
LNgen: Tool Support for
Locally Nameless Representations

Brian Aydemir and Stephanie Weirich

University of Pennsylvania
{baydemir,sweirich}@cis.upenn.edu

Abstract. Given the complexity of the metatheoretic reasoning about
current programming languages and their type systems, techniques for
mechanical formalization and checking of such metatheory have received
much recent attention. In previous work, we advocated a combination
of locally nameless representation and cofinite quantification as a light-
weight style for carrying out such formalizations in the Coq proof assis-
tant. As part of the presentation of that methodology, we described a
number of operations associated with variable binding and listed a num-
ber of properties, called “infrastructure lemmas”, about those operations
that needed to be shown. The proofs of these infrastructure lemmas are
straightforward but tedious.

In this work, we present LNgen, a prototype tool for automatically gener-
ating statements and proofs of infrastructure lemmas from Ott language
specifications. Furthermore, the tool also generates a recursion scheme
for defining functions over syntax, which was not available in our previ-
ous work. LNgen works in concert with Ott to effectively alleviate much
of the tedium of working with locally nameless syntax. For the case of
untyped lambda terms, we show that the combined output from the two
tools is sound and complete, with LNgen automatically proving many
of the key lemmas. We prove the soundness of our representation with
respect to a fully concrete representation, and we argue that the repre-
sentation is complete—that we generate the right set of lemmas—with
respect to Gordon and Melham’s “Five Axioms of Alpha-Conversion.”

1 Introduction

Mechanical formalizations of programming languages have received much re-
cent attention. One question that is foremost in any mechanization is the treat-
ment of binding. Many tools exist to aid in this practice—Abella [1], Hybrid [2],
Lambda Tamer [3], Nominal Isabelle [4], Twelf [5]—as well as many representa-
tion techniques—de Bruijn indices [6], higher-order abstract syntax (hoas) [7],
locally named [8], locally nameless [9], weak hoas [10], etc.

As a programming language designer, how should we compare these method-
ologies? What tools should we use? The PoplMark challenge [11] laid out a
number of criteria, which we have come to interpret with respect to existing
technologies, for evaluating potential answers:

2 Brian Aydemir and Stephanie Weirich

1. Transparency. Reasoning should be similar to that done with pencil and
paper. For example, de Bruijn indices are not transparent. Metatheory in-
volving them often includes many lemmas about shifting—lemmas that have
no correspondence to pencil and paper proofs.

2. Logical expressivity. There should be minimal restriction on the logic that we
use for formal developments. For example, the models of Nominal Logic [12]
require that all definable relations be equivariant. To allow similar reason-
ing in higher-order logic, where this is not the case, Nominal Isabelle must
require equivariance proofs (many of which can be provided automatically).

3. Traction. The strategy should draw on the strengths of the proof assistant.
For example, in previous work [13], we explored nominal reasoning in Coq by
defining an interface which specified the constructors of a nominal datatype,
as well as an induction principal and recursion scheme for that datatype.
We chose not to pursue that line of work because the interface, while usable,
prevented users from taking advantage of Coq’s built-in features. Utilizing
distinctness and injectivity of datatype constructors, reasoning by induction,
and defining functions by recursion all required the explicit use of special
theorems and combinators. Furthermore, functions defined by the recursion
combinator would not reduce by Coq’s definitional equality—we had to use
explicit rewriting.

From these criteria, we draw the following conclusions: We want a representation
that involves reasoning about variable names, not indices, because that is the
most transparent. We want to use this representation in a general purpose logic,
such as higher-order logic or the Calculus of Inductive Constructions (cic), but
we want to automate as much of the tedious machinery as possible. And we want
our representation of syntax to use what proof assistants are good at: specifying
inductive datatypes and generating their associated induction principles and
recursion schemes.

In previous work [14], we proposed a completely manual scheme for reasoning
about binding structure based on locally nameless representations and defining
inference rules with cofinite quantification. We described a number of operations
associated with variable binding (free variable calculation, index substitution,
free variable substitution, and free variable closing) and listed a number of prop-
erties, called “infrastructure lemmas”, about those operations that needed to be
shown. This strategy is lightweight in that the definitions of the operations are
simple structural recursions, so proofs of their properties are straightforward.
We have successfully used this strategy in our own developments and know of
its use by others—for example, by Jia et al. [15], Pratikakis et al. [16], Rossberg
et al. [17], and many more.

However, our previous work did not fully explain its own success. Why were
the “infrastructure lemmas” the right set of lemmas to show? Would future
formalizations require still more lemmas? Furthermore, if the proofs of the in-
frastructure lemmas are so straightforward and mechanical, should it not be
possible to automatically generate those lemma statements and their proofs?

LNgen: Tool Support for Locally Nameless Representations 3

In this paper, we describe a prototype tool, LNgen, that we have devel-
oped for exactly this last purpose. LNgen uses the same input language as
Ott [18], a tool for translating language specifications written in an intuitive
syntax into output for LATEX and proof assistants. While Ott generates locally
nameless definitions—datatypes for syntax and relations, functions to calculate
free variables and substitutions—from the specification, LNgen provides recur-
sion schemes for defining functions over syntax and a large collection of infras-
tructure lemmas. LNgen automates much of the tedium associated with the
locally nameless style, even in our streamlined style, by allowing users to focus
on the more interesting aspects of their developments instead of on infrastructure
lemmas. In Sec. 2, we describe in additional detail the input to and output from
LNgen, highlighting the important properties that are automatically proved.

Following the overview of LNgen, we discuss soundness (Sec. 3) and com-
pleteness (Sec. 4) in the particular case of the untyped lambda calculus. For
soundness, we prove that the locally nameless definition generated by Ott is ad-
equate with respect to fully concrete terms identified up to alpha equivalence.
The lemmas proved by LNgen provide many of the key lemmas required in this
proof. For completeness, we prove that even though we use a locally nameless
representation, the lemmas generated by LNgen are enough to shield users from
the de Bruijn indices used to represent bound variables. Specifically, we give a
model of Gordon and Melham’s “Five Axioms of Alpha-Conversion” [19]. Al-
though we think that the output of Ott and LNgen is more convenient to work
with than the five axioms, we can implement these five axioms in an extremely
straightforward manner, by using the lemmas proved by LNgen and without
reasoning about de Bruijn indices or by induction on syntax.

We and others have experience with using LNgen in significant developments.
Section 5 gives an overview of the case studies. Our experiences suggest that this
tool has the advantages of code generators without the drawbacks of generating
executable code. In particular, the output of LNgen is straightforward for pro-
grammers to effectively understand (definitions and lemma statements must be
comprehended, but proofs do not) and robust to change (lemma statements do
not change significantly as the language is modified).

We conclude the paper with related work (Sec. 6), and our conclusions and
future work (Sec. 7).

