
banner above paper title

Combining Proofs and Programs
in a Dependently Typed Language

Chris Casinghino Vilhelm Sjöberg Stephanie Weirich
University of Pennsylvania

{ccasin,vilhelm,sweirich}@cis.upenn.edu

Abstract
There are two current approaches to the design of dependently-
typed programming languages. Coq, Epigram, and Agda, which
grew out of the logics of proof assistants, require that all expres-
sions terminate. These languages provide decidable type checking
and strong correctness guarantees. In contrast, functional program-
ming languages, like Haskell, Dependent ML and Omega, have
adapted some features of dependent type theories, but retain a strict
division between types and programs. These languages trade termi-
nation obligations for more limited correctness assurances.

Here, we combine these two approaches into a single dependently-
typed core language. Our goal is to provide a smooth path from
functional programming to dependently-typed programming. Un-
like traditional dependent type theories and functional languages,
this language allows programmers to work with total and partial
functions uniformly. The language itself is composed of two frag-
ments that share a common syntax and overlapping semantics: a
logic that guarantees total correctness and a call-by-value program-
ming language that guarantees type safety but not termination.

These two fragments interact in three significant ways. First,
there is a subsumption relationship between the fragments. All
logical expressions may be used as programs, so the fact that we
know stronger properties about an expression does not restrict its
use. Second, both fragments internalize consistency classification
as a type so that they can safely talk about the values of the
other fragment. The logic may soundly reason about effectful,
partial functions, and programs may take logical propositions as
parameters and require that they be applied to total arguments.
Finally, first-order program values, including proofs computed at
runtime, may be used as evidence by the logic.

We the language’s type safety and termination for its logical
fragment. Because proofs may include values produced by pro-
grams, this normalization proof combines a standard Girard-Tait
method with a step-indexed argument.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Design, Languages, Verification, Theory

Keywords Dependent types, Termination, General recursion

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Dependently typed languages have developed along two different
traditions, distinguished by their attitude towards nonterminating
programs.

On the one hand, languages like Cayenne [4], Dependent
ML [32], and Haskell with GADTs [23] treat dependent types as a
generalization of ordinary functional programming. Programmers
can use the advanced features to give programs more informative
types, but any program that would type check in a simple Hindley-
Milner type system is valid, including programs that employ gen-
eral recursion.

On the other hand, languages like Coq [30], Agda [22] and Epi-
gram [19] treat dependently typed programming as a generalization
of theorem proving. By using the “pun” that constructive proofs can
be read as programs, a theorem prover for constructive logic can be
repurposed as a program verification system. However, these sys-
tems must disallow nontermination because an infinite loop can be
given any type and would therefore make the logic inconsistent.

In this paper we define a core language, λθ , which bridges the
gap between these two worlds. As such, it can be compared with
Capretta’s partiality monad [8], which embeds general recursive
programs into Coq or Agda, or with Swamy et al.’s language F∗

[27] which allows general recursion in ordinary programs but also
uses the kind-system to track a sublanguage of pure total functions.
Our basic setup is similar, although instead of tracking nontermi-
nation in types or kinds, we index our typing judgement by a con-
sistency classifier θ which may be L (“logic”) or P (“program”):

Γ `θ a : A

When θ is L we say that a is a proof in the logical fragment, which
is known to terminate, and A can be read as a valid theorem.

Programmers do not always want to prove that their functions
terminate. Some programs, like interpreters and web servers, are
meant to run forever. In other cases, reasoning about termination is
a distraction—when writing a complicated program the program-
mer may prefer to spend verification effort on more subtle classes
of bugs.

Nontermination can come up in very simple examples. The fol-
lowing function, written in a Haskell-like syntax, correctly com-
putes integer division unless m is 0. (The tag prog means that this
function is defined in the programmatic fragment.)

prog div : Nat -> Nat -> Nat
prog div n m = if n < m then 0

else 1 + (div (n - m) m)

Disappointingly, div can not be written directly in Coq or Agda,
because it loops when m is 0. In order to be attractive to mainstream
programmers, our language imposes no termination-related re-
strictions on the programmatic fragment.

short description of paper 1 2012/7/23

1.1 Interactions between the Proofs and Programs
The logical and programmatic fragments can work together in three
important ways.1

Proofs about programs First, having defined div we might wish
to verify facts about it, such as division being a left-inverse to
multiplication, or less ambitiously that div 6 2 evaluates to 3. In a
dependently-typed language we can state and prove this fact inside
the language.

log div63 : div 6 3 = 2
log div63 = refl

The tag log above indicates that this definition is in the logical
fragment. The proof refl is valid when both sides of the equal-
ity evaluate to the same result. Disappointingly, in languages like
F∗ or Aura [16] this theorem cannot even be stated, because type-
constructors like = cannot be applied to non-value expressions such
as div 6 3. This example illustrates an important property of our
language, called freedom of speech: although proofs cannot them-
selves use general recursion, they are allowed to refer to arbitrary
programmatic expressions.

Furthermore, lemmas can quantify over program values. For ex-
ample, consider the following function that joins two partial values,
returning the first if they are both present. We want this function to
work for arbitrary data, so we define it in the programmatic frag-
ment.

prog mplus : Maybe A -> Maybe A -> Maybe A =
\x. \y. case x of

Just x -> x
Nothing -> y

An identity for this function is that if the first value is nothing,
then the result is the second. A logical abstraction can safely take
a programmatic value as an argument if its type indicates (with
@P) that it comes from that fragment. The proof of this property is
again refl because it is determined by the operational behavior of
mplus.

log idl : ((y:(Maybe A)@P)-> mplus Nothing y = y) =
\y. refl

On the other hand, case analysis is required to show the opposite
identity. The logical language can safely scrutinize a program value
because pattern matching cannot cause divergence.

log idr : (x:(Maybe A)@P) -> mplus x Nothing = x) =
\x. case x of

Just x1 -> refl
Nothing -> refl

Programs that return proofs An alternative to writing separate
proofs about nonterminating programs is to give the programs
themselves more specific types that express their correctness. For
example, imagine writing a complicated SAT-solver that we do not
want to prove terminating. In our system, we can write down the
type:

prog solver : (f:Formula) ->
(Sat f + (Sat f->False))@L

Since solver is written in the programmatic fragment, it may not
terminate. The @L in its type indicates that if it does return a value—
either a proof or a disproof of satisfiability—that value was type
checked in the logical fragment.

