but rule
APP ignores the boxes.

Additionally, alet-binding can always be inlined at its occurrence
sites. More precisely ifΓ ⊢ let x = u in e : σ′, then
Γ ⊢ [x 7→ u]e : σ′. This follows from the following lemma:

Lemma 3.8 If Γ ⊢ u : σ andΓ, (x :σ) ⊢ e : σ′ thenΓ ⊢ [x 7→
u]e : σ′.

The converse direction cannot be true in general (although it is
true for ML andMLF) because of the limited expressive power of
System F types, as we discussed briefly in Section 2. Letσ1 =
(∀b.b → b) → (∀b.b → b), σ2 = ∀b.(b → b) → b → b,
f1 : σ1 → Int, andf2 : σ2 → Int. One can imagine a program of
the form:

. . . (f1 (choose id)) . . . (f2 (choose id)) . . .

which may be typeable, but it cannot be the case that:let x =
choose id in . . . (f1 x ) . . . (f2 x ) . . . is typeable, asx can be

bound with only one of the two incomparable types (in fact only
with ∀b.(b → b) → b → b).

However, notice that if an expression is typed with a box-free type
at each of its occurrences in a context, it may belet-bound out of
the context. For example, sinceλ-abstractions are typed with box-
free types, ifC[λx.e] is typeable, whereC is a multi-hole context,
then it is always the case thatlet f = (λx.e) in C[f ] is typeable.

4. Syntax-directed specification

We now show howFPH may be implemented. The first step in
establishing an algorithmic implementation is to specify a syntax-
directed version of the type system, with the judgementΓ ⊢

sd

e :
ρ′, where uses of the non-syntax-directed rules (SUBS, INST, and
GEN) have been pushed to appropriate nodes inside the syntax-tree.
Subsequently we may proceed with a low-level implementation of
the syntax-directed system (Section 5). Our syntax-directed presen-
tation appears in Figure 5.

Rule SDVAR instantiates the type of a variable bound in the envi-
ronment, using the auxiliary judgement,⊢

inst

σ′ ≤ ρ′. The latter
instantiates the top-level quantifiers ofσ′ to yield aρ′ type. How-
ever, we instantiate with boxes instead ofτ ′ types, which is closer
to the actual algorithm as boxes correspond to fresh “unification”
variables.

RuleSDAPPdeals with applications. It infers a typeρ′ for the func-
tion, and uses¹ (Figure 3) and⊑→ (a subset of⊑) to expose an
arrow constructor. The latter step is calledarrow unification. Then
SDAPP infers aρ′

3 type for the argument of the application, gen-
eralizes over free variables that do not appear in the environment
and checks that the result is more polymorphic (along the System
F type instance) than the required type. FinallySDAPP instantiates
the return type.

Rule SDABS uses aτ type for the argument of theλ-abstraction,
and then forces the returned typeρ′ for the body to be unboxed to
a ρ-type usingρ′ ¹⊑ ρ. Finally, we consider all the free variables
of the abstraction type that do not appear in the environment, and
substitute them with arbitrary boxes. The returned type for theλ-
abstraction is[a 7→ σ ](τ → ρ).

This last step, of generalization and instantiation, is perhaps puz-
zling. After all rule ABS (in the declarative specification of Fig-
ure 2) seems to only forceλ-abstractions to have box-free types.
Here is an example to show why it is needed:

Example 4.1 (Impredicative instantiations inλ-abstractions)
The following derivation holds:Γ ⊢ (λx.x ) ids : [∀a.a → a] .



Γ ⊢
sd

e : ρ′

(x :σ) ∈ Γ ⊢
inst

σ ≤ ρ′
SDVAR

Γ ⊢
sd

x : ρ′

Γ ⊢
sd

e1 : ρ′ ρ′(¹⊑→)σ′
1
→ σ′

2

Γ ⊢
sd

e2 : ρ′
3

a = ftv(ρ′
3
) − ftv(Γ)

⊢
F
⌊∀a.ρ′

3
⌋ ≤ ⌊σ′

1
⌋ ⊢

inst
σ′
2
≤ ρ′

2 SDAPP
Γ ⊢

sd
e1 e2 : ρ′2

Γ, (x :τ) ⊢
sd

e : ρ′

ρ′(¹⊑)ρ a = ftv(τ → ρ) − ftv(Γ)
SDABS

Γ ⊢
sd

λx.e : [a 7→ σ ](τ → ρ)

Γ ⊢
sd

u : ρ′ ρ′(¹⊑)ρ

a = ftv(ρ) − ftv(Γ) Γ, (x :∀a.ρ) ⊢
sd

e : ρ′
1 SDLET

Γ ⊢
sd

let x = u in e : ρ′1

Γ ⊢
sd

e : ρ′
1

a = ftv(ρ′
1
) − ftv(Γ)

