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Abstract
Implementors of compilers, program refactorers, theorem provers,
proof checkers, and other systems that manipulate syntax know that
dealing with name binding is difficult to do well. Operations such as
α-equivalence and capture-avoiding substitution seem simple, yet
subtle bugs often go undetected. Furthermore, their implementa-
tions are tedious, requiring “boilerplate” code that must be updated
whenever the object language definition changes.

Many researchers have therefore sought to specify binding syn-
tax declaratively, so that tools can correctly handle the details be-
hind the scenes. This idea has been the inspiration for many new
systems (such as Beluga, Delphin, FreshML, FreshOCaml, Cαml,
FreshLib, and Ott) but there is still room for improvement in ex-
pressivity, simplicity and convenience.

In this paper, we present a new domain-specific language, UN-
BOUND, for specifying binding structure. Our language is particu-
larly expressive—it supports multiple atom types, pattern binders,
type annotations, recursive binders, and nested binding (necessary
for telescopes, a feature found in dependently-typed languages).
However, our specification language is also simple, consisting of
just five basic combinators. We provide a formal semantics for this
language derived from a locally nameless representation and prove
that it satisfies a number of desirable properties.

We also present an implementation of our binding specification
language as a GHC Haskell library implementing an embedded do-
main specific language (EDSL). By using Haskell type constructors
to represent binding combinators, we implement the EDSL suc-
cinctly using datatype-generic programming. Our implementation
supports a number of features necessary for practical programming,
including flexibility in the treatment of user-defined types, best-
effort name preservation (for error messages), and integration with
Haskell’s monad transformer library.

Categories and Subject Descriptors D.2.3 [Coding Tools and
Techniques]; D.1.1 [Applicative (Functional) Programming]; E.1
[Data Structures]

General Terms Algorithms, Languages.

Keywords generic programming, Haskell, name binding, patterns
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1. Introduction
Name binding is one of the most annoying parts of language imple-
mentations. Although functional programming languages such as
Haskell and ML excel at the implementation of type checkers, com-
pilers, and interpreters, there is an impedance mismatch between
the free structure provided by algebraic datatypes and the syntax
identified up to α-equivalence that we actually want to model. Al-
though there are many techniques for implementing name binding,
they require subtle invariants that pervade the system. Implemen-
tation flaws cause bugs that are difficult to track down. Further-
more, the implementations themselves are tedious, requiring boiler-
plate that must be maintained as the implemented language evolves.
While such boilerplate is straightforward, it causes friction for de-
velopers who just want to get the job done.

And all this work is for something so “obvious” that it is often
elided from language definitions!

There has been much research towards solving this problem.
Recently introduced languages and tools provide primitive support
for variable-binding, based on first-order [6, 22, 30, 31] and higher-
order representations [18, 20]. These tools handle the details behind
the scenes, relieving programmers of the tedium and subtle bugs de-
scribed above. However, these tools must also satisfy the practical
needs of programmers, and here they fall short:

Expressiveness: These tools provide binding specification lan-
guages that specify what variables are bound where. As unary lex-
ical scoping (binding a single variable in a single location) is not
sufficient for many applications, many of these tools support a lan-
guage for patterns in binding specifications. Despite this flexibility,
it is still not enough—there are patterns that we would like to use
that cannot be defined by existing specification languages.

Availability: Programmers want to write code in their language,
and they want to do it directly. Tools that are wrappers for existing
languages are preferred to completely new systems, but such tools
still require update with each new version of the language. Libraries
are more stable and have the added benefit of simple distribution,
some degree of portability and familiar syntax.

Choice of implementations: These tools each provide only
one implementation for any given binding specification. How-
ever, name binding involves a number of different operations and
some implementations may favor one over the other. Programmers
should be able to swap out implementations (or write their own) if
they find one that works better with their application.

In this paper, we present a new domain-specific language, UN-
BOUND, for specifying binding structure that addresses these is-
sues. Concretely, our contributions are as follows:

• We describe a small, compositional set of abstract combinators
which form the entire basis for UNBOUND. This interface suc-
cinctly characterizes our specification language.

• We show, via examples (§ 2, § 3), that UNBOUND is nonethe-
less expressive. In particular, it supports multiple atom types,



pattern binders, type annotations, recursive binders, and nested
binders. The last are necessary to model telescopes and are not
supported by any existing specification language.

• We give a formal semantics for our specification language (§ 4)
based on a locally nameless representation and prove its cor-
rectness (§ 5). Our choice of representation leads to a simple
semantics and straightforward metatheory. Alternative mean-
ings are also possible; the simplicity of ours makes it a good
reference for more sophisticated implementations.

• We have implemented our framework as a Haskell library (§ 6),
using Haskell’s generic programming support to automatically
derive standard operations. Our library is available for down-
load from Hackage,1 along with extensive documentation and
examples. (Note GHC 7 is required.)

Although UNBOUND is designed for object language implemen-
tation, this specification language and semantics are also appropri-
ate for formal object language reasoning. That application is be-
yond the scope of this paper; we discuss the connections to mecha-
nized metatheory in § 8 and § 9.

2. The UNBOUND Specification Language
We begin with a simple UNBOUND specification.2 Functional pro-
grammers are accustomed to using algebraic datatypes to specify
the abstract syntax of a programming language. UNBOUND intro-
duces type combinators that encode binding structure into the alge-
braic datatype itself. For example, to represent the untyped lambda
calculus, we use the E datatype below:

type N = Name E
data E = Var N

| Lam (Bind N E)
| App E E

The abstract type Name (provided by UNBOUND) represents
variables, and is indexed by the type of values which can be substi-
tuted for them (here, E ). For convenience, we define N as a syn-
onym for Name E . Lambda abstractions are represented using the
type Bind N E , indicating a name paired with an expression in
which the name is bound. Application does not involve binding, so
it is simply a pair of E values as expected.

UNBOUND uses this datatype definition to derive standard oper-
ations for working with syntax, such as α-equivalence, free variable
calculation, and capture-avoiding substitution. For example, sup-
pose we want to implement parallel reduction for untyped lambda
calculus terms. This operation looks throughout a term for β- and
η-reductions, even under lambda abstractions, transforming it into
a simpler form. An implementation is shown in Figure 1. The sig-
natures for the UNBOUND-derived operations that this code relies
on are at the top of the figure. All of these functions are automati-
cally derived by UNBOUND.

The function red has three cases. (Note that the Fresh constraint
on m also implies a Monad constraint, enabling the use of do-
notation.) The Var case is trivial. The Lam case must handle the
possibility of η-reduction, so we must break the lambda into its two
constituent parts—its bound variable, and its body. Note that the
type Bind N E type is abstract, so we cannot use pattern matching
to extract its components. Instead, the monadic unbind operation
decomposes the binding, ensuring that the name x does not conflict
with other names currently in scope.

1 http://hackage.haskell.org/package/unbound/
2 While our examples are presented in Haskell, using our Haskell library,
the examples themselves are language neutral.