1 For the sake of intuition, we use several features in these examples that are
not part of λθ .

When a program contains subexpressions from both fragments,
it becomes clear that values can be handled more freely than
expressions. For example, the logical fragment cannot call solver
directly because of the possibility of divergence. However, if the
result of that call has been bound to a programmatic variable, then
the logic has access to that result.

prog f : Formula
prog isSat : (Sat f + (Sat f -> False))@L = solver f
log prf : Prop f = case isSat of

inl pfSat -> ... use proof of satisfiability
inr pfUnSat -> ... use proof of unsat

Furthermore, some program values are available for use by the
logic even if they have not been tagged as logical. For example,
suppose there is some property Q that holds for all lists, which we
establish with the lemma lemQ.

log lemQ : (xs : List Nat) -> Q xs = ...

We can prove Q for a programmatic list if it has been evaluated.

prog xs : List Nat = compute ()
log qxs : (Q xs) = lemQ xs

The lemma application is sound because we know, by the type
soundness theorem for the programmatic language, that xs must
actually be a list of numbers. This argument could not cause diver-
gence, so it can be safely used by the logical fragment.

Subsumption Finally, all proofs are programs. Even though a
function might be defined in the logical language, it can be passed
as an argument when a programmatic value was expected.

For example, suppose we have a logical definition of the
boolean and function. We can promote it to a programmatic func-
tion and use it with arguments whose termination behavior is un-
known.

prog is_bryllyg : Bool = and (gyre x) (gymble x)

The fact that we know more about and (i.e. that it terminates) does
not restrict how it may be used. We do not need to duplicate its
definition among the two fragments.

1.2 Contributions
The λθ language incorporates these observations. Concretely, we
make the following contributions.

• We define a type system for a simple dependently-typed lan-
guage. The type system labels the typing judgement to distin-
guish between total and partial programs (Section 3).

• We give our dependently-typed language a call-by-value opera-
tional semantics, with an expressive typing rule for application
(Section 3.1).

• We include an equality type that allows uniform reasoning for
total and partial expressions. Two expressions can be shown to
be equal based on their evaluation, which is the same for both
fragments. Equality proofs can be used implicitly by the type
system (Section 3.2).

• We introduce a type form A@θ that internalizes the labelled
type judgement. This type can be used by either fragment to
manipulate values belonging to the other (Section 3.3).

• We identify a set of “first-order types”—those whose values can
freely move between the fragments (Section 3.4).

• We include both general recursion and iso-recursive types in the
programmatic fragment. These two different sources of nonter-
mination are handled in the same framework (Section 3.6).

short description of paper 2 2012/7/23

Consistency classifiers
θ ::= L | P

Types and Terms
a, b, A, B ::= ? | (x :A)→ B | a = b | Nat | A + B

| µθx .A | A@θ
| x | λx .a | rec f x .a | a b | refl
| inl a | inr b
| scasez a of {inl x ⇒ a1; inr y ⇒ a2}
| Z | S a | ncasez a of {Z ⇒ a1; S x ⇒ a2}
| roll a | unroll a

Values
v, u ::= ? | (x :A)→ B | a = b | Nat | A + B

| µθx .A | A@θ
| x | λx .a | rec f x .a | refl
| inl v | inr v | Z | S v | roll v

Figure 1. Syntax

• We prove that our language is type safe and that the L frag-
ment is normalizing and logically consistent. Our normalization
proof uses an interesting combination of traditional and step-
indexed logical relations (Section 4).

• We provide a formalization in Coq of our metatheory.2

We have previously reported partial versions of the results in
this paper in two different workshop papers. In Casinghino, Sjöberg
and Weirich [9] we introduced the proof technique of hybrid step-
indexed/traditional logical relations, but in the context of a lan-
guage without dependent types and with explicit term constructors
for the @-types. In Sjöberg et al. [26] we introduced our typing
rules for equality, but in a language which does not enforce ter-
mination. This paper combines both of these works into a unified
framework, extends it with new functionality and includes a me-
chanical proof of correctness for the entire system.

2. Syntax and Operational Semantics
The λθ language is based on a simple call-by-value, curry-style
lambda calculus. Its syntax is shown in Figure 1. Terms and types
and the single kind ? (the “type” of types) are drawn from one
syntactic category as in pure type systems [5]. By convention we
use lowercase metavariables a, b for expressions that are terms and
uppercase metavariables A,B for expressions that are types.

The λθ language includes recursive functions rec f x .a , nonre-
cursive functions λx .a , natural numbers (constructed by Z and S a
and eliminated by ncase), disjoint unions (constructed by inl a and
inr a and eliminated by scase) and iso-recursive types (introduced
by roll a and eliminated by unroll a).

Functions in λθ can be given dependent types (x : A) → B .
In such types, the result type B , can depend on the value x of the
argument. This value can appear inside equality types a = b, which
are assertions that the term a equals the term b. The equality type
has a trivial proof refl, which holds when two expressions have
the same operational behavior. Equality proofs can be eliminated
implicitly, substituting provably equal terms at any point in a typing
derivation.

Finally, λθ includes the type A@θ, which we discuss in more
detail in Section 3.3. Both the introduction and elimination forms
for this type are implicit.

2 Available from http://www.cis.upenn.edu/~ccasin/lth.tgz.

a ; b

(rec f x .a) v ; [v/x][rec f x .a/f]a
SBETAFUN

(λx .a) v ; [v/x]a
SBETALAM

ncasez Z of {Z ⇒ a1; S x ⇒ a2}; [refl/z]a1
SCASEZ

ncasez S v of {Z ⇒ a1; S x ⇒ a2}; [refl/z][v/x]a2
SCASES

scasez inl v of {inl x ⇒ a1; inr x ⇒ a2}
; [refl/z][v/x]a1

SCASEINL

scasez inr v of {inl x ⇒ a1; inr x ⇒ a2}
; [refl/z][v/x]a2

SCASEINR

unroll (roll v) ; v
SUNROLL

Figure 2. Operational semantics (congruence rules omitted)

Note that expressions do not contain type annotations (i.e. the
type system is Curry-style). Types describe terms but do not inter-
fere with equality. We do not want terms with the same runtime
behavior to be considered unequal just because they have differ-
ent annotations or are judged with different types. Because type
checking depends on showing that terms are equal in a dependent
type system, the definition of equality affects the expressivity of the
type system.