⊢
F
⌊∀a.ρ′

1
⌋ ≤ σ ⊢

inst
σ ≤ ρ′

SDANN
Γ ⊢

sd
(e::σ) : ρ′

⊢
inst

σ′ ≤ ρ′

SDINST
⊢
inst

∀a.ρ′ ≤ [a 7→ σ ]ρ′

σ′ ⊑→ σ′
1
→ σ′

2

BOXUF
σ1 → σ2 ⊑→ σ1 → σ2

NBOXUF
σ′ ⊑→ σ′

Figure 5: Syntax-directed Constrained Boxy Types system

To construct a derivation for Example 4.1 observe that we can
instantiateλx.x with a polymorphic argument type, as follows:

Γ, (x :a) ⊢ x : a
ABS

Γ ⊢ λx.x : a → a
GEN

Γ ⊢ λx.x : ∀a.a → a
INST

Γ ⊢ λx.x : [∀a.a → a] → [∀a.a → a]

The use ofGEN andINST are essential to make the term applicable
to ids : [∀a.a → a]. The generalization and instantiation inSD-
ABS ensure thatGEN andINST are performed at eachλ-abstraction,
much asSDLET ensures thatGEN is performed at eachlet-binding.

Rule SDLET is straightforward; after inferring a type foru which
may contain boxes, we check that the boxes can be removed by¹⊑
to get aρ-type, which can subsequently be generalized and pushed
in the environment.

Finally, ruleSDANN infers a typeρ′
1 for the expressione, general-

izes over its free variables not in the environment, and checks that
this type is more polymorphic than the annotations. As the final
step, the annotation type is instantiated.

We can now establish the soundness of the syntax-directed system
with respect to the declarative one.

Theorem 4.2 (Soundness of⊢
sd

) If Γ ⊢
sd

e : ρ′ thenΓ ⊢ e : ρ′.

The proof is a straightforward induction over the derivation tree.
The most interesting case is application which makes use of an
auxiliary Lemma 4.3, given next, together with the fact that⊑→

is a subset of⊑.

Lemma 4.3 If Γ ⊢ e : σ′
1 and⊢

F

⌊σ′
1⌋ ≤ ⌊σ′

2⌋ thenΓ ⊢ e : σ′
3

such that⌊σ′
3⌋ = ⌊σ′

2⌋.

Conversely, the syntax-directed system is complete with respect to
the declarative system, as the following theorem shows.

Theorem 4.4 (Completeness of⊢
sd

) If Γ ⊢ e : ρ′ thenΓ ⊢
sd

e :
ρ′
0 such thatρ′

0 ¹⊑ ρ′.

Proving this theorem is more difficult than soundness. We actually
have to generalize the statement of Theorem 4.4, using the predica-
tive restriction of the⊢

F

relation, given below:

b#ftv(∀a.ρ)
SHSUBS

⊢
DM

∀a.ρ ≤ ∀b.[a 7→ τ ]ρ

We write⊢
DM

Γ2 ≤ Γ1 if for every (x :σ1) ∈ Γ1, there exists aσ2

such that(x :σ2) ∈ Γ2, and⊢
DM

σ2 ≤ σ1. We can now state the
more general completeness statement.

Lemma 4.5 Assume thatΓ1 ⊢ e : ∀a.ρ′. Then, for allΓ2 with
⊢
DM

Γ2 ≤ Γ1 and for allσ there exists aρ′
0 such thatΓ2 ⊢

sd

e : ρ′
0

andρ′
0 ¹⊑ [a 7→ σ ]ρ′.

We also state one further corollary, which is a key ingredient to
showing the implementability of the syntax-directed system by a
low-level algorithm (to be described in Section 5).

Corollary 4.6 (Strengthening) If Γ1 ⊢
sd

e : ρ′
1 and⊢

DM

Γ2 ≤ Γ1

thenΓ2 ⊢
sd

e : ρ′
2 such thatρ′

2 ¹⊑ ρ′
1.

The proof is a combination of Theorem 4.2 and Lemma 4.5.

Corollary 4.6 means that if we change the types of expressions in
the environments to be the most general according to the predica-
tive ⊢

DM

, typeability is not affected. This property is important for
type inference completeness for the following reason: All types that
are pushed in the environment are box-free and hence can only dif-
fer from each other according to the⊢

DM

relation—their polymor-
phic parts are determined by annotations. In fact the algorithm will
choose the most general of them according to⊢

DM

. Therefore, if
an expression is typeable in the declarative type system with bind-
ings in the environments thatdo not have their most general types,
the above corollary shows that the expression will also be typeable
if these bindings are assigned their most general types, that is, the
types that the algorithm infers for them.