UNBOUND operations used in this example:

bind :: N → E → (Bind N E)
unbind :: Fresh m ⇒ (Bind N E)→ m (N ,E)
fv :: E → Set N
subst :: N → E → E

Parallel reduction:

red :: Fresh m ⇒ E → m E
red (Var x ) = return (Var x )
red (Lam b) = do

(x , e)← unbind b
e ′ ← red e
case e ′ of -- η-reduction: (λ x.e x) = e

App e ′′ (Var y) | x ≡ y ∧ ¬ (x ∈ fv e ′′)→ return e ′′

→ return (Lam (bind x e ′))

red (App e1 e2) = do
e ′1 ← red e1

e ′2 ← red e2

case e ′1 of -- β-reduction: (λ x.e) t = e[t/x]
Lam b → do

(x , e ′)← unbind b
return (subst x e ′2 e ′)

→ return (App e ′1 e ′2)

Figure 1. Parallel reduction for E

T ∈ T
Name T Names for T s
R Regular datatype containing only terms
Bind P T Bind pattern P in body T

P ∈ P
Name T Single binding name
RP Regular datatype containing only patterns
Embed T Embedded term (§ 3.1)
Rebind P P Nested binding pattern (§ 3.2)
Rec P Recursive binding pattern (§ 3.3)

Figure 2. UNBOUND type combinators

Once the body of the lambda expression has been reduced, the
code checks to see if it can do an η-reduction. This is possible when
the body is exactly the application of some other term e ′′ to the
variable x , where x does not appear free in e ′′. If an η-reduction is
not possible, the binding is reformed using the bind constructor for
the Bind N E type. A similar unbinding occurs in the application
case, when a β-reduction has been detected, followed by an invoca-
tion of a capture-avoiding substitution operation also provided by
UNBOUND.

At this point, one may ask: Where do these operations come
from? What do they mean? How do we know that the code given
for red correctly implements parallel reduction for the lambda
calculus? The first question we answer in § 6 where we discuss
the Haskell implementation of UNBOUND. The other questions
motivate our semantics (§ 4) and the theorems we choose to prove
about it (§ 5).

3. Beyond single binding
A key feature of UNBOUND is that programmers are not lim-
ited to binding a single variable at a time. Instead, the bind con-



structor takes a pattern containing variables and abstracts over all
of them. A large class of types may be used as patterns. As a
simple example, lists of names are patterns. If we wanted to al-
low the syntax λx y z → . . . as a convenient shorthand for
λx → λy → λz → ..., where x , y , and z are distinct names,3

we could change our definition of E to the following:

data E = Var N
| Lam (Bind [N ] E)
| App E E

In general, UNBOUND uses two sorts of types: those that may be
used as patterns, where names are binding occurrences, and those
that are terms, where names are references to binding sites. Figure 2
summarizes these two classes, written P and T respectively. The
Bind type combinator takes a pattern type as its first argument and
a term type as its second argument and returns a term type. Other
term types include Name (representing free variables) and regular
datatypes—those built using unit, base types, sums, products, and
least fixpoint—that contain only term types. By convention, we use
the metavariable P for pattern types and T for term types.

The expressiveness of UNBOUND is determined by P, the col-
lection of types that can be used as patterns. These types include
Names, of course, as well as regular datatypes that contain only
other pattern types. This mean that some types, such as Int and
String , can be used as both terms and patterns. We describe the
three remaining UNBOUND pattern combinators (Embed, Rebind
and Rec) in more detail in the next subsections.

As a more sophisticated example of pattern binding, consider
adding pattern matching to the E language with a case statement.
Each branch is encoded as Bind Pat E , where Pat is a new
datatype representing object-language patterns. Every name occur-
ring in a Pat will be bound in the respective body.

data Pat = PVar N | PCon String [Pat ]

data E = . . .
| Con String [E ] -- data constructors
| Case E [Bind Pat E ] -- pattern matching

It is not hard to check that Pat is a valid pattern type (since
it contains only Names and Strings), justifying its use as the first
argument to Bind.

3.1 Embedding terms in patterns
In many situations it is convenient to be able to embed terms within
patterns. Such embedded terms do not bind variables along with the
rest of the pattern. For example, suppose we wanted to extend our E
language with simple let-binding, let x=e1 in e2. Here x is bound
in e2 but not in e1.

A semantically correct encoding puts the e1 in the abstract
syntax before binding x in e2, “lifting” e1 outside the binding so it
does not participate.

type E1 = E
type E2 = E
data E = . . .

| Let E1 (Bind N E2)

(We use the type synonyms E1 and E2 to indicate which sub-terms
of Let correspond to e1 and e2.) However, this encoding forces
us to write the terms in an unnatural order; moreover, it fails to
express the relationship between the name being let-bound and
its definition. We can craft a more satisfying solution using the
embedding combinator Embed provided by UNBOUND:

3 Although UNBOUND supports shadowing, a single pattern must be linear
(i.e. not contain repeated variables).

data E = . . .
| Let (Bind (N , Embed E1) E2)

Embed may only occur within pattern types, where it serves as
an “escape hatch” for embedding terms which do not bind any
names. Note that a term type within an Embed may itself contain
pattern types (inside the left-hand side of Bind) which may contain
Embedded term types, and so on.

This formulation with Embed also enables us to extend our let
expressions to multiple bindings, by using a pattern list:

data E = . . .
| Let (Bind [(N , Embed E)] E)

Without Embed, we could encode this binding specification by
“unzipping” the list of name-definition pairs and lifting the defi-
nitions outside of the Bind:

data E = . . .
| Let [E ] (Bind [N ] E)

But this example is even worse than the corresponding encoding
of let with a single binding. Not only does it force us to use an
unnatural order and fail to encode the relationship between names
and their respective definitions, it also admits “junk” terms with
lists of different lengths. Embed enables an encoding where names
and their definitions are paired, as they should be.

3.2 Nested binding
Consider now a let* construct, let* x1=e1, . . . , xn=en in e, where
each xi is bound in e and also in all the ej with j > i. One way
to encode this pattern is by iterating the encoding for single let
bindings discussed above:

data LetList = Body E
| Binding (Bind (N , Embed E) LetList)

data E = . . .
| LetStar LetList

This succeeds in capturing the binding structure of let*, and
may be sufficient for some purposes. However, it does have one
major drawback: in order to extract the body of the let* expression,
we must first recurse through all the bindings. It is more convenient
to encode a let* expression by pairing a list of bindings and a body,
so the body can be accessed without first processing the bindings.
As a first try, we could write

data E = . . .
| LetStar (Bind [(N , Embed E)] E)

but this is just the multiple binding example from the previous
subsection. With this specification, the xi are bound only in the
body of the let*, not in the definitions of subsequent variables. We
evidently want a way to nest additional binding structure within the
pattern of the outermost Bind.

UNBOUND provides a novel rebinding pattern combinator for
precisely this purpose. Rebind P1 P2 acts like the pattern type
(P1,P2), except that P1 also scopes over P2, so the binders in P1

may be referred to by terms embedded within P2. (The fact that P1

scopes over P2 in this way has no effect on the pattern portion of
P2.) For example, consider the specification

type N1 = Name E
type N2 = Name E
Bind (Rebind N1 (N2, Embed E1)) E2

Here N1 and N2 are bound in E2, and additionally N1 is also bound
within E1.

Using rebinding, we can faithfully encode the binding structure
of let* as follows:



data Lets = Nil
| Cons (Rebind (N , Embed E) Lets)

data E = . . .
| LetStar (Bind Lets E)

All the names within the sequence of definitions are bound in the
body of the let*-expression (Bind Lets E ); additionally, each
name (paired with its definition as an embedded term) is bound
within any Embeds occurring in the remainder of the sequence—
that is, within the definitions of subsequent names.

Telescopes A particularly important example of a binding pattern
that requires Rebind is a telescope. Telescopes were invented by de
Bruijn [9] to model dependently-type systems. They are used fre-
quently in specifications of dependently-typed languages, including
Epigram [15] and Agda [17].

A telescope, ∆, is a sequence of variables paired with their
types:

x1 : A1, . . . , xn : An.