2 The LNgen Tool

LNgen is a prototype tool for generating locally nameless definitions and in-
frastructure for the Coq proof assistant. While LNgen is still under active de-
velopment, the current version is available and has been used for significant
developments.1 LNgen relies on Ott [18] to generate the core locally nameless
definitions for a language. It then generates additional definitions and lemmas
that are often needed in developments—the main benefit that it provides to
users over using Ott alone.
1 LNgen is available from http://www.cis.upenn.edu/~baydemir/.

4 Brian Aydemir and Stephanie Weirich

metavar expvar, x, y, z ::=

{{ repr-locally-nameless }}

grammar

exp, e, f, g :: ’’ ::=

| x :: :: var

| e1 e2 :: :: app

| \ x . e :: :: abs

(+ bind x in e +)

substitutions

single e x :: subst

freevars

e x :: fv

Definition expvar := var.

Inductive exp : Set :=

| var_b : nat -> exp

| var_f : expvar -> exp

| app : exp -> exp -> exp.

| abs : exp -> exp

Fig. 1. Input file (left) and output Coq datatype (right) for lambda terms

The input language for LNgen is a proper subset of the Ott specification
language. Figure 1 shows an example input file for untyped lambda terms. The
syntax is intended to mimic what one might write informally. Ott is specifically
designed for specifying programming languages in a manner that is both con-
venient for people and machines, e.g., proof assistants. Thus, Ott is a natural
starting point for the input language to LNgen. We can take advantage of the
work that has gone into the design of Ott, not require users to learn a new spec-
ification language, and allow our tool to work in parallel with Ott, relying on
Ott for the generation of some of the Coq definitions as well as LATEX output.

Below, we use the example to give a brief overview of the subset of Ott that
LNgen supports; a detailed description of the Ott language can be found else-
where [20]. The first part of an input file for LNgen consists of a list of metavar
declarations. Each declaration defines a new type for object language variables—
LNgen and Ott define binding and substitution for these variables. In Fig. 1, the
text repr-locally-nameless indicates that binding should be represented us-
ing a locally nameless encoding. (Ott can also output definitions using a concrete
representation of binding.) The second part, the grammar, consists of a list of
context-free grammar definitions for nonterminals. Each declaration defines a
new, inductively defined type for object-language abstract syntax trees. Bind-
ing specifications may be attached to each constructor. For example in the abs
constructor, the metavariable x is a binding occurrence in the nonterminal e.
The third part follows the substitutions keyword and indicates that functions
for substituting for free variables should be generated. The final part follows
the freevars keyword and indicates that functions for calculating free variables
should be generated. Anything else in the file is ignored by LNgen but may be
processed by Ott, e.g., specifications of inductively defined relations.

LNgen: Tool Support for Locally Nameless Representations 5

2.1 Generated Definitions

Figure 1 also shows the output representation that Ott produces for the untyped
lambda terms. Metavariables are implemented by the type var, which is provided
by our metatheory library.2 The constructor names for the syntactic forms are
determined by the input file, except the constructors for free and bound variables,
where _f and _b are appended to the specified name. The variable in the abs
constructor disappears because the binding specification indicates that this is a
binding constructor.

Figure 2 lists the basic operations and predicates generated from the input
in Fig. 1. For accessibility and brevity, we use mathematical notation instead
of listing the Coq output directly. Ott generated the definitions of fv and subst;
LNgen generated everything else. In general, the output follows our previously
described style for working with locally nameless representations [14]. The oper-
ations include calculating the free variables of an expression (fv), substituting for
an index (openi), replacing a free variable with an index (closei), and substitut-
ing for a free variable (subst). Note that close allows us to construct a concrete
expression without explicitly referring to indices. Using lam x as an abbreviation
for abs ◦ closex, we can transparently write λx.λy.λz.z(xy) as

lam x (lam y (lam z (app (var f z) (app (var f x) (var f y))))) .

Note also that the versions of openi and closei presented here are derived from
those of Pollack [9] and are slightly more general than that of our previous
work—they may initially be called with an index other than zero. Previously,
we promoted the absolute simplest definitions to make working by hand easy.
Here, we have tool support, so it makes little difference if these definitions are
more complicated. If anything, they are actually easier for LNgen to work with
because they require tracking fewer invariants.

The final definitions in Fig. 2 give the constructors for the inductively de-
fined lc and lc set predicates, which hold for locally closed lambda terms—those
with no unresolved de Bruijn indices. Only expressions that satisfy these predi-
cates correspond to lambda calculus terms. The only difference between the two
predicates is that the former is in Prop and the latter is in Set; their definitions
are otherwise identical. Because of Coq’s distinction between Prop and Set, their
uses are not. An object of type lc e is treated as a proof and may be analyzed
only to produce another proof; an object of type lc set e may be analyzed freely.
The inductive definition of lc provides an induction principle for reasoning about
expressions, while the inductive definition of lc set provides a recursion scheme
for defining functions over expressions. The induction principle and recursion
scheme are both shown in Fig. 3.

Our treatment of local closure departs from our previous work in that we
previously did not provide lc set and the recursion scheme that comes with it.

2 The metatheory library is included with LNgen and also available from http://www.

plclub.org/metalib/.

6 Brian Aydemir and Stephanie Weirich

fv : exp → expvarset
fv (var f x) = { x }
fv (var b i) = ∅
fv (abs e1) = fv e1

fv (app e1 e2) = fv e1 ∪ fv e2

openi : nat → exp → exp → exp
openi e (var b i1) = (var b i1) when i1 < i
openi e (var b i1) = e when i1 = i
openi e (var b i1) = (var b (i1 − 1)) when i1 > i
openi e (var f x) = var f x
openi e (abs e1) = abs (open(i + 1) e e1)

openi e (app e1 e2) = app (openi e e1) (openi e e2)

open e1 e2 = open0 e1 e2

closei : nat → expvar → exp → exp
closei x (var b i1) = var b i1 when i1 < i
closei x (var b i1) = var b (1 + i1) when i1 ≥ i
closei x (var f y) = var b i when x = y
closei x (var f y) = var f y when x 6= y
closei x (abs e1) = abs (close(1 + i) x e1)
closei x (app e1 e2) = app (closei x e1) (closei x e2)

close x e = close0 x e

subst : exp → expvar → exp → exp
subst e x (var b i1) = var b i1
subst e x (var f y) = e when x = y
subst e x (var f y) = var f y when x 6= y
subst e x (abs e1) = abs (subst e x e1)
subst e x (app e1 e2) = app (subst e x e1) (subst e x e2)

lc : exp → Prop
lc var : ∀ x , lc (var f x)
lc app : ∀ e1 e2 , lc e1 → lc e2 → lc (app e1 e2)
lc abs : ∀ e1 , (∀ x , lc (open (var f x) e1)) → lc (abs e1)

lc set : exp → Set
lc set var : ∀ x , lc set (var f x)
lc set app : ∀ e1 e2 , lc set e1 → lc set e2 → lc set (app e1 e2)
lc set abs : ∀ e1 , (∀ x , lc set (open (var f x) e1)) → lc set (abs e1)

Convention: The first two arguments to lc app and lc set app are implicit, as are the
first arguments to lc abs and lc set abs.