5. Algorithmic implementation

The syntax-directed specification of Figure 5 can be implemented
by a low-level constraint-based algorithm, which resembles the
algorithm ofMLF. A proof-of-concept implementation, as well as
the description of the algorithm invariants and properties can be
found at

www.cis.upenn.edu/~dimitriv/fph/



Like Hindley-Damas-Milner type inference (Damas and Milner
1982; Milner 1978), our algorithm creates freshunification vari-
ables to instantiate polymorphic types, and to use as the argu-
ment types of abstractions. In Hindley-Damas-Milner type infer-
ence these variables are unified with other types. Hence, a Hindley-
Damas-Milner type inference engine maintains a set ofequality
constraintsthat map each unification variable to some type, up-
dating the constraints as type inference proceeds.

Our algorithm uses a similar structure to Hindley-Damas-Milner
type inference, but maintains both equality andinstance constraints
during type inference, so we use the termconstrained variablein-
stead of unification variable. A constrained variable in the algo-
rithm corresponds to a box in the high-level specification. To dis-
tinguish between constrained variables and (rigid) quantified vari-
ables, we use greek lettersα, β, for the former. Therefore, the al-
gorithm manipulates types with the following syntax:

τ⋆ ::= a | τ⋆ → τ⋆ | α
ρ⋆ ::= τ∗ | σ⋆ → σ⋆

σ⋆ ::= ∀a.ρ⋆

The need for instance constraints can be motivated by the typing of
choose ids from the introduction. First, sincechoose has type
∀a.a → a → a, we may instantiate the quantified variablea
with a fresh constrained variableα. However, when we meet the
argumentid, it becomes unclear whetherα should be equal toβ →
β (that would arise from instantiating the type ofid), or∀b.b → b
(if we do not instantiateid). In the high-level specification we
can clairvoyantly make a (potentially boxed) choice that suits us.
The algorithm does not have the luxury of clairvoyance, so rather
than making a choice, it must instead simply record aninstance
constraint. In this case, the instance constraint specifies thatα can
be any System F instanceof ∀b.b → b. To express this, at first
approximation, we need constraints of the formα ≥ σ⋆.

However, we need to go slightly beyond this constraint form. Con-
sider the programf (choose id) wheref has type∀c.c → c.
After we instantiate the quantified variablec with a fresh variable
γ, we must constrainγ by the type ofchoose id, thus

γ ≥ (principal type ofchoose id)

But, the principal type ofchoose id must be a type that is quanti-
fied andconstrained at the same time:[α ≥ ∀b.b → b]⇒α → α.
Following MLF (Le Botlan and Ŕemy 2003), thisschemecaptures
thesetof all types forchoose id, such as∀d.(d → d) → (d →
d) or (∀b.b → b) → (∀b.b → b). We hence extend the bounds
of constrained variables to includeγ ≥ ς, whereς is a scheme.4

Schemes ς ::= [c1, . . . , cn ]⇒ρ⋆

Constraints c ::= α = σ⋆ | α ≥ ς | α ⊥
Constraint sets C ,D ,E ::= {c1, . . . , cn} (n ≥ 0)

The constraintα ⊥ means thatα is unconstrained. Ordinary Sys-
tem F types can be viewed as schemes whose quantified variables
are unconstrained, and hence the type∀b.b → b can be written as
[β ⊥]⇒β → β. The meaning of the constraintγ ≥ ς is thatγ be-
longs in theset of System F types thatς represents, which we write
[[ς]]. For example, ifς = [α ≥ ([β ⊥]⇒β → β)]⇒(α → α), then
we have:

(∀b.b → b) → (∀b.b → b) ∈ [[ς]]
∀c.(c → c) → c → c ∈ [[ς]]

∀c.([c] → [c]) → [c] → [c] ∈ [[ς]]

4 The actual form of constraints is slightly more complicated because we
have to ensure that variables entering the environment are never equated
to types with quantifiers, but we do not present it here for brevity of the
exposition.

5.1 Inference implementation

The functioninfer implements our type inference algorithm, fol-
lowing the syntax-directed presentation of Figure 5. This function
has the following signature

infer : Constraint ∗ Env ∗ Term → Constraint ∗ Type

accepting a constraintC1, an environmentΓ, and a terme. A
call to infer(C1, Γ, e) either fails withfail or returns an updated
constraintC2 and a typeρ⋆. The most interesting case, which
demonstrates the power of schemes, is in the implementation of
applications:

infer(C , Γ, e1 e2) = E1, ρ⋆
1

= infer(C , Γ, e1) (1)
E2, σ⋆

1
→ σ⋆

2
= instFun(E1, Γ, ρ⋆

1
) (2)

E3, ρ⋆
3

= infer(E2, Γ, e2) (3)
E4, ς3 = generalize(Γ,E3, ρ⋆

3
) (4)

E5 = subsCheck(E4, ς3, σ⋆
1
) (5)

inst(E5, σ⋆
2
) (6)

In a call toinfer(C , Γ, e1 e2) we peform the following steps:

(1) We first infer a typeρ⋆
1 for e1 and an updated constraintE1 by

calling infer(C , Γ, e1).
(2) However, typeρ⋆

1 may itself be a constrained type variable,
that is, it may correspond to a single box in the syntax-directed
specification. The functioninstFun(E1, Γ, ρ⋆

1) is the low-level
implementation of the relation¹⊑→.