Due to the lack of annotations, it is not possible to algorithmi-
cally compute the type of an λθ term. This is not a problem because
we do not intend programmers to write these directly. Instead, like
in ICC∗ [6], we expect programmers to use an annotated surface
language that the type checker elaborates into λθ typing deriva-
tions.

The key rules of the small-step operational semantics for λθ

is shown in Figure 2. The semantics is standard, except for two
subtleties. First, our definition of values v includes variables. This
inclusion is safe because CBV evaluation only substitutes values
for variables and it is useful because the λθ type checker needs to
reason about whether open terms are values.

Second, the forms ncase and scase, bind the variable z inside
both branches of the case. The type of this variable asserts an
equality between the scrutinee and the pattern of the branch. At
runtime, this variable is replaced by refl because the scrutinee must
match the pattern for the branch to be taken.

We chose CBV because of its simple cost model, but this choice
also affects the interaction between the logical and programmatic
fragments. As shown in Sections 3.2 and 3.4, the type system takes
advantage of the fact that values cannot induce nontermination.
As a result, some typing rules apply only to values. The fact that
variables only range over values makes many values available in
open terms.

The language defined in this paper is not full-featured enough
to write realistic programs, including some of those discussed in
the introduction: most conspicuously it lacks polymorphism, type-
level computation, user-defined datatypes, and structural recursion
in the logical fragment. Adding these features will require more
work in the normalization proof, but it should be straightforward.

short description of paper 3 2012/7/23

The goal of the design of λθ is to provide a simple setting to study
the connection between the logical and programmatic fragments.

3. Type System

` Γ

` ·CNIL
` Γ

` Γ, x :θ ?
CSTAR

` Γ Γ `θ A : ?

` Γ, x :θ A
CTYPE

Γ `θ a : A

(x :θ A) ∈ Γ ` Γ

Γ `θ x : A
TVAR

Γ, x :L A `L b : B
Γ `L (x :A)→ B : ?

Γ `L λx .a : (x :A)→ B
TLAM

Γ, f :P (x :A)→ B , x :P A `P b : B
Γ `P (x :A)→ B : ?

Γ `P rec f x .a : (x :A)→ B
TREC

Γ `θ A : ? FO (A)
Γ, x :θ A `θ B : ?

Γ `θ (x :A)→ B : ?
TARR

Γ `θ b : (x :A)→ B
Γ `θ a : A Γ `θ [a/x]B : ?

Γ `θ b a : [a/x]B
TAPP

Figure 3. Typing: contexts, variables and functions

The typing rules are shown in Figures 3–7. As mentioned be-
fore, the typing judgment Γ `θ a : A is indexed by a consistency
classifier θ to divide the language into two fragments. The logical
fragment is restricted to ensure that all terms in this fragment are
normalizing. The programmatic fragment adds general recursion
and recursive types. In the formation rules for contexts and rule
TVAR (both in Figure 3) variables in the context Γ are tagged with
θ to indicate their fragment. The type of a variable must be valid in
the same fragment as its tag (Rule CTYPE).

Because we work with a collapsed syntax we use the type
system to identify which expressions are types: A is a well-formed
type if Γ `θ A : ?.

3.1 Functions
There are two ways to define functions in λθ . Rule TLAM types
non-recursive λ-expressions and can be used in both fragments,
whereas rule TREC types recursive rec-expressions, and can only
be used in the programmatic fragment. In both of these rules, the
variables are introduced into the context with the same θ as is used
to check the entire function.

Function types are checked for well-kindedness by the rule
TARR. It checks that the domain and range types have sort ?. We
discuss the third premise FO (A) in Section 3.5.

The rule for function application, TAPP, is a bit different from
the usual application rule in pure dependent languages. It has an
additional third premise Γ `θ [a/x]B : ? that checks that the
result type is well-formed. We need this premise because our type
system includes value restrictions and variables are considered
values. Substituting an expression a for the value x could cause
B to no longer type check.

Any dependently typed language that combines pure and effect-
ful code will likely have to restrict the application rule in some way.
Some previous work [16, 18, 27] uses a more restrictive typing for

applications, by splitting it into two rules: one which permits only
value dependency and requires the argument to be a value, and one
which allows an application to an arbitrary argument when there is
no dependency.

Γ ` f : (x : A)→ B
Γ ` v : A

Γ ` f v : [v/x]B

Γ ` f : A→ B
Γ ` a : A

Γ ` f a : B

Since substituting a value can never violate a value restriction
in B our application rule subsumes the value-dependent version.
Likewise, in the case of a lack of dependency, the premise can never
fail because the substitution has no effect on B .

Being able to call dependent functions with non-value argu-
ments is often useful when writing explicit proofs. For example,
a programmer may want to first prove a lemma about addition

log plus_zero : (n:Nat) -> plus n 0 = n

and then instantiate the lemma to prove a theorem about a particular
expression in the logical fragment.

plus_zero (f x) : plus (f x) 0 = (f x)

The partiality monad also places a restriction on function ap-
plication: the type of the monadic bind operator does not provide
a way to propagate type dependencies, so there is no direct way
of writing partial functions depending on partial arguments. Stated
differently, it is not clear how to fill in the fourth square in this grid.

pure monadic

simple
f : A→ B
a : A

f a : B

f : A→M B
a : M A

f =<< a : M B

dependent
f : (x :A)→ B
a : A

f a : [a/x]B

?

Thus, while it is possible to take an arbitrary (non-terminating)
simply-typed program and embed it into Coq or Agda by mechani-
cally changing all constants to uses of monadic return and all func-
tion applications to uses of monadic bind, the same transforma-
tion does not work for an arbitrary dependently-typed program.
The lack of the fourth square means that some nonterminating, but
dependently-typed programs are inexpressible. This conflicts with
our design goal that there should be no restrictions on the P frag-
ment of our language.

3.2 Equality
One of our design principles is that reasoning about expressions
should be based on their run-time behavior, independently of what
fragment they are checked in. This principle informs our treatment
of equality (Figure 4).