Fig. 2. Definitions generated by Ott and LNgen

LNgen: Tool Support for Locally Nameless Representations 7

Induction principle (lc ind)

∀ (P : exp → Prop),
(∀ x , P (var f x))→
(∀ e1 e2 , lc e1 → P e1 → lc e2 → P e2 → P (app e1 e2))→
(∀ e1,

(∀ x , lc (open (var f x) e1)) → (∀ x , P (open (var f x) e1)) → P (abs e1))→
∀ e , lc e → P e

Recursion scheme (lc set rec)

lc set rec has the same type as lc ind, except with Set instead of Prop, and lc set
instead of lc. It behaves as follows: If f = lc set recP fvar fapp fabs, then

f (var f x) (lc var x) = fvar x
f (app e1 e2) (lc app lcp1 lcp2) = fapp e1 e2 lcp1 (f e1 lcp1) lcp2 (f e2 lcp2)
f (abs e1) (lc abs lcp) = fabs e1 lcp (λx. f (open (var f x) e1) (lcp x)) .

Fig. 3. Induction principal and recursion scheme

We can use the scheme, for example, to define a function to perform parallel
β-reduction on lambda terms:

beta = lc set rec (λ . exp) fvar fapp fabs where
fvar x = var f x
fapp (abs e ′

1) e ′
2 = open e ′

2 e ′
1

fapp e ′
1 e ′

2 = app e ′
1 e ′

2

fabs e1 f ′ = abs (closex (f ′ x)) for some x /∈ fv e1

(In Coq, one would use this recursion scheme via Fixpoint, writing the function
more naturally using explicit pattern matching on the local closure proof, and
explicit recursive calls.) In the variable case, beta simply returns that variable. In
the application case, the result of reducing the first component is examined: if it
is an abstraction (abs e ′

1), beta substitutes the reduced second component e ′
2 for

the first index in the body of the abstraction. Otherwise, reduction continues into
both components of the application. In the abstraction case, beta reduces the
body of the abstraction by picking a fresh variable to give to f ′. This argument
to fabs is a function that, when given a name for the variable bound at this
location, computes the result of beta for the body of the abstraction using that
name. After this recursive call, the branch removes that fresh variable from the
result with close and creates a new abstraction.

In another departure from our previous work, neither lc nor lc set uses cofinite
quantification. Instead, both use “universal” quantification in the abs case, by
requiring that the premise hold for all names. This choice results in the strongest
possible induction principle and recursion scheme. For lc, LNgen generates as
a lemma an “existential” form of the lc abs constructor (lemma lc-abs-exists in
Fig. 4) that requires showing the premise for only one name. This lemma provides

8 Brian Aydemir and Stephanie Weirich

the easiest to use introduction principle for proving lc (abs e). This style of using
a “universal” and an “existential” rule is based on the style of McKinna and
Pollack [8]. While cofinite quantification is a good compromise between these
two extremes when doing everything by hand, with tool support, it makes sense
to provide these stronger principles. Using universal quantification also allows
us to prove the uniqueness of lc proofs (lemma lc-unique in Fig. 4).

2.2 Generated Lemmas

The main benefit to using LNgen is that it automatically generates a collection
of lemmas (with their proofs) about expressions that are useful in metatheoretic
reasoning. We highlight the most important of these in Fig. 4. The collection
shown includes all of the lemmas that we discussed in our previous work [14].
For convenience, LNgen also generates several variants of the lemmas shown
and others besides. Our goal in picking the set of lemmas to generate was not
to determine some minimal “complete” set for working with metatheory but to
generate a set that, from our experience, we know to be useful in formalizations.

Many of the lemmas in Fig. 4 describe the interaction between the various
operations. For example, the first group of lemmas (1–6) describe what happens
when fv is applied to expressions built from open, close and subst.

The next eight lemmas (7–14) are primarily about subst. Lemma subst-spec
decomposes substitution into open composed with close, which was Gordon’s
definition of substitution [21]. We prefer our version because it commutes di-
rectly with constructors. (A definition in terms of open and close would need to
use openi and closei once it went under a binder.) Lemma subst-abs lets us rea-
son about how substitution interacts with abstractions, while making sure that
we call subst only on locally closed terms. (The definition of subst just pushes
through an abstraction, calling itself recursively on the body, which may have
an unresolved index.)

The remaining lemmas (15–23) describe properties of open, close, and lc.
Lemma lc-abs-exists asserts the existence of an operation that constructs a local
closure proof for an abstraction from a proof about a single variable. (Recall that
the definition of local closure required that the body be closed for any name for
the free variable; this one requires only a single name.) Lemma lc-subst asserts
the existence of an operation that shows that local closure proofs are preserved
by substitution. Lemma lc-unique shows that all local closure proofs about the
same expression are equivalent.3 Finally, lemmas lc-of-lc-set and lc-set-of-lc show
the equivalence between lc and lc set.

2.3 Generated Proofs

LNgen is able to automatically generate the proofs of each of the lemmas in Fig. 4
because, in general, they are “boring” infrastructure lemmas whose proofs are
3 The proof of this lemma requires extensional equality on functions, which may safely

be asserted in Coq as an axiom.

LNgen: Tool Support for Locally Nameless Representations 9

1. fv-open-upper:
fv (open e1 e2) ⊆ fv e1 ∪ fv e2

2. fv-open-lower:
fv e2 ⊆ fv (open e1 e2)

3. fv-close:
fv (close x e) = fv e \ { x }

4. fv-subst-upper:
fv (subst e1 x e2) ⊆ fv e1 ∪ (fv e2 \ { x })

5. fv-subst-lower:
(fv e2 \ { x }) ⊆ fv (subst e1 x e2)

6. fv-subst-fresh:
fv (subst e1 x e2) = fv e2

when x /∈ fv e2

7. subst-fresh-eq:
subst e1 x e2 = e2

when x /∈ fv e2.
8. subst-subst:

subst e1 x (subst e2 y e) =
subst (subst e1 x e2) y (subst e1 x e)
when y /∈ fv e1 and y 6= x

9. subst-spec:
subst e1 x e2 = open e1 (close x e2)

10. subst-open:
subst e1 x (open e2 e3) =
open (subst e1 x e2) (subst e1 x e3)
when lc e1