(3) Subsequently, we infer a type and an updated constraint for the
argumente2 with E3, ρ

⋆
3 = infer(E2, Γ, e2).

(4) At this point we need to compare the function argument typeσ⋆
1

to the type that we have inferred for the argument. However, we
do not yet know the precise type of the argument and hence
we call generalize(Γ,E3, ρ

⋆
3) to get back a new constraint

E4 and a schemeς3. The schemeς3 expresses the set ofall
possible typesof the argumente2. The functiongeneralize is
an appropriate generalization of the ordinary generalization of
Hindley-Damas-Milner, adapted to our setting.

(5) Now that we have a schemeς3 expressing all possible types
of the argumente2 we must check that the required typeσ⋆

1

belongs in the set thatς3 expresses. This is achieved with the
call to subsCheck(E4, ς3, σ

⋆
1), which simply returns an up-

dated constraintE5 whenσ⋆
1 belongs in the set thatς3 denotes

under the constraintE5.
(6) Finally, typeσ2 may be equal to some type∀a.ρ⋆

2, which we
instantiate to[a 7→ α]ρ⋆

2 for freshα. This is achieved with the
call to inst(E5, σ

⋆
2), which implements the⊢

inst

judgement of
the syntax-directed presentation.

One may observe that in an applicatione1 e2, the argumente2 is
generalized. Actually, this step is not required in a bidirectional im-
plementation where the argumente2 can becheckedagainst the ex-
pected type thate1 requires. We return to this point in Section 6.1.

Notice, too, that schemes make a local appearance in inference:
generalize computes a scheme (4), whilesubsCheck consumes it
(5). So our algorithm usesMLF types (which is what our schemes
are) internally, but never exposes them to the programmer. Sec-
tion 7 gives some more details about the correspondence.

Another notable part of the functioninfer is related to forcing
monomorphism of the constrained variables oflet-bound expres-
sions, orλ-abstraction bodies. Intuitively, after inferring a type for
a let-bound expression we need to implement the instantiation
along¹⊑ to a box-free type. This requires that all flexible bounds
inside the type of thelet-bound expression be instantiated, and a
check is performed that all constrained variables of that type are
indeed mapped to monomorphic types. Then, generalization can
proceed just as in ordinary Hindley-Damas-Milner.



5.2 Properties of the algorithmic implementation

We have shown termination, soundness, and completeness of the al-
gorithmic implementation (Vytiniotis 2008). To state the soundness
and completeness properties we defineboxy substitution. Given a
substitutionθ from constrained variables to constrained-variable-
free types, we define the boxy substitution ofθ on σ⋆, denoted
with θ[σ⋆], that substitutes the range ofθ in a boxed and capture-
avoiding fashion insideσ⋆. For example, ifθ is the substitution
[α 7→ σ] thenθ[α → α] = σ → σ . We use boxy substitutions
to recover specification types from algorithmic types, provided that
all their constrained variables appear in the domains of the substi-
tutions. We writeθσ⋆ for the ordinary substitution ofθ onσ⋆.

We also must connect substitutions and constraints. A substitution
θ from constrained variables to System F types is said tosatisfya
constraintC whenever it respects the interpretation of schemes in
C . In particular if(α = σ⋆) ∈ C then it must be thatθα = θσ⋆

and whenever(α ≥ ς) ∈ C then it must be thatθα ∈ [[θς]].

With these two definitions, we may state soundness and complete-
ness, connecting the syntax-directed specification with the algorith-
mic implementation.

Proposition 5.1 (Inference soundness)If infer(∅, ·, e) = C , ρ⋆

then for allθ that satisfyC it is the case that· ⊢
sd

e : θ[ρ⋆].

Proposition 5.2 (Inference completeness)If · ⊢
sd

e : ρ′ then
infer(∅, ·, e) = C , ρ⋆ and there exists a substitutionθ that satisfies
C and such thatθ[ρ⋆] ¹⊑ ρ′.

Together Propositions 5.1 and 5.2 ensure the implementability of
the declarative specification of Figure 2. Notice that, although pro-
grams do not in general have principal types modulo boxes, a corol-
lary of soundness and completeness is that programs with box-free
types do have principal box-free types.