Equality in λθ is a primitive type. Rule TEQ shows that the
type a = b is well-formed and in the logical fragment even
when a and b can be type checked only programmatically. This is
freedom of speech: we can write proofs about programs even when
those programs are not logical. (Due to subsumption, discussed in
Section 3.5, this rule allows us to equate logical and programmatic
expressions.)

The term refl is the primitive proof of equality. Rule TREFL
says that refl is a proof of a = b just when a and b reduce to
a common expression. The notion of reduction used in the rule is
parallel reduction, denoted a V b. This relation extends the ordi-
nary evaluation a ; b by allowing reduction under binders, e.g.
(λx.1 + 1) V (λx.2) even though (λx.1 + 1) is already a value.
Having this extra flexibility makes the language more expressive

short description of paper 4 2012/7/23

Γ `θ a : A

Γ `P a : A Γ `P b : B

Γ `L a = b : ?
TEQ

a V∗ c b V∗ c
Γ `θ1 a : A Γ `θ2 b : B

Γ `L refl : a = b
TREFL

Γ `L b : b1 = b2 Γ `θ a : [b1/x]A
Γ `θ [b2/x]A : ?

Γ `θ a : [b2/x]A
TCONV

Γ `L a1 : B1 = B2

hd(B1) 6= hd(B2)
Γ `θ a : A

Γ `θ A : ? Γ `θ
′
B : ?

Γ `θ′ a : B
TCONTRA

Γ `θ a : (A@θ′) = (B@θ′)
Γ `θ A = B : ?

Γ `θ a : A = B
TATINV

Γ `θ a : (µθ′x .A) = (µθ′x .B)
Γ `θ ([µθ′x .A/x]A) = ([µθ′x .B/x]B) : ?

Γ `θ a : ([µθ′x .A/x]A) = ([µθ′x .B/x]B)
TMUINV

Γ `θ a : ((x :A1)→ A2) = ((x :B1)→ B2)
Γ `θ A1 = B1 : ?

Γ `θ a : A1 = B1
TARRINV1

Γ `θ a : ((x :A1)→ A2) = ((x :B1)→ B2)

Γ `θ
′
v : A1

Γ `θ [v/x]A2 = [v/x]B2 : ?

Γ `θ a : [v/x]A2 = [v/x]B2
TARRINV2

Γ `θ a : (A1 + A2) = (B1 + B2)
Γ `θ A1 = B1 : ?

Γ `θ a : A1 = B1
TSUMINV1

Γ `θ a : (A1 + A2) = (B1 + B2)
Γ `θ A2 = B2 : ?

Γ `θ a : A2 = B2
TSUMINV2

Figure 4. Typing: equality

and simplifies the proof of preservation. However, because λθ in-
cludes nontermination, the parallel reduction relation is undecid-
able. To enable decidable type checking the surface language might
include annotations specifying the form of the reduction.

One attractive feature of this approach is that we use the same
definition of equality for both fragments. They are both compared
“intensionally”, i.e. according to the standard operational seman-
tics. By contrast, using a coinductive partiality monad in e.g. Coq,
one would compare pure expressions intensionally but define a dif-
ferent, coarser equivalence relation for partial terms which ignores
the number of steps they take to normalize. In the coinductive ap-
proach, equations like ((rec f x .b) v) = [v/x][rec f x .b/f]b do
not hold intensionally because the step counts differ.

The fact that our language is CBV is reflected in rule TREFL
because V can only reduce redexes when the active subexpression
is a value. We can show (λx .a) v = [v/x]a but not the more
general (λx .a) b = [b/x]a . This value restriction reflects the usual
equational theory of a CBV language.

However, the choice of CBV has a compensating advantage:
because variables only range over values, an equation like f a = x ,
where one side is a variable, carries an assertion that f a terminates.
For example, we can state a theorem like “if division terminates,
then it returns a number ≤ the input” by the type

(i j k : Nat) -> (div i j = k) -> (LE k i)

In a theorem proving setting it is crucial to have a way to state that
expressions terminate because the principle of induction applies
only to total arguments. If we wanted to change λθ to be CBN we
would add a primitive “terminates” predicate [17].

Equality may be used to convert expressions in types by the
elimination rule TCONV. Uses of this rule are not marked in the
term because they are not relevant at runtime, but again in the sur-
face language, annotations would be necessary. We demand that the
equality proof used in conversion type checks in the logical frag-
ment for type safety. All types are inhabited in the programmatic
fragment, so if we permitted the user to convert using a program-
matic proof of, say, Nat = Nat → Nat, it would be easy to cre-
ate a stuck term. Like in TAPP we need to check that b2 does not

Γ `θ a : A

Γ `θ
′
A : ?

Γ `θ A@θ′ : ?
TAT

Γ `θ a : A
Γ `θ A : ?

Γ `P a : A@θ
TBOXP

Γ `L a : A
Γ `θ A : ?

Γ `L a : A@θ
TBOXL

Γ `P v : A
Γ `P A : ?

Γ `L v : A@P
TBOXLV

Γ `θ v : A@θ′

Γ `θ
′
A : ?

Γ `θ′ v : A
TUNBOXVAL

Figure 5. Typing: internalized consistency classification

violate any value restrictions, so the last premise checks the well-
formedness of the type given to the converted term.

The rule TCONTRA is used to eliminate contradictory equali-
ties. If we can prove a contradiction we must be in unreachable
code, so we allow giving any typeable expression a any wellformed
type B at any θ′. An equation B1 = B2 counts as contradictory if
the head constructors of both sides are defined and unequal, where
by head constructor we mean the one of ?, →, Nat, =, µ, +, or
@. For example, the equation Nat = (Nat→ Nat) is considered a
contradiction. The six typing rules TATINV, TMUINV TARRINV1,
TARRINV2, TSUMINV1, and TSUMINV2, make all type construc-
tors injective. Injectivity and discrimination of type constructors is
used in our preservation proof, so we discuss these rules further
with the metatheory in Section 4.1.

3.3 Internalized Consistency Classification
What is interesting about λθ is how its two fragments interact. We
manage these interactions through a type that internalizes the typ-
ing judgement, which we write as A@θ. Nonterminating programs
can take logical proofs as preconditions (with functions of type
(x : A@L) → B), return them as postconditions (with functions

short description of paper 5 2012/7/23

of type (x :A)→ (B@L)), and store them in data structures (with
disjoint sums of type A@L +B). At the same time, logical lemmas
can do the same with values from the programmatic fragment.