However, each variable scopes over the types that occur later in the
telescope. For example, here x1 may occur in A2, A3, and so on.
The name telescope comes from the optical device, which is built
as as a sequence of segments that slide into one another.

Telescopes are used for “aggregate binding”. For example, con-
sider the following (very simple) fragment of a dependently-typed
language. In this language, functions can take multiple parameters
and be applied to multiple arguments. However, because of depen-
dent types, the type of each parameter is allowed to mention earlier
parameters.

A, B, M, N ::= x | Π∆.B | λ∆.M |M (N1 . . . Nn)

Telescopes gather together all of the parameters of the function
in both its definition (λ∆.M ) and its type (Π∆.B). Because tele-
scopes are essentially typing contexts, the typing rule for abstrac-
tions merely appends the telescope to the current typing context:

Γ, ∆ ` M : B

Γ ` λ∆.M : Π∆.B

Type checking the multi-applications requires an auxiliary judg-
ment that determines if the vector of arguments “fits into” the tele-
scope.

Γ ` : .

Γ ` N1 : A Γ ` N2 ..Nn : ∆[x 7→ N1]

Γ ` N1 N2 ..Nn : (x : A, ∆)

This judgment verifies that all of the arguments have the right types.
Computing the result type of the application requires substituting
all of the arguments for each binding variable in the telescope.

Γ ` M : Π∆.A Γ ` N1 ..Nn : ∆
dom (∆) = x1 .. xn

Γ ` M (N1 ..Nn) : B [x1 .. xn 7→ N1 ..Nn ]

This fragment demonstrates the important features of telescopes.
Sometimes they are used as binding patterns and sometimes they
are used as the types of vectors, independent of binding. Imple-
menting this language using traditional unary binding would be
tiresome because one would have to traverse the entire telescope
to see the body of the function or the body of the dependent type.
That is not so much of an issue in this simple example, but the se-
mantics of features like inductive families (with eliminators based
on induction principles or dependent pattern matching) is greatly
simplified by the aggregate binding that telescopes provide.

In UNBOUND, we can represent the language fragment above
using Rebind:

data E = Var N
| Pi (Bind Tele E)

| Lam (Bind Tele E)
| App E [E ]

data Tele = Empty | Rebind (N , Embed E) Tele

Furthermore, UNBOUND automatically provides all of the machin-
ery necessary for working with telescopes, including calculation of
their binding variables, multiple substitution in terms, and substitu-
tion through the telescopes.

3.3 Recursive binding
Our E language is looking nice, but what if we want to add some
recursion? We can try to encode a letrec construct,

letrec x1=e1, . . . , xn=en in e,

where this time, the xi are bound in e as well as all the ei. This is
straightforward if we are willing to lift all the xi out to the front:

data E = . . .
| Letrec (Bind [N ] ([E ],E))

However, the problems with this sort of encoding have already been
discussed. We would like to encode letrec in such a way that names
and definitions are paired.

Rebind doesn’t help, because it forces us to separate binders
from the terms over which they scope, just like Bind. We need a
way to freely mix patterns and terms bound by the patterns in the
same data structure. UNBOUND provides the Rec combinator for
this purpose. In Rec P , names in the pattern P scope recursively
over any terms embedded in P itself. However, Rec P itself is
also a pattern, so names in P also scope externally over any term
that binds Rec P . Intuitively, Rec is just a “recursive” version of
Rebind.

An appropriate encoding of letrec is therefore:

data E = . . .
| Letrec (Bind (Rec [(N , Embed E)]) E)

Here the pattern [(N , Embed E)] scopes over itself—hence all the
names are bound in all the definitions—as well as over the body of
the letrec.

4. Semantics
In the previous section, we gave a number of examples of spec-
ifying different sorts of binding patterns found in programming
languages. However, we have been fairly vague about what those
specifications actually mean. In this section, we fill in the details by
giving it a semantics.

Our semantics comes in two parts. We first define the represen-
tation of syntax with binders, and specify smart constructors and
destructors that work with this representation. Second, we define
the action of UNBOUND operations (α-equivalence, free variable
calculation and substitution) in terms of this representation. Once
we have formally defined this semantics, we prove that it satisfies
the properties we expect (§ 5) and discuss the correspondence be-
tween it and our concrete Haskell implementation (§ 6).

4.1 Representation
For simplicity, we use a locally nameless representation of terms
with binding structure. This representation provides a straightfor-
ward semantics for UNBOUND, one that is both simple to imple-
ment and simple to reason about. Using a locally nameless repre-
sentation is an old idea—we give more details about its history later
§ 8.

A locally nameless representation of terms with binding struc-
ture separates bound variables, represented by de Bruijn indices,
from free variables, represented by atoms. (Atoms are often taken
to be strings, but any countably infinite set with decidable equality



A ::= {x, y, z, . . . }
b ::= j@k

t ::= x | b | K t1 . . . tn | Bind p t

p ::= −x | K p1 . . . pn | Rebind p p | Embed t | Rec p

Figure 3. Syntax of atoms, indices, terms, and patterns

will do.) This representation has the advantage that α-equivalence
is simply structural equality. Distinguishing bound variables from
free variables in this way also means that we do not need to keep
track of the current scope of a free variable and shift it as we move
from one scope to another, as we would with a purely de Bruijn-
indexed representation.

The locally nameless syntax we use to represent terms with
binding structure is shown in Figure 3. As in Figure 2, we separate
terms from patterns. Terms t have term types T , whereas patterns
have pattern types P .

Names that appear in terms can either be free names, x, or bound
names, b. Free names are drawn from the set A of atoms. (In the in-
terest of simplicity, the semantics we describe here only includes a
single sort for atoms; extending to multiple atom sorts is straight-
forward.) Terms also include applications of constructor constants
K to zero or more subterms. Note that constructor application cov-
ers all terms with some regular type R; in the semantics they are
all handled in precisely the same way. Indeed, thanks to generic
programming, this is actually a faithful reflection of our Haskell
implementation, which handles all data constructors other than the
special UNBOUND combinators uniformly.

Like terms, patterns can be formed by the application of con-
structors to subpatterns. Names inside patterns are binders, writ-
ten −x, which represent binding occurrences of names. We denote
binders with special syntax to emphasize that we should think of
them as placeholders with an associated name.

The astute reader may note that we are punning a bit with our
syntax: in earlier examples, Bind and friends showed up as types,
whereas here they are playing the role of data. The resolution of
the apparent inconsistency is that Bind, Embed, Rebind, and Rec
are all singleton types with eponymous constructors.

For example, we can define an operation that lists all of the
atoms that a pattern will bind as shown below.

binders :: P → [A ]
binders −x = [x ]
binders (K p1 . . . pn) = binders p1 ++ . . . ++ binders pn

binders (Rebind p1 p2) = binders p1 ++ binders p2

binders (Embed t) = ∅
binders (Rec p) = binders p

Note that even though we are using Haskell-like syntax, this defi-
nition is type-directed. It works for any pattern of any pattern type;
the type of binders , P → [A ], is an abbreviation for ∀ P :P,P →
[A ]. In our Haskell implementation, to be discussed in more detail
in § 6, each clause of a definition such as this one corresponds to a
method definition in a type class instance.

4.2 Names, indices and patterns
Bound names b consist of two natural number indices, j@k. The
first index j references a pattern, counting outwards from zero; the
second index k is an offset. It references a particular binder within
the given pattern, counting from left to right, also starting from

zero. For example, in

Bind (−x,−y,−z) (Bind −q 1@2)

the bound variable 1@2 refers to −z, the index-2 binder within the
index-1 enclosing pattern.