6. Discussion

We present in this section several extensions toFPH, and discuss
alternative designs. Vytiniotis (2008) presents more details and
some additional design choices.

6.1 Bidirectionality

Bidirectional propagation of type annotations may further reduce
the amount of required type annotations inFPH. It is relatively
straightforward to add bidirectional annotation propagation to the
specification ofFPH (see e.g. (Peyton Jones et al. 2007)). This
bidirectional annotation procedure can be implemented as a sep-
arate preprocessing pass, provided that we support open type an-
notations, and annotatedλ-abstractions. Alternatively, this proce-
dure can be implemented by weaving an inference judgement of
the formΓ ⊢

sd

e :⇑ ρ′ and a checking judgementΓ ⊢
sd

e :⇓ ρ′.
Necessarily, this bidirectional system is syntax-directed. A special-
top level judgementΓ ⊢

sd

⋆ e :⇓ σ′ checks an expressionagainst a
polymorphic typeas follows:

Γ ⊢
sd

e :⇓ ρ′ a#Γ
SKOL

Γ ⊢
sd

⋆ e :⇓ ∀a.ρ′

Γ ⊢
sd

e :⇑ ρ′ a#Γ

⊢
F

⌊∀a.ρ′⌋ ≤ σ
CBOX

Γ ⊢
sd

⋆ e :⇓ σ

Rule SKOL simply removes the top-level quantifiers and checks
the expression against the body of the type. RuleCBOX checks an

expression against a single box. In this case, we must infer a type
for the expression, as we cannot use its contents.

Annotations no longer reveal polymorphism locally, but rather
propagate the annotation down the term structure. The ruleANN-
INF below infers a type for an annotated expressione::σ by first
checkinge against the annotationσ:

Γ ⊢
sd

⋆ e :⇓ σ ⊢
inst

σ ≤ ρ
′

ANN-INF
Γ ⊢

sd

(e::σ) :⇑ ρ
′

The rule for inferring types forλ-abstractions is similar to rule
SDABS, but the rule forcheckingλ-abstractions allows us now to
check a function against a type of the formσ′

1 → σ′
2:

σ
′
1 ⊑ σ1 Γ, (x :σ1) ⊢

sd

⋆ e :⇓ σ
′
2

ABS-CHECK
Γ ⊢

sd

λx.e :⇓ σ
′
1 → σ

′
2

Notice thatσ′
1 must be made box-free before entering the environ-

ment, to preserve our invariant that environments are box-free.

With these additions, and assuming support for open type annota-
tions, we can type functions with more elaborate types than simply
τ → ρ types, as theFPH original system does. Recall, for instance,
Example 3.5 from Section 3.4.

f :: forall a. a -> [a] -> Int
foo :: [Int -> forall b.b->b]

bog = f (\x y ->y) foo

Thoughbog is untypeable (even in a bidirectional system), we can
recover it with the (ordinary) annotation:

bog = f (\x y -> y :: Int -> forall b. b -> b) foo

Special forms for annotatedλ-abstractions (Section 3.4) are not
necessary in a bidirectional system. Indeed our implementation is a
bidirectional version of our basic syntax-directed type system.

6.2 η-conversion and deep instance relations

The FPH system is not stable underη-expansions, contrary to
System F andMLF. In particular, iff :σ → Int in the environment,
it is not necessarily the case thatλx.f x is typeable, sincex can
only be assigned aτ -type.

Unsurprisingly, sinceFPH is based on System F, it is not stable
under η-reductions. If an expressionλx.e x makes a context
C[(λx.e x )] typeable, then it is not necessarily the case thatC[e]
is typeable. Consider the code below:

f :: Int -> forall a. a -> a
g :: forall a. a -> [a] -> a
lst :: [forall a. Int -> a -> a]

g1 = g (\x -> f x) lst -- OK
g2 = g f lst -- fail!

The application ing2 (untypeable in implicitly typed System F)
fails sincelst requires the instantiation ofg with type∀a.Int →
a → a, whereasf has typeInt → ∀a.a → a. TheFPH system,
which is based on System F, is not powerful enough to understand
that these two types are isomorphic.

Although such conversions are easier to support in predicative
variants of Mitchell’s Fη (Mitchell 1988) (e.g. (Peyton Jones et al.
2007)), the presence of impredicativity complicates our ability to
support them. In fact, no type inference system with impredicative
instantiations proposed to date preserves program typeability under



all η-conversions. We are currently seeking ways to extend our
instance relation to some “deep” version that treats quantifiers to
the right of arrows as if they were top-level, but combining that
with impredicative instantiations remains a subject of future work.

6.3 Alternative design choices

Our design choices are a compromise between simplicity and ex-
pressiveness. In this section, we briefly present two alternatives.