The rules for the A@θ type appear in Figure 5. Both introduc-
tion and elimination of this type is unmarked in the syntax. Intu-
itively, the judgement Γ `θ1 a : A@θ2 holds if the fragment θ1
may safely observe that Γ `θ2 a : A. This intuition is captured by
the three introduction rules. The programmatic fragment can inter-
nalize any typing judgement (TBOXP), but in the logical fragment
(TBOXL and TBOXLV) we sometimes need a restriction to ensure
termination. Therefore, rule TBOXLV only applies when the sub-
ject of the typing rule is a value. (The rule TBOXL can introduce
A@θ for any θ since logical terms are also programmatic).

To get an intuition for these rules, consider a function being
applied to an argument from a different fragment:

A general recursive function can require one of its arguments to
be a bona-fide proof by marking it @L, i.e. A@L → B . This type
forces that argument to be checked in the logical fragment.

Γ `P f : A@L→ B

Γ `L a : A

Γ `P a : A@L
TBOXP

Γ `P f a : B
TAPP

In the logical fragment, a logical function can be applied to a
programmatic argument by marking it @P. This type forces that
argument to be a value checked in the programmatic fragment.

Γ `L f : A@P→ B

Γ `P v : A

Γ `L v : A@P
TBOXLV

Γ `L f v : B
TAPP

This is freedom of speech in action: a logical program handling
a programmatic value. Of course, the function f can only be defined
in the logical fragment if it is careful to not use its argument in
unsafe ways. For example, we can prove a lemma of type

(n: Nat) -> (f: (Nat->Nat)@P)
-> (f (plus n 0) = f n)

because reasoning about f does not require calling f at runtime.
Because of the value restriction, there is no way to apply a log-

ical lemma to a programmatic non-value expression. If an expres-
sion a may diverge then so may f a, so we must not assign it a
type in the logical fragment.3 However, we can work around this
restriction by either first evaluating a to a value in the program-
matic fragment or by thunking (i.e. we give the function the type
(x : (A → Unit)@P) → B , pass it λy .a as an argument, and
replace x with x() everywhere.)

The @-types are eliminated by the rule TUNBOXVAL. Again,
to preserve termination the rule is restricted to only apply to values.
Recall the programmatic function solver of type:

prog solver : (f:Formula) ->
(Sat f + (Sat f->False))@L

In the introduction, we asserted that the following code type checks.

prog isSat : (Sat f + (Sat f) -> False)@L = solver f
log prf = case isSat of

inl y -> ... here y has logical type Sat f
inr y -> ... here y has

logical type (Sat f -> False)
...

In this example, the logical program prf cannot directly treat
solver f as a proof (since it may diverge). However, once it has

3 This is one drawback of working in a strict rather than a lazy language. If
we know that f is nonstrict, then this application is indeed safe.

FO (A)

FO (Nat)
FONAT

FO (a = b)
FOEQ

FO (A) FO (B)

FO (A + B)
FOSUM

FO (A@θ)
FOAT

Γ `θ a : A

Γ `P v : A FO (A)
Γ `L A : ?

Γ `L v : A
TFOVAL

Γ `L a : A

Γ `P a : A
TSUB

Figure 6. Typing: first-order types and subsumption

been evaluated to a value, it can be safely used by the logical frag-
ment. Above, let binding forces evaluation of the solver expres-
sion, introducing a new programmatic variable isSat :P (Sat
f + (Sat f->False))@L into the context. Because variables are
values, any logical contexts can freely use the variable through
TUNBOXVAL even though it is tagged programmatic.

There are no term constructors corresponding to the introduc-
tion and elimination rules for @ in keeping with our philosophy
that in a Curry-style system, terms with identical behavior should
not be distinguished. Whether the type system deems an expression
a to be provably terminating or not does not affect its reduction be-
havior.

3.4 First-order types
The consistency classifier tracks which expressions are known to
come from a normalizing language. For some types of values, how-
ever, this distinction is unnecessary. Although the programmatic
fragment is logically inconsistent, it is type safe. The standard
canonical forms lemma states that types determine the forms of
closed values. For example, while a programmatic expression of
type Nat may diverge, a programmatic value of that type is just a
number, so we can treat it exactly the same as if it were logical.
On the other hand, we can plainly not treat programmatic function
values as logical, since they might cause non-termination when ap-
plied.

The rule TFOVAL exploits this insight by allowing values to be
moved from the programmatic to the logical fragment. It relies on
an auxiliary judgement FO (A) which identifies the types at which
TFOVAL may be used. Intuitively, a type is first-order if the same
set of values inhabit the type when θ = L and when θ = P. We
call these types “first order” to emphasize that they do not include
functions.

Concretely, the natural number type Nat is first-order, as is the
primitive equality type (which is inhabited by the single construc-
tor refl, as discussed in Section 3.2). Sum types are first-order if
their component types are. Finally, @-types are always first-order
since they fix a particular θ independent of the one on the typing
judgement.

The example in the introduction illustrates how the first-order
rule provides useful flexibility for the programmer. The example
constructs a programmatic value of type List Nat and then uses
it in a logical context. The type List Nat is a first-order type, be-
cause it shares the same values in both the logical and program-
matic fragments.

Furthermore, the first-order rule means that first-order types
never need to be tagged with logical classifiers. Consider the ar-
gument and result types of functions. Without loss of general-
ity we can give a function the type (a = b) → B instead of

short description of paper 6 2012/7/23

(a = b)@L → B , since when needed the body of the func-
tion can treat the argument as logical through TFOVAL. Similar,
without loss of generality we can use A → (a = b) instead
of A → ((a = b)@L), since TFOVAL will apply whenever
TUNBOXVAL would have. Another consequence is that multiple
@’s have no effect beyond the innermost @ in a type. The type
A@P@L@P@L@P can be used in the same way as the type A@P.

3.5 Subsumption
Every logical expression can be safely used programmatically. We
reflect this fact into the type system by the rule TSUB, which says
that if a term a type checks logically, then it will also type check
programmatically with the same type. Such a rule is useful to avoid
code duplication. If a function can be easily defined in the logical
fragment one may as well do that, and then use it without penalty in
the programmatic fragment. In particular, a logical term can always
be supplied to a function expecting a programmatic argument.