15. open-close:
open (var f x) (close x e) = e

16. close-open:
close x (open (var f x) e) = e
when x /∈ fv e

17. open-inj:
open (var f x) e1 = open (var f x) e2

implies e1 = e2

when x /∈ fv e1 ∪ fv e2

18. close-inj:
close x e1 = close x e2

implies e1 = e2

19. lc-abs-exists:
lc abs exists x lcp : lc (abs e)
when lcp : lc (open (var f x) e)

20. lc-subst:
lc subst lcp1 x lcp2 : lc (subst e1 x e2)
when lcp1 : lc e1 and lcp2 : lc e2

21. lc-unique:
If (lcp1 : lc e) and (lcp2 : lc e),
then lcp1 = lcp2

22. lc-of-lc-set:
lc set e implies lc e

23. lc-set-of-lc:
lc e implies lc set e

11. subst-open-var:
subst e1 x (open (var f y) e2) = open (var f y) (subst e1 x e2)
when x 6= y and lc e1

12. subst-abs:
subst e1 x (abs e2) = abs (close z (subst e1 x (open (var f z) e2)))
when z /∈ fv e1 ∪ fv e2 ∪ { x } and lc e1

13. subst-close:
subst e1 x (close y e2) = close y (subst e1 x e2)
when x 6= y and y /∈ fv e1 and lc e1

14. subst-intro:
open e1 e2 = subst e1 x (open (var f x) e2) when x /∈ fv e2

Fig. 4. Some of the lemmas generated by LNgen

straightforward inductions. At any given point in a proof, there is little choice
about what step to take next. Thus, most of the proof scripts start by applying
an induction tactic and then use a “power tactic” to apply a default set of
simplifications to the resulting subgoals. In cases where this is not sufficient,
LNgen generates more complex scripts based on our knowledge of how such
proofs normally proceed. There is no worry about the soundness of our reasoning:

10 Brian Aydemir and Stephanie Weirich

the scripts generated by LNgen must be run by Coq to generate proof terms that
are then checked.

We favor generating proof scripts over proof terms because it keeps the im-
plementation of LNgen simple. Proof terms are specific to individual lemmas
and vary from language to language. By contrast, our tactics—which are useful
in their own right—apply to multiple lemmas and do not need to vary from lan-
guage to language. Unfortunately, because Coq’s tactic language is incompletely
specified, it is impossible for us to guarantee that our scripts will always succeed.
These scripts have never failed on any of our case studies. However, if some proof
should fail, the effect is localized. The user may have to do that proof by hand
(if they would like to use that lemma) but other generated definitions, lemmas,
and proofs will still be available.

2.4 Input Restrictions

LNgen supports only a subset of the Ott language. List forms (for specifying
constructors of variable arity) and subgrammars (for indicating that, for exam-
ple, values are a subset of expressions) are both unsupported. The only binding
specifications accepted by LNgen are those where a single metavariable binds
in a single nonterminal. This excludes Ott’s auxiliary functions for computing
the set of binders in an object, e.g., those introduced by nested record patterns.
We see no reason why some future version of LNgen could not be extended with
these forms.

3 Soundness

Since everything generated by Ott and LNgen must be run through Coq, there
is no need to worry that one is building a development on top of an inconsis-
tent foundation—Coq will complain if a definition is ill-formed or if a proof is
incomplete. However, this is not the same as saying that their outputs faith-
fully reflect the language that the user specified. Binding specifications in Ott
use names (i.e., metavariables) to indicate binding occurrences of variables, as
is common in informal practice. Intuitively, terms in the specification use a fully
concrete encoding of binding: all variables are named, and terms are identified
up to alpha equivalence. On the other hand, we use Ott and LNgen to gener-
ate output that uses a locally nameless representation for binding, where bound
variables are represented as de Bruijn indices and where syntactic equality cor-
responds to alpha equivalence.

In this section, we prove that the user need not worry about this difference
in representations: the locally nameless representations generated by Ott and
LNgen are adequate representations of the fully concrete ones. Informally, this
means that there is a bijection between the terms of the two representations and
that substitution is compositional with respect to this bijection [22]. Terms rep-
resentable in one representation are representable in the other, and substitution
means the same thing for both representations. Below, we make these notions

LNgen: Tool Support for Locally Nameless Representations 11

precise and carry out the proofs for the specific case of untyped lambda terms
(Fig. 1). By considering adequacy for a particular (and small) language, we keep
the proofs below relatively simple, while still demonstrating the utility of the lem-
mas generated by LNgen. A language-independent account of adequacy would
require a precise semantics for Ott specifications and a precise specification of
how Ott and LNgen generate their output. We leave developing these for future
work. We also leave as future work formalization in Coq of the proofs below.
Ott does not generate a definition of capture avoiding substitution or of alpha
equivalence. Furthermore, mechanized reasoning about these notions is difficult
and extremely tedious—precisely the reasons why we prefer to represent binding
in some other way! Without tool support, we must work out ourselves properties
of capture avoiding substitution and alpha equivalence that are ordinarily taken
for granted when writing out proofs by hand.

Fully concrete lambda terms are defined in Fig. 5, along with free variables,
capture-avoiding substitution, and alpha equivalence. Note that capture-avoiding
substitution is defined by induction on the height of terms simultaneously with
a proof that substituting a variable preserves the height of terms. (In the second
case for lambda abstractions, the recursive call is not on an immediate subterm.)
By assuming that picking a variable fresh for a finite set is deterministic, we
obviate the need to show that the definition of substitution actually defines a
function—this is trivially the case. We find it convenient to work with a definition
of capture-avoiding substitution that is total, so the abstraction case always
renames the bound variable to avoid capture.

To show the adequacy of our locally nameless representation, we prove that
there is an alpha-equivalence respecting bijection between concrete terms and
locally nameless terms that are locally closed. We give this bijection by defining
functions between the two sets and then proving that they are inverses of each
other. We define the function d−e from concrete terms to locally nameless ones
as follows:

dxe def= var f x
dM1 M2e

def= app dM1e dM2e
dλ x .M1e

def= abs (close x dM1e) .
The fact that this function yields only locally closed terms follows by structural
induction on its argument, using lemmas lc-abs-exists and open-close in the case
for abstractions. We define the function b−c from locally nameless terms that
are locally closed to concrete terms using the recursion principle in Fig. 3. Note
that this definition is also a function, again because we assume that picking a
fresh variable not in a particular set is deterministic.

bvar f xc def= x
bapp e1 e2c

def= be1c be2c
babs e1c

def= λ x . bopen (var f x) e1c for some x /∈ fv e1

In the remainder of this section, we sketch out the proof of adequacy; addi-
tional details can be found in the appendix. The proofs below are straightforward

12 Brian Aydemir and Stephanie Weirich

Expressions

M ,N ::= x | M1 M2 | λ x .M1

Free variables

fv (x)
def
= { x }

fv (M1 M2)
def
= (fv M1) ∪ (fv M2)

fv (λ x .M1)
def
= (fv M1) \ { x }

Capture avoiding substitution

[N / x] (x)
def
= N

[N / x] (y)
def
= y when y 6= x

[N / x] (M1 M2)
def
= ([N / x] M1) ([N / x] M2)

[N / x] (λ x .M1)
def
= λ x .M1

[N / x] (λ y .M1)
def
= (λ z . [N / x] [z / y] M1)

for some z /∈ fv N ∪ fv M1 and when y 6= x

Alpha equivalence

The binary relation =α on expressions is the least congruence closed under

λ x .M1 =α λ y . [y / x] M1 when y /∈ fv M1

Fig. 5. Fully concrete lambda terms

given the lemmas generated by LNgen. We need only to be careful about ordering
properly the lemmas and theorems.