Typing abstractions with more expressive typesRecall thatλ-
abstractions are typed with box-free types only. This implies that
certain transformations, such asthunking, may break typeability.
For example, consider the following code:

f1 :: forall a. (a -> a) -> [a] -> Int
g1 = f (choose id) ids -- OK

f2 :: forall a b. (b -> a -> a) -> [a] -> Int
g2 = f (\ _ -> choose id) ids -- fails!

In the example, whileg1 type checks, thunking breaks typeability,
because the type∀a.a → a → ∀a.a → a cannot be unboxed.

An obvious alternative would be to allow arbitraryρ′ types as
results ofλ-abstractions, and lift our invariant that environments
are box-free to allowτ ′ types as the arguments of abstractions.
Though such a modification allows for even fewer type annotations
(the bodies of abstractions could use impredicative instantiations
and no annotations would be necessary), we are not aware of a
sound and complete algorithm that could implement it. Vytiniotis
(2008) gives a more detailed account of the complications.

A box-free specification A safe approximation of where type
annotations are necessary is atlet-bindings orλ-abstractions with
rich types. Perhaps surprisingly, taking this guideline one step
further, if wealwaysrequire annotations in bindings with rich types
then we no longer need boxes in the specificationat all! Consider
the type system of Figure 2 with the following modifications:

1. Drop all boxy structure from all typing rules, that is, replace all
ρ′, σ′, types withρ andσ types, and completely removeSUBS
and¹⊑. Instantiate with arbitraryσ types in ruleINST.

2. Replace ruleLET andABS with their corresponding versions for
Damas-Milner types:

Γ ⊢ u : ∀a.τ
Γ, (x :∀a.τ) ⊢ e : ρ LET

Γ ⊢ let x = u in e : ρ

Γ, (x :τ1) ⊢ e : τ2 ABS
Γ ⊢ λx.e : τ1 → τ2

3. Add provision for annotatedlet-bindings andλ-abstractions:

Γ ⊢ u : σ Γ, (x :σ) ⊢ e : ρ
LET-ANN

Γ ⊢ let x::σ = u in e : ρ

Γ, (x :σ1) ⊢ e : σ2

ABS-ANN
Γ ⊢ (λx.e : : : σ1 → σ2) : σ1 → σ2

The resulting type system enjoys sound and complete type infer-
ence, by using essentially the same algorithm as theFPH type sys-
tem. However, this variation is more demanding in type annotations
than the box-basedFPH. For instance, one must annotateevery
let-binding that uses rich types, even if its type did not involve
any impredicative instantiations. For example:

f :: Int -> (forall a. a -> a) -> (forall a. a -> a)
h = f 42 -- fails!

The binding forh has a rich type and hence must be annotated,
although no impredicative instantiation took place. Given the fact
that this simplification is more demanding in type annotations, we
believe that it is not really suitable for a real-world implementation.

7. Related work

There are several recent proposals for annotation-driven type in-
ference for first-class polymorphism, which differ in simplicity of
specification, implementation, placement of type annotations, and
expressiveness. We present an extensive comparison below and a
quick summary in Table 6.

MLF, RigidMLF, and HML TheMLF language of Le Botlan and
Rémy (Le Botlan and Ŕemy 2003; Le Botlan 2004) partly inspired
this work. The biggest difference between this language and other
approaches is that it extends System F types with constraints of
the form∀(Q)τ so as to recover principal types for all expressions.
Therefore,let-expansion preserves typeability inMLF, unlike sys-
tems that use only System F types. Because the type language is
more expressive,MLF requires strictly fewer annotations. InMLF,
annotations are necessary only when some variable isusedat two
or more polymorphic types—in contrast, in our language, variables
must be annotated when they aredefinedwith rich types. For ex-
ample, the following program

f = \x -> x ids

needs no annotation inMLF becausex is only used once.FPH
requires an annotation onx. Hence we are more restrictive.

A drawback ofMLF is the complexity of its specification: con-
strained types appear in the declarative type system and the instance
relation ofMLF must include them. TheFPH specification does not
need a constraint-based instance relation, but our low-level imple-
mentation is a variation of theMLF implementation. Because we
do not expose a constraint-based instance relation in the specifica-
tion, we can formalize our algorithm as directly manipulating sets
of System F types. In contrast,MLF internalizes the subset relation
between sets of System F types as a syntactic instance relation, and
formalizes type inference with respect to this somewhat complex
relation. Le Botlan and Ŕemy (2007) study the set-based interpre-
tation of MLF in a recent report, which inspired our set-theoretic
interpretation of schemes.