Therefore, an important part of this representation is the connec-
tion between patterns and offsets. We make this connection precise
with the operations nth and find (although we omit their defini-
tions in the interest of space):

nth :: P → N→ Maybe A
find :: P → A→ Maybe N

nth takes a pattern and a natural number n and finds the nth name
bound in that pattern, failing if there are not enough binders. find
takes a pattern and a name and finds the first index of that name in
the pattern, failing if the name does not occur.

4.3 Close and open
The two most important operations for the locally nameless repre-
sentation are close and open. The former is used for binding terms:
it converts atoms (i.e. free names) to indices (i.e. bound names).
The latter does the reverse, replacing indices that resolve to a par-
ticular binding location by free names.

We call the first operation close , as we are closing the term
with respect to the free names listed in a pattern. Likewise, we
call the inverse operation open , as we may use it to open up a
binder in order to recurse through its subcomponents. These two
operations are standard components for working with a locally
nameless representation [2, 11]. Here we modify them to close and
open terms with respect to a pattern instead of a single variable,
and also to close and open the terms embedded inside patterns.

The close operation is defined in Figure 4. It takes as input
a natural number level, a pattern, and a term, and returns a new
term where free variables matching binders in the pattern have been
replaced by bound variables at the given level. In the free variable
case, it uses find to look for a matching binder and generate the
appropriate index if one is found. We also define a version of
close for patterns, closeP, whose job is to recurse through patterns
looking for Embedded terms to which close can be applied. When
recursing under a binder (Bind, Rebind, or Rec), both close and
closeP increment the current level.

The open operation is also defined in Figure 4. It takes a natural
number level, a pattern, and a term, and “opens” the term by
interpreting bound variables at the given level as references into
the pattern, replacing them by the free variable attached to the
referenced binder.4 Similarly to close , open is mutually defined
with a pattern version openP. In the case where a bound variable
is found which matches the current level, open uses nth to index
into the pattern and pick out the free variable associated with the
referenced binder.

We use close p t and open p t as convenient synonyms for
close 0 p t and open 0 p t , respectively.

4.4 Constructing terms and patterns
Figure 5 lists the smart constructors and destructors that are part
of the interface to the type combinators exported by UNBOUND. In

4 In the locally nameless literature, open is sometimes defined as bound-
variable substitution and generalized to replace bound variables with terms
instead of with free variables. Such definitions save effort, since the next
step after opening is often to substitute for the new free variable. In that
case, the definition of open is a little more complex than what is presented
here in order to deal with substituting terms with dangling bound variable
references. We prefer our reference semantics to be as simple as possible so
we avoid such complications.



close :: N→ P → T → T
close l p b = b
close l p x = case find p x of

Just i → l@i
Nothing→ x

close l p (K t1 . . . tn) = K (close l p t1) . . .
(close l p tn)

close l p (Bind p′ t) = Bind (closeP l p p′)
(close (l + 1) p t)

closeP :: N→ P → P → P
closeP l p −x = −x

closeP l p (K p1 . . . pn) = K (closeP l p p1) . . .
(closeP l p pn)

closeP l p (Rebind p1 p2) = Rebind (closeP l p p1)
(closeP (l + 1) p p2)

closeP l p (Embed t) = Embed (close l p t)
closeP l p (Rec p′) = Rec (closeP (l + 1) p p′)

open :: N→ P → T → T
open l p (j@k) | j ≡ l = case nth p k of

Just x → x
Nothing→ j@k

open l p x = x
open l p (K t1 . . . tn) = K (open l p t1) . . .

(open l p tn)
open l p (Bind p′ t) = Bind (openP l p p′)

(open (l + 1) p t)

openP :: N→ P → P → P
openP l p (K p1 . . . pn) = K (openP l p p1) . . .

(openP l p pn)
openP l p −x = −x

openP l p (Rebind p1 p2) = Rebind (openP l p p1)
(openP (l + 1) p p2)

openP l p (Embed t) = Embed (open l p t)
openP l p (Rec p′) = Rec (openP (l + 1) p p′)

Figure 4. close and open

the next two subsections, we discuss the implementations of these
operations.

We use close to define the constructors for binding abstractions.
Closing a term with respect to the pattern binds the pattern variables
in the term.

bind p t = Bind p (close p t)

Effectively, this replaces all free occurrences of variables that ap-
pear in the pattern with indices. For example, binding a pair of vari-
ables in a term that references both variables will produce indices
that refer to the same pattern, but at different offsets. In contrast,
nesting the binders produces indices that refer to the different bind-
ing locations, but each one at the same offset (the zeroth variable in
the pattern).

bind (−x,−y) (x , y) = Bind (−x,−y) (0@0, 0@1)
bind −x (bind −y (x , y)) = Bind −x (Bind −y

(1@0, 0@0))

Likewise, for pattern combinators that introduce internal bind-
ing, we also use close to replace occurrences of the bound variable
with indices. Note that in the case of recursive binding, we close
the pattern with respect to itself.

string2Name :: String → Name T
name2String :: Name T → String

bind :: P → T → Bind P T
unbind :: Fresh m ⇒ Bind P T → m (P ,T )

rebind :: P1 → P2 → Rebind P1 P2

unrebind :: Rebind P1 P2 → (P1,P2)

rec :: P → Rec P
unrec :: Rec P → P

embed :: T → Embed T
unembed :: Embed T → T

Figure 5. Constructors and destructors

rebind p1 p2 = Rebind p1 (closeP p1 p2)
rec p = Rec (closeP p p)

Finally, embed does not need to do any closing, and merely ap-
plies the Embed constructor to the given term. Likewise, unembed
merely returns the nested term.

embed t = Embed t
unembed (Embed t) = t

4.5 Freshening and unbinding
Unbinding is not quite as straightforward as binding. Given a term
Bind p t , it is only safe to call open p t if none of the binding
variables of p clash with existing free variables in t. Therefore,
before opening, we must first freshen p by assigning suitably fresh
names to its binders. At this point, we leave the precise meaning of
“suitably fresh” open to interpretation; some concrete alternatives
are discussed in § 6.4. We omit the formal definition of freshening
since it is straightforward: it simply walks over a pattern, assigning
a suitably fresh name to each binder encountered, and stopping at
occurrences of Embed, since these are not part of the pattern. In
our implementation, freshening also returns a permutation which
describes how the variables were renamed, but we omit that here.

We can now define unbind as the operation that freshens the
binding variables in the pattern and then opens the body of the
binder with the new pattern.

unbind (Bind p t) = do
p′ ← freshen p
return (p′, open p′ t)

In contrast, the destructors for Rebind and Rec do not freshen
before opening the rest of the pattern. Instead, they use the preex-
isting names:

unrebind (Rebind p1 p2) = (p1, openP p1 p2)

unrec (Rec p) = openP p p

One might wonder: why the difference?
When opening a Bind, we must generate fresh names for its

binders. However, by the time we come to opening a nested bind-
ing, fresh names will have already been chosen for its binders when
the enclosing Bind was opened. Hence there is no need to choose
new names. In fact, we must not choose fresh names, since there
may exist corresponding free variables over which we have no con-
trol. For example, consider the term Bind (Rebind p1 p2) t , in
which t may contain references to binders in p1. If we use unbind
to take it apart into Rebind p′1 p′2 and t ′, there will now be free vari-
ables in t ′ which match the names on binders in p′1. Freshening p′1
again when opening the Rebind would destroy this connection, and



in particular would mean that we could not reassemble the original
term using rebind and bind . This is also why we must have Bind
and Rebind as distinct combinators: if we used Bind everywhere,
unbind would have no way of knowing whether it was opening
a top-level Bind (which must first be freshened) or a nested one
(which must not be).