We first need to show that both d−e and b−c preserve free variables. These
proofs also serve as basic sanity checks: it would be odd for corresponding terms
in the two representations to have different sets of free variables.

Lemma 1. fv (M) = fv (dM e) for any M .

Proof. By induction on the structure of M . In the case for abstractions, we need
lemma fv-close. ut

Lemma 2. fv (bec) = fv (e) for any locally closed e.

Proof. By induction on the proof that e is locally closed. In the case for abstrac-
tions, we need lemmas fv-close and close-open. ut

Next, we prove simultaneously that d−e commutes with substitution and
that it preserves alpha equivalence. For b−c, we prove that it commutes with
substitution; it trivially preserves alpha equivalence.

Theorem 1. For all M ,

LNgen: Tool Support for Locally Nameless Representations 13

1. Substitution commutes with d−e. That is, for any N and x,

d[N / x] M e = subst dN e x dM e .

2. d−e respects alpha-equivalence. That is, for any N such that N =α M,

dM e = dN e .

Proof. We prove these two results simultaneously by induction on the height of
M , observing that substituting a variable does not change the height of a term.
We need lemmas fv-close, subst-fresh-eq, subst-spec, subst-close, and close-open.

ut

Theorem 2. b−c commutes with substitution. That is,

bsubst g x ec =α [bgc / x] bec

for all locally closed e and g, and for all x .

Proof. By induction on the proof that e is locally closed. In the case for ab-
stractions, we need lemmas subst-fresh-eq, subst-spec, subst-abs, open-close, and
close-open. ut

Finally, we prove that d−e and b−c are inverses of each other. It follows that
each function defines a bijection.

Theorem 3. bdM ec =α M for any M .

Proof. By induction on the structure of M . In the case for abstractions, we need
theorem 2, and lemmas fv-close and subst-spec. ut

Theorem 4. dbece = e for any locally closed e.

Proof. By induction on the proof that e is locally closed. In the case for abstrac-
tions, we need lemma close-open. ut

Taken together, theorems 1–4 suffice to prove that the locally nameless rep-
resentation generated by Ott and LNgen is adequate with respect to the fully
concrete interpretation of the original Ott specification.

4 Completeness

Does LNgen generate enough definitions and properties to get work done? Of
course, this is an impossible question to answer because the tool cannot possibly
generate proofs of every property that one could need or want. However, we can
limit the scope of the question by showing that LNgen trivially models some
specification of binding. By choosing a specification that makes no mention of
de Bruijn indices, this result implies that the user need only work with locally-
closed terms and never reason explicitly about de Bruijn indices.

14 Brian Aydemir and Stephanie Weirich

We make our claim by showing that the output of Ott and LNgen for untyped
lambda terms (Fig. 1) is not very far from Gordon and Melham’s “Five Axioms of
Alpha-Conversion” [19]. In fact, we can derive these axioms with only currying,
uncurrying, and applications of lemmas generated by LNgen. This work is a
bit tedious, but none of it includes reasoning about de Bruijn indices, doing
induction on raw expressions, or doing induction on local closure derivations.
Thus, it substantiates our claim that the output of our tool provides users with
enough machinery to reason about binding. The LNgen distribution includes a
straightforward, mechanical formalization in Coq of the results of this section.

Gordon and Melham’s five axioms are defined in terms of a type Term, three
constructors for that type,

Var : expvar → Term
App : Term → Term → Term
Lam : expvar → Term → Term ,

and three operations for that type,

Fv : Term → expvarset
Subst : Term → (Term × expvar) → Term
Abs : (expvar → Term) → Term .

Our implementation starts by defining Term as a dependent pair of a raw
expression and a proof that it is locally closed.

Definition 1 (Term).

Term
def= Σ e : exp. lc e .

The definitions of the three constructors simply construct and propagate
local closure proofs. In the definition of Lam, we explicitly use the “existential”
version of lc abs (i.e., lc abs exists) and implicitly use lemma open-close to show
that the local closure proof applies to first component of the tuple.

Definition 2 (Gordon-Melham Constructors).

Var x def= (var f x , lc var x)
App (e1, lcp1) (e2, lcp2) def= (app e1 e2, lc app lcp1 lcp2)
Lam x (e1, lcp1) def= (abs (close x e1), lc abs exists x lcp1)

The definitions for free variables (Fv) and substitution (Subst) simply push
the operations on raw terms through the dependent pair. For substitution, we
rely on the fact that substitution preserves local closure.

Definition 3 (Fv and Subst).

Fv (e1, lcp1) def= fv e1

Subst (e1, lcp1) ((e2, lcp2), x) def= (subst e2 x e1, lc subst lcp2 x lcp1)

LNgen: Tool Support for Locally Nameless Representations 15

The final operation, Abs, reifies a function from variable names to terms into
a lambda term. We defer its definition until later, when we discuss the last of
the five axioms.

With the model above, we can derive Gordon and Melham’s five axioms. The
proofs of their five axioms involve little more than projecting out components
of dependent pairs and applying lemmas generated by LNgen to construct local
closure derivations. In fact, the only interesting aspect of these proofs is that
they are so uninteresting. Below, we only mention the lemmas that the proofs
depend on; additional details can be found in the appendix.

The first three axioms are basic facts about free variables, capture-avoiding
substitution, and alpha conversion.

Theorem 5 (Axiom 1: Free variables).

1. Fv (Var x) = { x }
2. Fv (App t1 t2) = Fv t1 ∪ Fv t2
3. Fv (Lam x t1) = Fv t1 \ { x }

Proof. By unfolding definitions. Part 3 requires lemma fv-close. ut

Theorem 6 (Axiom 2: Substitution).