There are technical parallels betweenFPH andMLF. One of the
key ideas behindMLF is that all polymorphic instantiations are
“hidden” behind constrained type variables. Our type system uses
anonymous boxes for the same purpose. The anonymous boxes
of FPH correspond torigidly constrainedMLF variables. In fact,
the FPH type system can be described as a variation ofMLF

without flexible bounds (Vytiniotis 2008). Additionally, usages
of boxy instantiation¹ and protected unboxing⊑ in an FPH

typing derivation correspond to usages of theMLF equivalences
∀(α = σ).α ≡ σ and∀(α = τ).σ ≡ [α 7→ τ ]σ respectively in
anMLF derivation for the same program.

Finally, MLF is a source language and is translated to an explicitly
typed intermediate language, such as explicitly typed System F, us-
ing coercion terms (Leijen and Löh 2005). Coming up with a typed
intermediate language forMLF that is suitable for a compiler and
does not require term-level coercions is still a subject of research.
In contrast, becauseFPH is based on System F, elaboratingFPH
to System F is straightforward.

A variation ofMLF similar in expressive power toFPH is Leijen’s
Rigid MLF (Leijen 2007). LikeFPH, Rigid MLF does not include
constrained types. Instead, it resolves constraints by instantiating
flexible bounds atlet-nodes. However RigidMLF is specified us-
ing theMLF instance relation. Consequently, despite the fact that
types in the environment are System F types, to reason about ty-
peability one must reason using theMLF machinery. Additionally,
the rules of RigidMLF require that when instantiating the types of



Specification Implementation Placement of annotations / typeable programs
HMF Simple, “minimality” restrictions Simple Annotations may be needed onλ-abstractions with rich

types and on arguments that must be kept polymorphic
MLF Heavyweight, declarative Heavyweight Precise, annotations only required for usage of arguments

at two or more types
Boxy Types Complex, syntax-directed, dark cornersSimple No clear guidelines, not clear what fragment of System F

is typed without annotations
HML Constraint-based, declarative Heavyweight Precise, annotations on polymorphic function arguments
FPH Simple, declarative Heavyweight Precise, annotations onlet-bindings andλ-abstractions

with rich types, types all applicative System F terms and
more without annotations

Figure 6: Quick summary of most relevant related works

let-bound expressions, the type that is used in the typing deriva-
tion of thelet-bound expression is the most general. Requiring
programmers to think in terms of most generalMLF constraint-
based types may even be more complicated than requiring them to
reason withMLF constraints, as in the originalMLF proposal.

A promising MLF variation is Leijen’s HML system (Leijen
2008b). In particular HML retains flexible bounds and hence en-
joys principal types asMLF, but completely inlines rigid bounds.
In contrast toMLF, annotations must be placed onall function
arguments that are polymorphic (as inFPH), but it requires no an-
notations onlet-bound definitions (contrary toFPH). The HML
system still involves reasoning with constraints, but in the absence
of rigid bounds there is no need for the introduction of theMLF

abstraction relation—a significant simplification.

Boxy Types Boxy Types (Vytiniotis et al. 2006) is an earlier
proposal by the authors to address type inference for first-class
polymorphism. Like this paper, Boxy Types uses boxed System F
types to hide polymorphism. Because boxes provide an elegant way
to mark impredicativity, we have reused that syntax in this work.

However, boxes play a different role in our previous work. In Boxy
Types, boxes merely distinguish the parts of types that were in-
ferred from those that result from some type annotation, combin-
ing bidirectional annotation propagation with type inference. In a
Boxy Types judgement of the formΓ ⊢ e : ρ′, theρ′ type should
be viewed as input to the type-checker, which asks for the boxes of
ρ′ to get filled in. In this work, theρ′ type is an output, and boxes
simply mark where impredicative instantiations took place.

Boxy Types were implemented using a relatively simple algorithm
which modestly extends Hindley-Damas-Milner unification with
local annotation propagation. Because the algorithm does not ma-
nipulate instance constraints, it cannot delay instantiations. There-
fore, the type system must make local decisions. In particular, Boxy
Types often requires programs to unbox the contents of the boxes
too early. For type inference completeness, if information about
the contents of a box is not locally available, it must contain a
monomorphic type. As a result, the basic Boxy Types system re-
quires many type annotations. Ad-hoc heuristics, such asN -ary
applications, and elaborate type subsumption procedures, relieve
the annotation burden but further complicate the specification and
the predictability of the system.

Although some programs are typeable with Boxy Types and are not
typeable (without annotation) inFPH, and vice versa, we believe
that the simpler specification ofFPH is a dramatic improvement.

HMF Leijen’s HMF system (Leijen 2008a), which is a compan-
ion paper in this proceedings, is yet another interesting point in the

design space. TheHMF system enjoys a particularly simple infer-
ence algorithm (a variant of Algorithm W), and one that is certainly
simpler thanFPH. In exchange, the typing rules are somewhat un-
conventional in form, and it is somewhat harder to predict exactly
where a type annotation is required and where none is needed.