4.6 Free variables, α-equivalence and substitution
Now we come to the real payoff of our representation, as we specify
the basic UNBOUND operations of α-equivalence, free variable cal-
culation, and capture-avoiding substitution, all shown in Figure 6.
Their specifications are entirely straightforward—and, as described
in the next section, reasoning about them is not much harder!

The α-equivalence relation on terms is defined mutually with a
notion of equivalence for patterns which ignores binders and checks
that embedded terms are α-equivalent. This α-equivalence relation
is essentially structural equality—the only reason it is not precisely
structural equality is that name annotations on binders are ignored
in PEQ BINDER.

Computing free variables is equally straightforward. Since free
and bound variables are distinguished syntactically, we need only
recurse through terms and patterns collecting all the free variables
we find.

Finally, we define substitution into terms and patterns. If we see
the free variable we are substituting for, we replace it with the term
being substituted; otherwise we simply recurse. We need do noth-
ing special when recursing through binders: since free and bound
variables are distinguished syntactically, we are in no danger of
mistaking a bound variable for a free variable we should substitute
for, or of accidentally capturing any free variables in the substituted
term.

5. Metatheory
We’ve now defined a simple semantics for our pattern specification
language in terms of a locally nameless representation. But how
can we know whether this semantics is at all meaningful? Well, we
prove stuff, of course!

In the previous section, we noted how straightforward the defi-
nitions of various operations were. Likewise, most of the proofs re-
garding these operations are also straightforward (but full of fiddly
details). We therefore omit most of the proofs and give only brief
sketches of a few. The fact that the proofs are straightforward is a
testament to the elegance of the locally nameless representation.

There is already a lot of work to draw on from the metatheory
of locally nameless representations in the single binder case [1, 2];
much of the metatheory here can be seen as an extension of that
prior work.

5.1 Local closure
One important property of the locally nameless representation is
that only some terms are good representations. In particular, there
is some “junk” in our representation, and we would like to know
that we (and users of our library) never need to deal with it. The lo-
cal closure relation in Figure 7 is an invariant for our representation
which excludes terms with “dangling” bound variables. For exam-
ple, the term 0@0, a bound variable with no surrounding binder, is
not locally closed.5

By making the type combinators of our library abstract, we can
demonstrate a central property of our interface: users of the library
can only construct locally closed patterns and terms.

5 This relation is an extension of McKinna and Pollack’s VClosed rela-
tion [16].

≈ ::T → T → Bool
x ≈ y = x ≡ y
b1 ≈ b2 = b1 ≡ b2

(K s1 . . . sn) ≈ (K t1 . . . tn) = s1 ≈ t1 ∧ . . . ∧ sn ≈ tn
(Bind p1 t1) ≈ (Bind p2 t2) = p1 ≈P p2 ∧ t1 ≈ t2

≈P ::P → P → Bool
−x ≈P −y = True
(K p1 . . . pn) ≈P (K q1 . . . qn) = p1 ≈P q1 ∧ . . .

∧ pn ≈P qn

(Rebind p1 p2) ≈P (Rebind q1 q2) = p1 ≈P q1 ∧ p2 ≈P q2

(Embed t1) ≈P (Embed t2) = t1 ≈ t2
(Rec p1) ≈P (Rec p2) = p1 ≈P p2

fv :: T → Set A
fv x = {x}
fv b = ∅
fv (K t1 . . . tn) = fv t1 ∪ · · · ∪ fv tn
fv (Bind p t) = fvP p ∪ fv t

fvP :: P → Set A
fvP −x = ∅
fvP (K p1 . . . pn) = fvP p1 ∪ · · · ∪ fvP pn

fvP (Rebind p1 p2) = fvP p1 ∪ fvP p2

fvP (Embed t) = fv t
fvP (Rec p) = fvP p

subst :: A→ T → T → T
subst x s y | x ≡ y = s

| otherwise = y
subst x s b = b
subst x s (K t1 . . . tn) = K (subst x s t1) . . . (subst x s tn)
subst x s (Bind p t) = Bind (substP x s p) (subst x s t)

substP :: A→ T → P → P
substP x s −y = −y

substP x s (K p1 . . . pn) = K (substP x s p1) . . .
(substP x s pn)

substP x s (Rebind p1 p2) = Rebind (substP x s p1)
(substP x s p2)

substP x s (Embed t) = Embed (subst x s t)
substP x s (Rec p) = Rec (substP x s p)

Figure 6. α-equivalence, free variables, and substitution

Theorem 1 (Constructors and destructors preserve local closure).
All exported term and pattern constructors and destructors pre-
serve local closure.

Proof. Requires considering the action of each constructor and
destructor individually, appealing to a number of properties about
the interaction of local closure, open and close.

Theorem 2 (Substitution preserves local closure).

• If LC t and LC t′ then LC subst x t t ′.
• If LC t and LC p then LC substP x t p.

Proof. Straightforward induction using a generalized version of
local closure.



LC t t is locally closed

LC x
LC FREE

LC t1 .. LC tn

LC K t1 .. tn
LC CON

LC p LC (open p t)

LC Bind p t
LC BIND

LC p p is locally closed

LC −x
LCP BINDER

LC p1 .. LC pn

LC K p1 .. pn
LCP CON

LC p1 LC (openP p1 p2)

LC Rebind p1 p2
LCP REBIND

LC t

LC Embed t
LCP EMBED

LC (openP p p)

LC Rec p
LCP REC

Figure 7. Local closure of terms and patterns

Lemma 3 (Freshening preserves local closure). If LC p and
freshen p → p′, then LC p′.

Proof. Easy induction; freshening only changes names on binders,
which the LC relation ignores.

Next, we show that α-equivalence is an equivalence relation that
is respected by the operations of our library.

Theorem 4. − ≈ − is an equivalence.

Proof. Reflexivity, symmetry, and transitivity can each be estab-
lished by straightforward induction.

Theorem 5 (fv respects α-equivalence). If t1 ≈ t2, then fv t1 =
fv t2.

Proof. Straightforward induction on fv t1 along with a similar
proof for fvP.

Theorem 6 (Substitution respects α-equivalence). If t1 ≈ t2 and
s1 ≈ s2, then [x 7→ s1]t1 ≈ [x 7→ s2]t2.

Proof. Straightforward induction on the derivation of t1 ≈ t2,
along with a similar proof for pattern substitution.

We next specify how the operations of α-equivalence, free vari-
able calculation, and substitution interact with Bind. The proofs of
these remaining theorems rely on properties about the interactions
between close and each of the operations.

The first theorem states the interaction between binding and α-
equivalence. It states that two bindings are α-equivalent when we
can freshen two patterns to the same new result, and then show that
their bodies are α-equivalent under a consistent renaming. Below,
π1 and π2 are the permutations returned by freshen and π1 · t1 is
the application of a permutation to a term.

type N = Name E
data E = Var N

| App E E
| Lam (Bind N E)

deriving Show

$ (derive [’’ E ])

instance Alpha E

instance Subst E E where
isvar (Var n) = Just (SubstName n)
isvar = Nothing

Figure 8. Representing the untyped lambda calculus

Theorem 7. If freshen p1 → p, π1 and freshen p2 → p, π2 and
π1 · t1 ≈ π2 · t2 then bind p1 t1 ≈ bind p2 t2.

The second theorem specifies the behavior of fv for binders.

Theorem 8. fv (bind p t) = fvP p ∪ (fv t − binders p).

Finally, we specify the conditions when substitutions are per-
mitted to commute through bindings.