However, the inclusion of the TSUB rule forces us to restrict the
domains of arrow types to be first-order. We do so with the premise
FO (A) in the rule TARR.

What this restriction means in practice is that higher-order func-
tions must use @-types to specify which fragment their arguments
belong to. For example, Nat → (Nat → Nat) → Nat is not a
well-formed type, so the programmer has to choose either Nat →
((Nat→ Nat)@L)→ Nat or Nat→ ((Nat→ Nat)@P)→ Nat.
In contrast, first-order arguments do not need nor benefit from tag-
ging.

The reason that function arguments need to be first-order is to
account for contravariance. Since proofs are programs, we should
be able to introduce a function in the logical fragment and use it in
the programmatic:

Γ, x :L A `L b : B

Γ `L (λx .b) : (x :A)→ B
TLAM

Γ `P (λx .b) : (x :A)→ B
TSUB

Now the definition of b assumed x was logical, yet when the
function is called it can be given a programmatic argument. For
this derivation to be sound we need to know that A means the same
thing in the two fragments, which is exactly what FO (A) checks.

For this idea to work, it is important that the rules for @-types
do not require explicit elimination forms. For example, checking
that the type

(f: (Nat->Nat)@P) -> f (plus n 0) = f n

is well-formed implicitly uses TUNBOXVAL. But the equation still
talks about the expression f n. If we instead had to make the
unboxing explicit

(f: (Nat->Nat)@P) ->
(unbox f) (plus n 0) = (unbox f) n

then there would be no way to write a logical lemma proving the
original equation.

In the previous version of our system [9] the @-elimination
forms were explicit. We solved the subsumption issue by requir-
ing that all arrow types specify the fragment of their domain in the
syntax (x :θ A) → B. Essentially, this approach fuses TUNBOX-
VAL and TAPP into a single rule. But it also requires unnecessary
clutter in the common case when A is a first-order type and the θ
does not matter.

3.6 Data
The final set of typing rules (Figure 7) deals with datatypes: natural
numbers, disjoint sums, and—most interestingly—recursive types.

The natural number type Nat and its typing rules (TNAT,
TZERO, TSUCC, and TNCASE) are standard. We include it to
ensure that there is some base type in the logical language. We
allow pattern matching on Nats in the logical fragment.

The rules for sums (TSUM, TINL, TINR, and TSCASE) are
mostly standard, with the novelty that TSCASE allows a scrutinee
that type checks in one fragment θ′ to be eliminated in another
fragment θ. The motivation for this added generality is similar to
the motivation for first-order types: given a value in (A1 +A2)@θ′

we know from the canonical forms lemma that it must be a sum
constructor applied to a value from A1@θ′ or A2@θ′, so it is safe to
scrutinize it. This generality allows the logical language to reason
by case analysis on programmatic values. For example, the lemma
idr from the introduction uses this capability.

Finally, the rules TMU, TROLL and TUNROLL deal with gen-
eral recursive types. Apart from the θs, these rules are standard for
iso-recursive types, i.e. a recursive type and its unfolding are treated
as unequal but isomorphic types, and the program contains explicit
roll and unroll expressions to map between them. The choice of
iso-recursive rather than equi-recursive types is guided by metathe-
ory. The step-indexed logical relation, defined in Section 4.2, uses
the step from the reduction unroll (roll v) ; v to show that the
definition is well founded.

Recursive types with negative occurrences—that is, with the re-
cursive variable appearing to the left of an arrow, such as µθx .(x →
Nat)—make it possible to write diverging programs using just λ-
expressions. They are an additional source of nontermination, in-
dependent of explicitly recursive functions. Yet they are useful for
programming, e.g. when implementing delimited control [25] or
higher-order abstract syntax [24], so we want to allow them in the
programmatic fragment.

Wellformedness of recursive types is checked by the rule TMU.
We check that A is a wellformed type in a context extended with
the variable x . We also tag the type itself by the fragment it was
defined in (the θ subscript on the µ) to avoid unsound interactions
with subsumption.

In order to ensure normalization, it suffices to only restrict the
the elimination rule TUNROLL. The introduction rule TROLL can
be used in both fragments. Intuitively, this shows that it is not dan-
gerous to construct datatype values; the potential nontermination
comes from programs that eliminate them.

This idea that some operations can safely be performed even
on negative datatypes seems promising. In future work, we hope to
add eliminations of recursive types in the logical fragment. In par-
ticular, following the ideas of Ahn and Sheard [2] we hope to add
combinators to define recursive functions over recursive data. Ex-
citingly, they show that it is safe to allow function definitions even
over negative datatypes, as long as the function unfolds the type
“just once”. Ultimately we want positive and negative datatypes to
co-exist in the same language, defined using the same mechanism
but supporting different operations.

4. Metatheory
We now consider the metatheory of λθ . We are interested in two
properties. First, that the entire language is type-safe (both the L
and P fragments). Second, that any closed term in the L fragment
normalizes, which implies logical consistency.

Type safety is proven using standard progress and preservation
theorems. Preservation can be proved up front. However, since the
rules TCONV and TCONTRA allow stuck terms to type check given
a contradiction, the progress lemma depends on logical consistency.
In our development we first prove preservation, then normalization
and consistency, and finally progress.

short description of paper 7 2012/7/23

Γ `θ a : A

` Γ

Γ `L Nat : ?
TNAT

` Γ

Γ `L Z : Nat
TZERO

Γ `θ a : Nat

Γ `θ S a : Nat
TSUCC

Γ `θ a : Nat
Γ, z :L Z = a `θ b1 : B
Γ, x :θ Nat, z :L (S x) = a `θ b2 : B
Γ `θ B : ?

Γ `θ ncasez a of {Z ⇒ b1; S x ⇒ b2} : B
TNCASE

Γ `θ A : ?
Γ `θ B : ?

Γ `θ A + B : ?
TSUM

Γ `θ a : A
Γ `θ A + B : ?

Γ `θ inl a : A + B
TINL

Γ `θ b : B
Γ `θ A + B : ?

Γ `θ inr b : A + B
TINR

Γ `θ a : (A1 + A2)@θ′

Γ, x :θ
′
A1, z :L inl x = a `θ b1 : B

Γ, x :θ
′
A2, z :L inr x = a `θ b2 : B

Γ `θ B : ?