The key feature ofHMF is a clever application rule, where impred-
icative instantiations are determined by a local match procedure. In
the type system, this approach imposes certain “minimality” condi-
tions that require (i) that all types entering the environment are the
most general types that can be assigned to programs, and (ii) that
all allowed impredicative instantiations of functions are those that
“minimize” the polymorphism of the returned application.

The local match procedure means thatHMF takes eager decisions:
in general, polymorphic functions get instantiated by default, un-
less specified otherwise by the programmer. For example, the pro-
gramsingle id (wheresingle has type∀a.a → [a]) cannot be
typed with type[∀a.a → a]. The top-level quantifiers ofid are
instantiated too early, before the local match procedure. Because
FPH delays instantiations using constraints, we may type this ex-
pression with[∀a.a → a ] (but we would still need an annotation
to let-bind it). In HMF one may annotate the functionsingle, or
specify with arigid type annotationthat the type ofid must not
be instantiated:(single (id :: forall a. a -> a)).5 Note
that HMF annotations are different than the annotations found,
for instance, in Haskell—e.g.(id :: forall a. a -> a) 42
is rejected.

Leijen observes that local match procedures are, in general, not
robust to program transformations. If only a local match were
to be used, the application(cons id) ids would not typeable,
while (revcons ids) id would be (whererevcons has type
∀a.[a] → a → [a]). Hence, these problems are circumvented
in HMF by using anN -ary application typing rule that uses type
information fromall argumentsin an application.

In general, annotations are needed inHMF on λ-abstractions with
rich types and on arguments that must be kept polymorphic. For
example, iff : ∀a.a → . . . andarg : ∀b.τ , an annotation will
be needed,f (arg::∀b.τ), to instantiatea with ∀b.τ . However
in some cases, annotation propagation andN -ary applications may
make such annotations redundant.

BecauseHMF requires most general types in derivations, there
are programs typeable inHMF but not in FPH. For example,
let g = append ids in ... requires an annotation inFPH,
whereas it seamlessly typechecks inHMF. On the other hand,
flexible instantiation allowsFPH to type examples such as

5 A final possibility would be for the annotation∀a.a → a to have been
somehowpropagatedto id.



f :: forall a. [a] -> [a] -> a
g = f (single id) ids

whereHMF (even with annotation propagation) fails. Overall, we
believe that the placement of required annotations inFPH is some-
what easier to describe than inHMF. But on the other hand,HMF

posseses a significantly simpler implementation and metatheory.

Other works For completeness, we outline some more distantly
connected works. Full type reconstruction for (implicitly typed)
System F is undecidable (Wells 1999). Kfoury and Wells stratify
System F types by rank (polymorhism on the left of function types),
and show undecidability of type reconstruction for System F with
types of rank-3 or higher. On the other hand, the rank-2 fragment
of System F is decidable (Kfoury and Wells 1994).

Pfenning (1988) shows that evenpartial type inferencefor the
n-th order polymorphicλ-calculus, where type abstractions and
the positions of type applications are known but not the types of
function arguments, is equivalent ton-th order unification, which
is undecidable. Recent work (Le Botlan and Rémy 2007) shows
that one only needs polymorphic function argument annotations
(and not type abstractions and type applications) to embed all of
System F. On the other hand, there are certain merits in Pfenning’s
proposal: (i) the type inference algorithm seamlessly extends to Fω,
(ii) higher-order unification terminates in the common case, and
(iii) annotating type abstractions may be well-suited for languages
with effects. On the other hand, Pfenning’s original implementation
effectively treatslet-bound definitions as inlined in the body of the
definition, which threatens modularity of type inference.

A different line of work explores type inference for predica-
tive higher-rank polymorphism (Odersky and Läufer 1996; Pey-
ton Jones et al. 2007; Rémy 2005). Odersky and Läufer made the
observation that once all polymorphic function arguments are an-
notated, type inference for predicative higer-rank polymorphism
becomes decidable, even in the presence oflet-bound expressions.
Peyton Joneset al. explore variations of the Odersky-Läufer type
system that support a bidirectional propagation of type annotations.
Finally Rémy proposed a clean separation of the bidirectional prop-
agation of type annotations, through a phase calledshape inference,
performed before type inference.

7.1 Future work and conclusions

We have presented a simple, expressive declarative specification for
type inference for impredicative polymorphism. We have imple-
mented the system in prototype form; next, we plan to retro-fit the
implementation to a full-scale compiler. We intend to address the
issue of precise and informative type error reporting, a non-trivial
problem as the algorithmic types are different from those of the
specification. We also plan to study the interaction with type class
constraints. Preliminary work by Leijen and Löh (2005) shows how
to combineMLF-style unification with qualified types, and we ex-
pect no significant difficulties to arise.
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