Theorem 9. If {x} ∪ fv t is disjoint from binders p, then
subst x t (bind p t ′) = bind (substP x t p) (subst x t t ′).

6. Implementation
The UNBOUND specification language is implemented as an em-
bedded domain specific language (EDSL) in GHC Haskell, includ-
ing all of the functionality described above and more. Terms and
patterns are normal Haskell datatypes, and combinators such as
Name, Bind and Rebind are abstract types provided by our li-
brary. The implementation of UNBOUND closely follows the se-
mantics that we presented in the previous section, with UNBOUND
operations such as fv , subst and · ≈ · provided for user-defined
datatypes via generic programming.

Below, we give an overview of our library, first by giving a
short example of how it may be used in a Haskell program, and
then discussing the implementation details. Figure 9 summarizes
the important UNBOUND operations that we discuss in this section.

Figure 8 shows a definition of the untyped lambda calculus
using UNBOUND. The first part of the figure is the same as in § 2.
The rest of the figure includes the small amount of “boilerplate”
necessary to use UNBOUND with the type E .

We implement UNBOUND using the REPLIB generic program-
ming library [35]. REPLIB works by producing generic represen-
tation instances for each type. Roughly, a representation instance
records the structure of a datatype by analyzing its data dec-
laration. In this case, the call $(derive [’’ E ]) uses Template
Haskell [29] to generate the generic representation for E . This
structure information is used to automatically generate particular
functions over E on demand.

The following line in the figure declares E to be an instance
of the Alpha type class, which governs α-equality, free variable
and freshening operations. Happily, default implementations for the
methods of Alpha are defined generically. Guided by the occur-
rences of Bind and Name in the definition of E , the default defi-
nitions of these methods behave exactly like their specifications in
the semantics section.

Capture-avoiding substitution is governed by the Subst class,
and requires a tiny bit of work on our part: we must indicate where
variables are located in datatypes. Beyond that, the generic default
implementation suffices. In general, the type of subst declares that
values of type b may be substituted for free variables occurring in



· ≈ · :: Alpha a ⇒ a → a → Bool -- alpha equivalence
acompare :: Alpha a ⇒ a → a → Ordering -- alpha-respecting comparison

fv :: (Alpha a,Rep b,Collection c)⇒ a → c (Name b) -- free names (single sort)
fvAny :: (Alpha a,Collection c)⇒ a → c AnyName -- free names (all)

fvP :: (Alpha a,Rep b,Collection c)⇒ a → c (Name b) -- free names in annotations (single)
fvPAny :: (Alpha a,Collection c)⇒ a → c AnyName -- free names in annotations (all)

binders :: (Alpha a,Rep b,Collection c)⇒ a → c (Name b) -- binding names (single sort)
bindersAny :: (Alpha a,Collection c)⇒ a → c AnyName -- binding names (all)

freshen :: (Alpha a,Fresh m)⇒ a → m (a,Perm AnyName) -- rename with fresh variables (returns a permutation)
swaps :: Alpha a ⇒ Perm AnyName → a → a -- permute variables

subst :: Subst b a ⇒ Name b → b → a → a -- single substitution
substs :: Subst b a ⇒ [(Name b, b)]→ a → a -- simultaneous substitution

Figure 9. Overview of selected UNBOUND operations

values of type a , so the Subst E E instance shown declares that E
values may be substituted for Vars in other E values.

By making Subst a multiparameter type class we have flexibil-
ity and safety. Imagine a different declaration of the type E which
contains both variables abstracting E , and type variables abstract-
ing Typ. An instance Subst E E declares that E variables can be
replaced with E s, and another instance Subst Typ E would de-
clare that Typ variables can be replaced with Typs inside E s. In
the latter case, we would use the default definition of isvar as there
is no way to replace Typ variables with Typs an get an E . In fact,
the type indices of Name and SubstName would not allow us to
give a definition of isvar that would confuse Typ and E variables.

The operations fv , bind , unbind and subst are implemented in
terms of the Alpha and Subst type classes. Therefore, Figure 8
provides all the necessary definitions for the parallel reduction
example in Figure 1 (which is valid Haskell code).

6.1 Multi-sorted names and AnyName

Instead of a single homogeneous set of atomic names, UNBOUND
has multisorted names. Consider the type declarations in Figure 9.
Names are indexed by a type, and the type of subst ensures that
only things of type t may be substituted for t-indexed names. The
fv , fvP, and binders functions are also polymorphic in their re-
sult type, ignoring names whose type index does not match the re-
quested result type. In this way, one may calculate, say, just the
free term variables or just the free type variables from an expres-
sion. These functions are overloaded, so type inference determines
precisely what sort of names will be calculated, and what sort of
data structure (list, set, etc.) will be used to collect them.

However, sometimes we would like to know all free names, no
matter what their sort. Therefore, UNBOUND also provides the type
AnyName , which existentially hides the type index on a name, and
the functions fvAny and bindersAny which return all appropriate
names wrapped in AnyName constructors.

6.2 The Alpha type class
One way in which our implementation differs from our seman-
tics is that while the semantics statically differentiates between
terms and patterns, the implementation does not. Due to limita-
tions of REPLIB, instead of having two type classes Term a and
Pattern a we must have a single type class Alpha a which
serves both purposes. This conflation means that our implemen-
tation cannot statically prevent meaningless types which use a pat-

tern as a term (e.g. Embed (Embed N )) or a term as a pattern (e.g.
Bind (Bind N E) E ).6

However, this conflation does have an advantage. Many of the
methods of the Alpha class are parameterized by a mode which
determines whether the type is being used as a term or a pattern.
For example, the α-equivalence method, called aeq ′, is declared
as:

aeq ′ :: AlphaCtx → a → a → Bool
aeq ′ = aeqR1 rep1

The first argument, of type AlphaCtx , specifies whether alpha-
equivalence should operate in term or pattern mode, generalizing
the ≈ and ≈P functions shown in Figure 6. The second line of
the declaration is the default definition, which calls the datatype-
generic function aeqR1 (not shown) with the type representation
rep1 (derived with Template Haskell). Instances of Alpha can
override this generic implementation. For example, in the Name
instance, the mode determines whether the names should be com-
pared or always considered equivalent.

instance Alpha Name where
...
aeq ′ c x y | mode c ≡ Term = x ≡ y
aeq ′ c | mode c ≡ Pat = True

Many types (such as products and sums) are parametric in the mode
and use the same behavior in both cases.

Overall, the Alpha type class includes mode-generalized ver-
sions of the operations shown in Figure 9, the predicates for dis-
tinguishing between terms and patterns, and the necessary machin-
ery for the locally nameless representation (open , close , find and
nth).

6.3 Specific instances for Alpha

Default implementations for all Alpha methods are defined via
generic programming, but they may be overridden for greater con-
trol or customization. This capability is necessary in practical uses
of UNBOUND for specific types.7

For example, suppose we would like to tag variables with source
position information in our abstract syntax:

6 We do, however, provide dynamic checks isPat and isTerm that can be
used to ensure the invariants are maintained.
7 This capability for overriding generic functions is inspired by the SYB3
library [14].



class Monad m ⇒ Fresh m where
fresh :: Name a → m (Name a)

class Monad m ⇒ LFresh m where
lfresh :: Rep a ⇒ Name a → m (Name a)
avoid :: [AnyName ]→ m a → m a

Figure 10. The Fresh and LFresh type classes

data E = . . .
| Var SourcePos N

To make E an instance of Alpha , we need SourcePos to also be
an instance of Alpha , because it appears inside the E type. If we
would like α-equivalence to ignore source positions, we can simply
override the default definition of α-equivalence for SourcePos .
By identifying all source positions as equivalent, we ensure that
expressions appearing in different positions can still be determined
to be α-equivalent.

instance Alpha SourcePos where
aeq ′ = True

6.4 Freshness monads
Since the freshen operation relies on the generation of fresh names,
operations which make use of it (such as unbind ) must execute
within a monad. The Fresh type class, shown in Figure 10, governs
those monads which can be used for this purpose, and is used to
avoid tying users down to one particular concrete monad.