1. Subst (Var x) (u, x) = u
2. x 6= y implies Subst (Var y) (u, x) = Var y
3. Subst (App t1 t2) (u, x) = App (Subst t1 (u, x)) (Subst t2 (u, x))
4. Subst (Lam x t) (u, x) = Lam x t
5. x 6= y and y /∈ (Fv u) imply Subst (Lam y t) (u, x) = Lam y (Subst t (u, x))

Proof. By unfolding definitions. All parts require lemma lc-unique. Part 4 also
requires lemmas fv-close and subst-fresh-eq. Part 5 also requires lemma subst-
close. ut

Theorem 7 (Axiom 3: Alpha conversion).

y /∈ Fv (Lam x t) implies
Lam x t = Lam y (Subst t (Var y , x))

Proof. By unfolding definitions. The proof requires lemmas fv-close, subst-spec,
close-open, and lc-unique. ut

To support the definition of functions over lambda-calculus expressions, Gor-
don and Melham’s work states an iteration axiom and uses it to derive a recursion
scheme through pairing. However, because Coq produces recursion schemes al-
ready, we define the recursion scheme directly. The iterative version follows as a
simple corollary.

Theorem 8 (Axiom 4: Recursion scheme). For all result types R and all

(fvar : expvar → R)
(fapp : R → R → Term → Term → R)
(fabs : (expvar → R) → (expvar → Term) → R) ,

there exists a unique f of type Term → R such that

16 Brian Aydemir and Stephanie Weirich

1. f (Var x) = fvar x
2. f (App t1 t2) = fapp (f t1) (f t2) t1 t2
3. f (Lam x t) = fabs (λy. f(Subst t (Var y , x))) (λy.Subst t (Var y , x)).

Proof. By unfolding definitions. All parts require lemma lc-unique. Part 3 also
requires lemma subst-spec. ut

The final axiom concerns Abs, an operation for turning functions from expvars
to Terms into lambda abstractions. This operation allows the Gordon-Melham
recursion combinator to create a new term in the lambda case. The trickiest part
of the definition of Abs is picking a variable name to use for the binder that is
fresh for the body of the abstraction. We do this in two stages: We first access
the body with an arbitrary variable x0 (which may already appear in the body),
and then we use the resulting term to pick a variable certain to be fresh for
body. We use lc abs exists and lemma open-close similarly to how we did in the
definition of Lam.

Definition 4 (Abs).

Abs f = (abs (close y e2), lc abs exists y lcp2)
where (e1,) = f x0

y /∈ (fv e1)
(e2, lcp2) = f y

With Abs defined, we can now state and derive the final axiom.

Theorem 9 (Axiom 5: Abstraction).

Abs (λy.Subst t (Var y , x)) = Lam x t

Proof. By unfolding definitions. The proof requires lemmas fv-close, fv-subst-
lower, subst-spec, close-open, and lc-unique. ut

The abstraction operation is the only definition that is not trivial in that it
first must calculate a fresh variable for the term. The advantage of axiom 5 is
that it lets one have a lambda expression without naming its binder. However, in
some sense, Abs is not necessary for our style of reasoning. Certainly, all of this
effort is not required to define functions with lc set rec, e.g., beta in Sec. 2.1.

5 Case Studies

We have used LNgen to streamline proofs of type safety for the simply-typed
lambda calculus and for System F with subtyping, i.e., parts 1A and 2A of
the PoplMark challenge. In both cases, the only proofs that needed to be
mechanized by hand were lemmas about the relations of their respective systems.
(Because LNgen works only with syntax, it cannot be expected to generate these
proofs.) Every necessary lemma concerning only the calculation of free variables,
substitution, and local closure was automatically proved by LNgen.

LNgen: Tool Support for Locally Nameless Representations 17

Others have used LNgen for far more substantial developments than the two
above. Greenberg et al. [23] used LNgen to help formalize a proof of confluence for
parallel reduction in dependent λh, a language with manifest contracts. Green-
berg reports4 that, “All in all, LNgen was great—it covered most of the stupid
facts I needed.” The tool failed to generate only one set of lemmas, which con-
cerned how substitution maintains invariants about the free variables of terms.
Jia et al. [24] used LNgen when they proved type soundness for a dependently-
typed language with strong eliminators and an abstract definition of program
equivalence. The authors report5 that without the 9000 lines of lemmas and
proofs that LNgen generated for their language, they would have been unable
to complete their formalization in a timely fashion. Because the tool provided
every infrastructure lemma they needed, they were able to focus their efforts on
the novel aspects of their language’s design and complete their formalization in
about nine days—an impressive feat given the complexity of their design and
the fact that they were tweaking the design in the process. Taken together, these
two non-trivial developments provide a compelling story about the effectiveness
of LNgen in eliminating the tedium associated with locally nameless encodings.

6 Related Work

Much work has been done in the area of representing binding. For example, we
have already discussed the “Five Axioms of Alpha-Conversion.” In previous work
[14], we also gave an extensive survey of first-order representation techniques.
Thus, we focus this section on work that is specifically related to the issues
described in this paper.

Logical frameworks—such as Abella [1], Hybrid [2], and Twelf [5]—are specif-
ically designed to represent and reason about logics and programming languages.
Their specialized meta-logics encourage the use of higher-order abstract syntax
(hoas), which represents binding in an object language using binding in the
framework’s meta-logic. Thus, when reasoning about an object language, one
gets facts about alpha equivalence, substitution, and free variables “for free.” Un-
fortunately, the generality of Coq’s logic precludes traditional hoas encodings,
and first-order representations (e.g., locally nameless) require that one explicitly
deal with free variable calculation and substitution. LNgen steps in here to re-
cover the benefits to working in a traditional logical framework by automatically
proving properties about syntax that one expects to have “for free.”

The Lambda Tamer project [3] also automatically proves a variety of facts
about programming languages encoded in Coq. Compared to LNgen, Lambda
Tamer favors the use of dependent types when representing syntax, ensuring that
only well-typed syntax, according to the type system of the object language, can
be represented. It uses generic programming techniques to ensure that generated
proofs are correct by construction. As mentioned previously (Sec. 2.3), we prefer
to generate proof scripts because of the approach’s simplicity—writing generic
4 By personal communication.
5 Again, by personal communication.

18 Brian Aydemir and Stephanie Weirich

proofs directly is a non-trivial exercise and would have slowed the development
of LNgen.

Parametric higher-order abstract syntax (phoas) [25] is a representation
technique that allows one to use hoas-like approach to represent binding, thus
obtaining “for free” facts about syntax that LNgen has to prove about locally
nameless encodings. The key idea is to represent the body of an abstraction
not as a function from expression to expressions, as with hoas, but as a func-
tion from variables to expressions, an approach reminiscent of weak hoas [10].
Ill-formed terms are ruled out by by universally quantifying over the type of
variables and appealing to parametricity to ensure that the type for variables is
treated abstractly. Without a general proof of parametricity for Coq, one must
assert that parametricity holds for particular terms as needed or as an axiom.