Γ `θ scasez a of {inl x ⇒ b1; inr x ⇒ b2} : B
TSCASE

Γ, x :θ ? `θ A : ?

Γ `θ µθx .A : ?
TMU

Γ `θ a : [µθx .A/x]A
Γ `θ µθx .A : ?

Γ `θ roll a : µθx .A
TROLL

Γ `P a : µθx .A
Γ `P [µθx .A/x]A : ?

Γ `P unroll a : [µθx .A/x]A
TUNROLL

Figure 7. Typing: data
.

The proof of normalization is particularly interesting. In order to
handle the rules TFOVAL and TUNBOXVAL, we use a combination
of traditional and step-indexed logical relations.

Coq formalization The theorems in this paper have been checked
in Coq4. To prove certain facts about our logical relation we found
it necessary to add a standard axiom of functional extensionality to
Coq. This axiom is know to be consistent with Coq’s logic [29].

4.1 Preservation
The preservation proof as usual relies on weakening, substitution
and inversion lemmas. Weakening is completely standard. The sub-
stitution lemma mentions the θ′ on the variable we are substitut-
ing for, and is restricted to substituting values, not arbitrary ex-
pressions. This restriction reflects the value restrictions in the rules
SBETAFUN,SBETALAM, TBOXLV and TUNBOXVAL, and also
the the value restriction in CBV-reduction used by the TREFL rule.

Lemma 1 (Substitution). If Γ2 `θ
′
v : B and Γ1, x :θ

′
B ,Γ2 `θ

a : A, then Γ1, [v/x]Γ2 `θ [v/x]a : [v/x]A.

So far, these lemmas are not very different from the metathe-
ory of other dependently typed calculi, such as the Calculus of
Constructions (CC) [11]. However, our inversion lemmas are more
complicated than the corresponding ones for CC. This is because
one of the design goals of λθ is that typing rules without runtime
effects should not require term constructors. In particular, uses of
TCONV and TBOXP/L/LV are not marked in the term. This leaves
correspondingly less leverage for inversion lemmas.

As an example, consider inversion for λ-expressions. In CC it is
the case that if Γ ` (λx.b) : A, then A is β-convertible with some
arrow type (x :B1)→ B2 and Γ, x : B1 ` b : B2. In λθ this is not
true: if there were a hypothesis (x :L (Nat → Nat) = Nat) ∈ Γ,
the expression could also have been given type Nat using TCONV.
(Restricting preservation to empty contexts would not help, since
at this point in the proof—before proving consistency—we cannot
rule out that this equality is provable). Further, if the BOX rules
were used, A may be an @-type. Taking this into account our
inversion lemma is:
Lemma 2 (Inversion for λ-expressions). If Γ `θ (λx .b) : A, then
either

4 Available from http://www.cis.upenn.edu/~ccasin/lth.tgz.

1. Γ `L p : A = ((x :B1) → B2) and Γ, x :θ B1 `θ b : B2, for
some expressions p, B1 and B2,

2. or Γ `L p : A = (((x : B1) → B2)@θ′ . . .@θ′′) and
Γ, x :θ

′
B1 `θ

′
b : B2.

With this and other inversion lemmas available, we can then prove
preservation.
Theorem 3 (Preservation). If Γ `θ a : A and a ; a ′, then
Γ `θ a ′ : A.

To make this proof go through, we must add type constructor
injectivity (rules TARRINV1 etc) and discrimination (TCONTRA)
to the language. The problem is due to the weak inversion lem-
mas. Consider e.g. the case when a function application steps,
(λx .b) v ; [v/x]b. From the premises of the rule TAPP we know
that Γ `θ (λx .b) : (x :A1) → A2 and Γ `θ v : A1, and from in-
version we know either Γ `L p : ((x :A1) → A2) = ((x :B1) →
B2) and Γ, x :θ B1 `θ b : B1, or else (x : A1) → A2 is prov-
ably equal to an @-type. In the first case we apply the substitution
lemma, using TARRINV1 to prove A1 = B2, while in the second
case we use TCONTRA.

4.2 Normalization
Our proof of normalization builds upon the standard Girard-Tait
reducibility method [14, 28], in a CBV-style formulation. The crux
of such a method is to define a “type interpretation”. For each
type A we define a set of values JAK. We then prove that the
interpretation is “sound”: any closed term a of logical type A
reduces to a value in JAK. The definition of the type interpretation
is a logical relation and follows the structure of types. For example
the usual interpretation of function types JA → BK is the set of
λ-expressions that when applied to an argument in JAK evaluate to
a value in JBK.

Motivation The proof hinges on the definition of a suitable type
interpretation and a suitably generalized statement of soundness.
To motivate the main ideas, we first show two failed proof attempts
and how to fix them.

We begin by considering the statement of the soundness theo-
rem. To generalize it to open terms, write ρ for mappings of vari-
ables to values, and write Γ |= ρ to mean that the values in the
mapping are all suitable, i.e. if (x :θ A) ∈ Γ then ρ x ∈ JAK. For

short description of paper 8 2012/7/23

now we will be vague about the definition of JAK. For normaliza-
tion, we are ultimately only interested in the L fragment, so our first
try is:

Soundness (attempt 1): If Γ `L a : A and Γ |= ρ, then
ρ a ;∗ v ∈ JAK.

However, if we try to prove this statement by induction on
Γ `L a : A, we get stuck in the cases for TUNBOXVAL and
TFOVAL. We have some value v of which we know nothing except
that the it is well-typed in P, and need to show that it belongs to the
type interpretation. This difficulty shows that we need to generalize
the theorem statement to also say something about programmatic
expressions.

Since values can move from L to P, we must also characterize
which values are typeable programmatically. We define two dif-
ferent type interpretations JAKL and JAKP, which should be equal
whenever A is a first-order type. For programmatic expressions the
soundness theorem should express partial correctness: not every
programmatic expression terminates, but we want to characterize
the ones that do.

Soundness (attempt 2): If Γ `θ a : A and Γ |= ρ, then

• If θ is L, then ρ a ;∗ v ∈ JAKL.

• If θ is P and ρ a ;∗ v , then v ∈ JAKP.

This idea is correct, but now we have a new problem. We must
construct a type interpretation JAKP that accounts for the rules
for recursive functions and recursive types. The construction of
logical relations for such language features is a well-known thorny
issue. For example, the rule TROLL suggests that the definition
of Jµθx .AKP should be the set of values roll v such that v ∈
J[µθx .A/x]AKP. Unfortunately, if we define JAKP by structural
recursion on A that is not a valid definition: [µθx .A/x]A is a bigger
type than µθx .A.