The Fresh class is quite simple: it requires only a single op-
eration fresh , which takes a name as input and generates a new
name (based on the given name) which is guaranteed to be “glob-
ally fresh” in some appropriate sense. For example, a simple con-
crete implementation might keep track of a global counter which is
incremented every time fresh is called, appending the new counter
value to the given base variable name.

However, this is unsatisfactory in many instances. For example,
consider the simple pretty-printer for the untyped lambda calcu-
lus shown in Figure 11. If we pass it the term λ −x λ −y λ −z

2@0 (1@0 0@0), it produces \x. \y1. \z2 -> x (y1 z2). We
can see perfectly well that the numeric suffixes on y and z are un-
necessary, since the existing names do not clash, but the fresh op-
eration does not have enough information to make this assessment.

For this reason, we also provide the more sophisticated LFresh
type class for monads which can generate locally fresh names.
lfresh works much like fresh , but it has more to go on: avoid ns m
allows us to specify that the names ns should be avoided by calls
to lfresh in the subcomputation m . Unlike fresh , lfresh is not
guaranteed to pick globally fresh names; it only guarantees not to
pick names proscribed by an enclosing call to avoid . The intention
is that it will return its argument unchanged when that name is not
specifically to be avoided.

Using LFresh , we can rewrite the pretty-printer so that names
are chosen fresh with respect to exactly those names currently in
scope. To accomplish this we need only use LFresh instead of
Fresh and lunbind instead of unbind ; lunbind generates names
for the binder using lfresh , then hands the body to a continuation
wrapped in a call to avoid .

UNBOUND provides several concrete implementations for Fresh
and LFresh , including transformer versions for adding fresh name
generation capabilities to existing monads, and instances allow-

type N = Name E
data E = Var N

| Lam (Bind N E)
| App E E

ppr :: Fresh m ⇒ E → m String
ppr = ppr ′ 0

where ppr ′ (Var x ) = return (show x )
ppr ′ p (Lam b) = do

(x , e)← unbind b
e ′ ← ppr ′ 0 e
return $ parens (p > 0)

("\\" ++ show x ++ ". " ++ e ′)
ppr ′ p (App e1 e2) = do

e ′1 ← ppr ′ 1 e1

e ′2 ← ppr ′ 2 e2

return $ parens (p > 1) (e ′1 ++ " " ++ e ′2)
parens True x = "(" ++ x ++ ")"

parens x = x

Figure 11. A pretty-printer for the untyped lambda calculus

ing their use with all the standard monad transformers in the
transformers package.8

6.5 Simultaneous unbinding
Up to now, we have seen only examples of opening a single abstrac-
tion with arbitrary fresh names. However, some situations require
simultaneously opening two or more abstractions with the same
fresh names. For example, in order to check the convertibility of
two LF Π-types, we must open them with the same fresh name and
recursively check the convertibility of the bodies.

In order to simultaneously open two abstractions Bind p1 t1
and Bind p2 t2, we require only that p1 and p2 have the same
number of binders. Requiring a stronger match between p1 and p2

would be unnecessarily limiting. For example, continuing our LF
checking example, p1 and p2 might contain type annotations which
are convertible but not α-equivalent.

Therefore, UNBOUND provides a function unbind2 that simul-
taneously opens two related bindings.

unbind2 :: (Fresh m,Alpha p1,Alpha p2,
Alpha t1,Alpha t2)⇒

Bind p1 t1 → Bind p2 t2 →
m (Maybe (p1, t1, p2, t2))

unbind2 (B p1 t1) (B p2 t2) = do
case mkPerm (bindersAny p1) (bindersAny p2) of

Just π → do
(p′1, π

′)← freshen p1

return (Just (p′1, open p′1 t1,
swaps (π′ ◦ π) p2, open p′1 t2))

Nothing→ return Nothing

This function works by first matching the binding variables of the
two patterns together to create a permutation π. This operation
will fail if the patterns bind different numbers of variables. Next,
it freshens the first pattern p1 and uses the result to open t1 and t2.
Finally, it must compose the permutation from freshening p1 with
that from the match, and use the new permutation to rename the
second pattern.

8 http://hackage.haskell.org/package/transformers



7. Discussion
7.1 Nominal semantics
We have presented a semantics for the UNBOUND specification lan-
guage in terms of a locally nameless representation, but this is not
our only possible choice. UNBOUND could also be specified via an
equivalent nominal semantics [19], and we are working in parallel
on a nominal-style Haskell implementation. Such an alternative se-
mantics would provide differences in running time/space, but oth-
erwise would behave identically to the locally nameless version. In
future work, we plan to formalize the precise connection between
the two formulations and prove their equivalence with respect to
the abstract interface provided by the library.

Although a nominal semantics might appear more natural to
think about, in our experience the locally nameless semantics is far
easier to understand when it comes to generalized binding patterns,
especially with nesting. Therefore, an important contribution of this
work is the identification of a simple semantics for pattern binding.

7.2 Cαml-style specifications
François Pottier’s Cαml system [22] features a single-argument ab-
straction constructor, inside which patterns and terms (both bound
and unbound) can be mixed. Directly inside an abstraction is a pat-
tern, with terms embedded via outer (indicating a term outside the
scope of the pattern) or inner (indicating that the pattern binds
names in the term). Cαml’s abstraction constructor 〈p〉 is easily
definable with UNBOUND as Bind (Rec p) (). Within that pattern,
occurrences of Embed are analogous to occurrences of inner in
Cαml. To account for Cαml’s outer scope specification, we gener-
alize the Embed combinator by adding a natural number subscript.
When encountering Embedn while doing an open or close oper-
ation, we decrement the level by n. Hence, Embed0 corresponds
to the original Embed, and Embed1 corresponds to Cαml’s outer
construct, since it shifts the scope of an embedded term out to the
next enclosing level.

In UNBOUND we implement indexed embedding by adding a
new type combinator Shift P . This type increments the index of
its argument, so Shift (Embed T ) corresponds to Embed1 T , and
Shift (Shift (Embed T )) is Embed2 T . Operationally, all Shift
does is decrement the binding level when the pattern is opened or
closed so that variables will resolve to an outer scope.

7.3 UNBOUND in practice
We have been using UNBOUND in the TRELLYS project, in
the context of type checking and evaluation of an experimental
dependently-typed language. In this context, UNBOUND support
for telescopes is essential. Our experience with TRELLYS has al-
lowed us to find and correct a few bugs in our implementation of
UNBOUND, but for the most part the use of UNBOUND has been
unremarkable, in the sense that it seems to “just work”. The only
drawback to using UNBOUND is the lack of pattern matching for
the abstract type Bind.

TRELLYS is an ideal client for UNBOUND, in that it is a
prototype language with a greater emphasis on semantics than
performance. Because UNBOUND is implemented using generic
programming, it will be slower than a hand-coded implementa-
tion [25]. If necessary, we could easily replace the generic defi-
nitions with hand-coded operations by overriding the Alpha type
class instances.