7 Conclusions and Future Work

Since LNgen is currently only a prototype, there are a number of promising av-
enues for future development and research. We developed LNgen independently
from Ott in order to make it easier to experiment with its output: which def-
initions to generate, which lemmas to generate, how to generate proofs, etc.
But, it might be beneficial to add such support to Ott directly. The ideas we
have presented here are not particular to Coq, and we expect that they can be
generalized to the full spectrum of Ott’s binding forms. We also believe that it
is possible to automatically generate theorems about some judgements: equiv-
ariance (invariance under swappings of variables), weakening, and substitution,
for example. Support for defining functions directly in Ott specifications and
having them translated into locally nameless definitions, using schemes such as
lc set rec, would also be useful. In particular, one would like to know that some-
thing similar to the “freshness condition for binders” from Nominal Isabelle holds
whenever a function is defined. In the case of binding constructors, this would
allow one to conclude that the behavior of the function does not depend on the
particular choice of name for the bound variable (recall the definition of beta
in Sec. 2.1). On a more theoretical note, we envision giving a general account
of how to transform a fully concrete representation into a locally nameless one,
thus making it possible to give a general account of soundness for LNgen.

In the end, what we provide now is a usable prototype tool for taking our lo-
cally nameless style—already a lightweight representation technique—and mak-
ing it even lighter weight. We have shown that Ott and LNgen are sound and
complete in the specific case of untyped lambda terms. Compared to our previ-
ous work, we now provide a recursion scheme for defining functions, and it comes
“for free” from our definitions. On a day to day basis, the benefit of our work is
simple: no more boring infrastructure proofs.

References

1. Gacek, A.: The Abella interactive theorem prover (system description). In Ar-
mando, A., Baumgartner, P., Dowek, G., eds.: Automated Reasoning: Fourth Inter-

LNgen: Tool Support for Locally Nameless Representations 19

national Joint Conference, IJCAR 2008. Volume 5195 of Lecture Notes in Artificial
Intelligence. Springer (2008) 154–161

2. Momigliano, A., Martin, A.J., Felty, A.P.: Two-level Hybrid: A system for reason-
ing using higher-order abstract syntax. In Abel, A., Urban, C., eds.: Proceedings
of the International Workshop on Logical Frameworks and Meta-Languages: The-
ory and Practice (LFMTP 2008). Volume 228 of Electronic Notes in Theoretical
Computer Science. Elsevier (2009) 85–93

3. Chlipala, A.: Generic programming and proving for programming language
metatheory. Technical Report UCB/EECS-2007-147, University of California,
Berkeley (2007)

4. Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning
40(4) (2008) 327–356

5. Pfenning, F., Schürmann, C.: System description: Twelf — A meta-logical frame-
work for deductive systems. In Ganzinger, H., ed.: Automated Deduction, CADE
16: 16th International Conference on Automated Deduction. Volume 1632 of Lec-
ture Notes in Artificial Intelligence. Springer (1999) 202–206

6. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae 34(5) (1972) 381–392

7. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI ’88: Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation. ACM (1988) 199–208

8. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Jour-
nal of Automated Reasoning 23(3–4) (1999) 373–409

9. Pollack, R.: Closure under alpha-conversion. In Barendregt, H., Nipkow, T., eds.:
Types for Proofs and Programs: International Workshop, TYPES 1993. Volume
806 of Lecture Notes in Computer Science. Springer (1994) 313–332

10. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq.
In: Typed Lambda Calculi and Applications, Second International Conference on
Typed Lambda Calculi and Applications, TLCA ’95. Volume 902 of Lecture Notes
in Computer Science. Springer (1995) 124–138. Also available as INRIA Research
report 2556

11. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The PoplMark challenge. In Hurd, J., Melham, T., eds.: Theorem
Proving in Higher Order Logics: 18th International Conference, TPHOLs 2005.
Volume 3603 of Lecture Notes in Computer Science. Springer (2005) 50–65

12. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information
and Computation 186 (2003) 165–193

13. Aydemir, B., Bohannon, A., Weirich, S.: Nominal reasoning techniques in Coq
(extended abstract). In Momigliano, A., Pientka, B., eds.: Proceedings of the First
International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP 2006). Volume 174 of Electronic Notes in Theoretical Computer
Science. Elsevier (2007) 69–77

14. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: POPL ’08: Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM (2008) 3–15

15. Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic,
S.: Aura: A programming language for authorization and audit. In: ICFP ’08:
Proceedings of the 13th ACM SIGPLAN International Conference on Functional
Programming. ACM (2008) 27–38

20 Brian Aydemir and Stephanie Weirich

16. Pratikakis, P., Foster, J.S., Hicks, M., Neamtiu, I.: Formalizing soundness of con-
textual effects. In Ait Mohamed, O., Muñoz, C., Tahar, S., eds.: Theorem Proving
in Higher Order Logics: 21st International Conference, TPHOLs 2008. Volume
5170 of Lecture Notes in Computer Science. Springer (2008) 262–277

17. Rossberg, A., Russo, C., Dreyer, D.: F-ing modules. Submitted for publication
(October 2010)

18. Sewell, P., Zappa Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnǐsa,
R.: Ott: Effective tool support for the working semanticist. In: ICFP ’07: Pro-
ceedings of the 2007 ACM SIGPLAN International Conference on Functional Pro-
gramming. ACM (2007) 1–12

19. Gordon, A.D., Melham, T.: Five axioms of alpha-conversion. In von Wright,
J., Grundy, J., Harrison, J., eds.: Theorem Proving in Higher Order Logics: 9th
International Conference, TPHOLs ’96. Volume 1125 of Lecture Notes in Computer
Science. Springer (1996) 173–190

20. Sewell, P., Zappa Nardelli, F.: Ott. Available from http://www.cl.cam.ac.uk/

~pes20/ott/ (2009)
21. Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion.

In Joyce, J.J., Seger, C.J.H., eds.: Higher-order Logic Theorem Proving And Its
Applications, Proceedings, 1993. Volume 780 of Lecture Notes in Computer Sci-
ence. Springer (1994) 414–426

22. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM 40(1) (1993) 143–184

23. Greenberg, M., Pierce, B., Weirich, S.: Contracts made manifest. In: POPL ’10:
Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, Madrid, Spain, ACM (January 2010). To appear.

24. Jia, L., Zhao, J., Sjöberg, V., Weirich, S.: Dependent types and program equiva-
lence. In: POPL ’10: Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, Madrid, Spain, ACM (January 2010).
To appear.

25. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: ICFP ’08: Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming. ACM (2008) 143–156

LNgen: Tool Support for Locally Nameless Representations 21

A Proofs

A.1 Proof of Theorem 1

We prove these two results simultaneously by induction on the height of M ,
observing that substituting a variable does not change the height of a term.
We need lemmas fv-close, subst-fresh-eq, subst-spec, subst-close, and close-open.
For example, the abstraction case of the second part is shown below, where
M = (λ x .M1) and N = λ y . [y / x] M1, with y /∈ fv M1.

dλ x .M1e
by definition of d−e

= abs (close x dM1e)
by lemma close-open

= abs (close y (open (var f y) (close x dM1e)))
by lemma subst-spec

= abs (close y (subst (var f y) x dM1e))
by IH(1)

= abs (close y d[y / x] M1e)
by definition of d−e

= dλ y . [y / x] M1e

A.2 Proof of Theorem 2

By induction on the proof that e is locally closed. The only interesting case is
when e = abs e1, for some e1. Let y /∈ fv e1 and w /∈ fv g ∪ { x } ∪ fv e1 ∪ { y }.
We consider two cases for x and y . First, suppose that x 6= y .

[bgc / x] babs e1c
for some y /∈ fv e1

= [bgc / x] (λ y . bopen (var f y) e1c)
by alpha conversion

=α [bgc / x] (λw . [w / y] bopen (var f y) e1c)
by property of substitution

=α λw . [bgc / x] [w / y] (bopen (var f y) e1c)
by IH

=α λw . [bgc / x] (bsubst (var f w) y (open (var f y) e1)c)
by lemmas subst-spec and close-open

= λw . [bgc / x] (bopen (var f w) e1c)
by IH

=α λw . bsubst g x (open (var f w) e1)c
by lemma open-close

= λw . bopen (var f w) (closew (subst g x (open (var f w) e1)))c
by the definition of b−c

= babs (closew (subst g x (open (var f w) e1)))c
by lemma subst-abs

= bsubst g x (abs e1)c

22 Brian Aydemir and Stephanie Weirich

Second, suppose that x = y . Since y /∈ fv e1, it is also the case that x /∈ fv e1.

[bgc / x] babs e1c
for some y /∈ fv e1

= [bgc / x] (λ y . bopen (var f y) e1c)
by definition of substitution

= λ y . bopen (var f y) e1c
by definition of b−c

= babs e1c
by lemma subst-fresh-eq

= bsubst g x (abs e1)c

A.3 Proof of Theorem 3

By induction on the structure of M . The only interesting case is when M =
λ x .M1, for some M1.

bdλ x .M1ec
by definition of d−e

= babs (close x dM1e)c
for some y /∈ fv (close x dM1e)

= λ y . bopen (var f y) (close x dM1e)c
by lemma subst-spec

= λ y . bsubst (var f y) x dM1ec
by theorem 2

= λ y . [y / x] bdM1ec
by alpha conversion and lemma fv-close

=α λ x . bdM1ec
by IH

=α λ x .M1

Note that in the alpha conversion step, we assumed that x 6= y . When x = y ,
the result follows trivially.

A.4 Proof of Theorem 4

By induction on the proof that e is locally closed. The only interesting case is
when e = abs e1, for some e1.

dbabs e1ce
for some y /∈ fv e1

= dλ y . bopen (var f y) e1ce
by definition of d−e

= abs (close y dbopen (var f y) e1ce)
by IH

= abs (close y (open (var f y) e1))
by lemma close-open

= abs e1

LNgen: Tool Support for Locally Nameless Representations 23

A.5 Proof of Theorem 6

We first observe that for any e, any two derivations of lc e are equal by lc-
unique. Therefore, to show that each equality holds, it suffices to show that the
first components of each side of the equality are equal. In the proofs below, we
use as a place holder for the second components.

After unfolding definitions, parts 1, 2, and 3 are trivial.
For part 4, we have:

Subst (Lam x t) (u, x)
decomposing t and u as (e1,) and (e2,)

= Subst (Lam x (e1,)) ((e2,), x)
by definition

= (subst e2 x (abs (close x e1)),)
by lemmas fv-close and subst-fresh-eq

= (abs (close x e1),)
by lemma lc-unique

= Lam x t .

For part 5, we have:

Subst (Lam y t) (u, x)
decomposing t and u as (e1,) and (e2,)

= Subst (Lam y (e1,)) ((e2,), x)
by definition

= (subst e2 x (abs (close y e1)),)
by definition of subst

= (abs (subst e2 x (close y e1)),)
by lemma subst-close

= (abs (close y (subst e2 x e1)),)
by lemma lc-unique

= Lam y (Subst t (u, x)) .

A.6 Proof of Theorem 7

We first decompose t as (e, lcp). By unfolding definitions and making use of
lemma lc-unique, as we did in the proof of theorem 6, we must show that

abs (close x e) = abs (close y (subst (var f y) x e))

under the assumption that y /∈ (fv e) \ { x }, i.e., that y /∈ fv (close x e) (recall
lemma close-fv). Starting with the right-hand side of the conclusion, we have
the following chain of equalities:

abs (close y (subst (var f y) x e))
by lemma subst-spec

= abs (close y (open (var f y) (close x e)))
by lemma close-open

= abs (close x e) .

24 Brian Aydemir and Stephanie Weirich

A.7 Proof of Theorem 8

The function f is derived from the recursion scheme given to use by lc set—
recall Fig. 3. We define f by instantiating P with (λ .R) and by rearranging the
arguments of the Gordon-Melham cases:

f (e, lcp) = lc set rec fvar fapp′ fabs ′ e lcp
where fapp′ = λe1, e2, lcp1, r1, lcp2, r2. fapp r1 r2 (e1, lcp1) (e2, lcp2)

fabs ′ = λe1, lcp1, r1. fabs r1 (λx. (open (var f x) e1, lcp1 x))

The uniqueness of this operator is by definition. Furthermore, suppose f is
an operator defined as above. Showing the equalities in the Var and App cases is
straightforward. For the Lam case, suppose the body of the Term is t = (e1, lcp1),
and let f ′ be lc set rec fvar fapp′ fabs ′. Using lc-unique to ignore local closure
proofs, much as we did in the proof of theorem 6, we have the following:

f (Lam x (e1,))
by definition

= f ′ (abs (close x e1))
by property of lc set rec

= fabs ′ (close x e1) (λy.f (open (var f y) (close x e1),))
by definition of fabs ′

= fabs (λy.f (open (var f y) (close x e1),)) (λy.(open (var f y) (close x e1),))
by lemma subst-spec

= fabs (λy.f (subst (var f y) x e1,)) (λy.(subst (var f y) x e1,))
by definition of Subst

= fabs(λy.f (Subst t (Var y , x)))(λy.(Subst t (Var y , x)))

A.8 Proof of Theorem 9

We decompose t as (e1,) and make use of lemma lc-unique in the same way we
did as in the proof of theorem 6.

Abs (λy.Subst t (Var y , x))
by definition of Abs and Subst
for some y /∈ Fv (Subst t (Var x0, x))

= (abs (close y (subst (var f y) x e1)),)
by lemma subst-spec

= (abs (close y (open (var f y) (close x e1))),)
by lemma close-open,
discharging the side condition by lemmas fv-close and fv-subst-lower

= (abs (close x e1),)
by definition of Lam and lemma lc-unique

= Lam x t