The locally nameless representation does have some perfor-
mance concerns with respect to its use of open and close . While
the standard operations fv , subst , and · ≈ · are linear in the size
of terms, operations that are defined in the freshness monad must
open and close the terms for each binding level, which could be
expensive. Although we have not had any difficulties of this sort

in TRELLYS (our experiments are still small) it is possible that
with larger programs and deeper binding depths, these operations
could dominate. To mitigate this difficulty, UNBOUND supports an
“experts-only” interface, where critical operations can be written
directly over the terms (in a manner similar to our implementations
of fv , subst and · ≈ ·).

We have not explored the interaction of UNBOUND with stan-
dard optimizations [28]. For example, by caching free names, an
implementation of substitution could stop early if the name be-
ing substituted for is not cached. If we remove names from bound
patterns (which are preserved only for error messages) the locally
nameless representation interacts nicely with hash-consing, as all
α-equivalent terms have the same representation.

We are also working on bringing our nominal implementation
of UNBOUND up to date with our reference locally nameless im-
plementation. Both implementations provide the same interface to
clients. When using the LFresh monad, the nominal implementa-
tion could avoid freshening when unbinding patterns if the patterns
were already “sufficiently” fresh. However, there are trade-offs in-
volved; for example, α-equivalence can be more expensive with the
nominal version.

One important contribution of UNBOUND is that it provides an
abstract interface to name binding. Clients can write their code
against this interface, and, depending on their particular applica-
tion, choose the most appropriate implementation. Importantly, our
locally nameless implementation provides a simple reference se-
mantics for this interface, and alternative implementations may use
this semantics to prove their correctness.

8. Related Work
Locally nameless representation The locally nameless represen-
tation dates back to the introduction of de Bruijn indices, and is
mentioned in the conclusion of de Bruijn’s paper [8]. The key idea
is even older. It rests on the separation of names into two distinct
classes: variables (for locally bound variables) and parameters (for
free, or globally bound variables) and goes back to Kleene [13],
Prawitz [24] and Gentzen [10]. The full history of the locally name-
less representation is outside the scope of this paper, but we refer to
Aydemir et al [2] and Charguéraud [4] which discusses it in detail.
Instead, we focus on the interaction between this representation,
generic programming and binding specifications.

Charguéraud’s paper [4] also gives several examples of locally-
nameless representations of languages with specific binding forms,
including binding a list of variables, pattern matching (with embed-
ded terms), and recursive bindings. However, he does not consider
a compositional framework for describing generalized binding.

Zappa Nardelli’s locally nameless backend [36] for the OTT
tool [27] automatically generates definitions for the Coq proof as-
sistent given a specification of a language (with single binding
only). These definitions include a locally nameless representation
of the syntax, open and close operations, α-equivalence, substitu-
tion, and free variable calculation. The LNgen tool of Aydemir and
Weirich [1] augments this output with generic proofs about this
representation, including many of the properties of § 5.

Tools for general bindings Cirstea et al. [7] define the ρ-calculus,
a λ-calculus-like system for expressing rewriting strategies, which
features generic binders represented by any term.

Herman and Wand define a specification language for binding
structure in the service of α-converting Scheme programs contain-
ing macros [12]. Although it only allows single variables as bind-
ing patterns, it is flexible about the subterms in which each variable
should be bound.

The OTT tool provides an expressive specification language
for generalized binding in programming languages. In conjunction



with a specification of the abstract syntax, OTT allows the defini-
tion of bindspecs: functions that arbitrarily select the binding vari-
ables that appear in terms and bind them elsewhere in the abstract
syntax. They give a semantics of this specification language using
a representation with concrete variable names [26] and show that
under appropriate conditions, their concrete substitution functions
respect α-equivalence and coincide with capture-avoiding substitu-
tion.

Inspired by the OTT specification language, Urban and Kaliszyk
recently extended the Nominal Isabelle proof assistant with sup-
port for general bindings [34]. Their system works by using the
OTT binding specifications (with some restrictions) to define α-
equivalence classes of syntax with binders which they use to model
nominal-logic specifications. While a direct comparison is diffi-
cult, their restrictions prevent variables from being bound by two
different bindspecs, which seems necessary for telescopes. On the
other hand, they also add two forms of set bindings to their speci-
fications, allowing binders to be equivalent up to permutation and
weakening of their patterns.

As discussed in § 7.2, there is a close connection between UN-
BOUND and Francois Pottier’s Cαml system [22], based on a nom-
inal semantics for binding. One major difference is that Cαml ex-
plicitly does not include support for nested binders. Another differ-
ence is that Cαml is an external tool that performs a preprocessing
step, whereas UNBOUND is a library. However, this is not a fun-
damental difference; Cαml could be made into a library as well if
OCaml had better support for generic programming (likewise, UN-
BOUND could be ported to languages without support for generic
programming by making it into an external tool).

Cheney’s FreshLib [6] is a Haskell library which served as an
inspiration for UNBOUND. Like UNBOUND, it uses generic pro-
gramming to automatically define α-equivalence and substitution
functions (although FreshLib is based on a nominal semantics for
name binding, so the generic operations that establish its semantics
are different). FreshLib also supports some forms of generalized
binding, but does not give a generic treatment of patterns.

Other tools based on nominal logic include FreshML [31] and
FreshOCaml [30]. However, they support limited forms of binding
patterns which do not include embeddings, recursive or nested
bindings. Likewise, the Haskell Nominal Toolkit [3] is a library
that supports single binding for a fixed term structure.

9. Future work
Although we believe UNBOUND is useful in its current state, there
are several directions in which we would like to extend it.

Other forms of “exotic” binding Cheney [5] gives a catalogue of
“exotic” binding, renaming, and structural congruence situations.
Although UNBOUND can express many of these examples, we hope
to extend UNBOUND with better support for “global” binding, such
as that used for objects and modules. Furthermore, we would also
like to add support for set binding similar to Nominal Isabelle [34].
However, implementing unbind2 in the presence of such bindings
is a nontrivial task.

Better static distinction between names and patterns As dis-
cussed in § 6.2, an infelicity of our current design is the ability
to get terms and patterns mixed up. UNBOUND inherits this limita-
tion from REPLIB; it is possible that an alternative framework for
generic programming would perform better in this respect.

Scoping UNBOUND does not keep track of the scope of names
once they have been unbound. While this laxity leads to a familiar
and flexible interface, it does not rule out bugs that could occur
from names escaping their scope. Pottier et al. have made progress

in this respect [21, 23], and we would like to explore a variant
interface for UNBOUND that provides this tighter control.

Mechanized metatheory The UNBOUND specification language
seems ideal for incorporation into tools like Ott, LNgen and Nom-
inal Isabelle that assist in the formalization of programming lan-
guage metatheory. Indeed, locally nameless representations have
already proved useful for that sort of reasoning.

However, in the context of formal reasoning, we must be more
careful about scoping. Allowing bound names to escape their scope
can lead to unsoundness (see Urban [32]). Such functions violate
the “Freshness Condition for Binders”, a side condition required
for all function definitions in Nominal Isabelle [33]. Adapting UN-
BOUND to mechanized reasoning would require a similar side con-
dition for function definitions.

10. Conclusion
UNBOUND is an expressive specification language for generalized
binding structures, defined with a simple compositional semantics,
proven correct, and immediately available to the GHC user com-
munity. Because it supports the rapid development of typecheckers,
compilers, and interpreters, it is a valuable tool for exploration in
programming language design. Furthermore, we hope that the de-
sign of UNBOUND itself will be a model for future work on library
support for expressive binding structure.
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and R. Hähnle, editors, IJCAR, volume 6173 of Lecture Notes in
Computer Science, pages 15–21. Springer, 2010.

[19] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 186:165–193, 2003.
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