A well-known solution is to make the interpretation step-
indexed [1, 3]. The interpretation is given a number k, the step
count, as an extra argument. Intuitively, a value v is in the interpre-
tation if any use of v will be “well-behaved” for at least k steps of
execution. The interpretation is defined by strong induction on the
step count.

However, the usual formulation of a step-indexed type interpre-
tation only lends itself to proving safety properties: it tells us that an
expression will not do anything bad for the next k steps. By con-
trast, normalization is a liveness property: every expression will
eventually do something good (namely reduce to a value). In our
definition we take a hybrid approach, by only counting steps that
happen in the P fragment.

Proof The definition of our type interpretation is shown in Fig-
ure 8. Following Ahmed [1] it is split into two parts: the value in-
terpretation Vρ[[A]]θk and the computational interpretation Cρ[[A]]θk
that mutually refer to each other.

The value interpretation contains closed, well-typed values. We
maintain the invariant that if v ∈ Vρ[[A]]θk then · `θ v : ρA
by adding typing conditions to the definition as appropriate. In
addition to the type A, the interpretation also takes a step-count
k and a substitution ρ as inputs. The k intuitively indicates that
all programmatic subexpressions of the values in Vρ[[A]]θk will be
well-behaved for at least k steps of computation.

We only want to count steps in the programmatic fragment. The
difference can be seen by comparing the definitions of Vρ[[(x :
A) → B]]Lk and Vρ[[(x : A) → B]]Pk , which say “j ≤ k” and
“j < k” respectively. If all θs in a derivation are L, then no
inequalities are strict, so the step-count k never goes down and the
interpretation is equivalent to not being step-indexed. We use j ≤ k

Vρ[[?]]θk = {v | · `θ v : ?}
Vρ[[Nat]]θk = {v | v is of the form Sn Z}
Vρ[[A@θ′]]θk = {v | · `θ

′
ρA : ? and v ∈ Vρ[[A]]θ

′
k }

Vρ[[(x :A)→ B]]Lk= {λx .a | · `L λx .a : ρ ((x :A)→ B)
and ∀j ≤ k, if v ∈ Vρ[[A]]Lj
then [v/x]a ∈ Cρ[x 7→v][[B]]Lj }

Vρ[[(x :A)→ B]]Pk= {λx .a | · `P λx .a : ρ ((x :A)→ B)
and ∀j < k, if v ∈ Vρ[[A]]Pj
then [v/x]b ∈ Cρ[x 7→v][[B]]Pj }

∪
{rec f x .a | · `P rec f x .a : ρ ((x :A)→ B)

and ∀j < k, if v ∈ Vρ[[A]]Pj
then [v/x][rec f x .a/f]a ∈ Cρ[x 7→v][[B]]Pj }

Vρ[[A + B]]θk = {inl v | · `θ ρ (A + B) : ? and v ∈ Vρ[[A]]θk}
∪
{inr v | · `θ ρ (A + B) : ? and v ∈ Vρ[[B]]θk}

Vρ[[µθx .A]]θ
′

k = {roll v | · `θ
′

roll v : ρ (µθx .A)
and ∀j < k, v ∈ Vρ[[[µθx .A/x]A]]θj

Vρ[[a1 = a2]]θk = {refl | · `θ ρ (a1 = a2) : ?
and ρ a1 V∗ a and ρ a2 V∗ a
for some a}

Vρ[[A]]θk = ∅ otherwise

Cρ[[A]]Pk = {a | · `P a : ρA and ∀j ≤ k,
if a ;j v then v ∈ Vρ[[A]]P(k−j)}

Cρ[[A]]Lk = {a | · `L a : ρA and a ;∗ v ∈ Vρ[[A]]Lk}

Figure 8. Type interpretation

instead of just j = k because the interpretation as a whole needs to
be closed under decreasing k (Lemma 4).

The input ρ maps free variables of A to values. The ρ is ex-
tended in the interpretation of dependent function types Vρ[[(x :
A) → B]]θk . Instead of maintaining ρ as a separate input we could
change that case to say “. . . then [v/x]a ∈ Cρ[[[v/x]B]]θj ”, but
then the definition would not obviously be well founded for log-
ical types.

We use ρ when interpreting equality types. The type a1 = a2
is interpreted as the singleton set {refl} if ρ a1 and ρ a2 parallel-
reduce to a common expression, and as the empty set otherwise.
Convertibility by parallel reduction equates enough terms to justify
the introduction rule TREFL, and yet is specific enough that we can
prove Lemma 7 which justifies the elimination rule TCONV.

In a normalization proof for System F or for CC [13], the type
interpretation would take an input ρ which specifies the interpreta-
tion of type variables in A, but not one which specifies the values
of term variables. Since we do not have polymorphism in our lan-
guage, we do not need to account for type variables. But unlike
CC, because of the primitive equality type we can not just ignore
term variables in types. Our ρ is similar to normalization proofs for
systems that have large elimination of datatypes, such as CiC [31].

The computational interpretation Cρ[[A]]θk contains closed terms.
The definition expresses the connection between θ and total/partial
correctness. For θ = L the term ρ a must evaluate to a value. For
θ = P, if the term ρ a evaluates to a value within k steps, then the
value must be in the appropriate interpretation.

The interpretation is defined by well-founded recursion, where
the decreasing metric is the lexicographically ordered triple (k,A, I),
where k is the step-index, A is the structure of the type, and I is

short description of paper 9 2012/7/23

one of C or V with V < C. The C interpretation can call the V
interpretation at the same index and type, but not vice versa.

In the proof, we are interested in closing substitutions ρ which
map variables to values in the correct interpretation. We inductively
define the judgement Γ |=k ρ by

· |=k ∅
EWFNIL

Γ |=k ρ
v ∈ Vρ[[A]]θk Γ `θ A : ?

Γ, x :θ A |=k ρ[x 7→ v]
EWFCONS

Intuitively, Γ |=k ρ asserts that ρ maps term variables to well-
behaved values. Because of the premise Γ `θ A : ? it also asserts
that Γ does not contain any type variables. This is vacuously true
for the empty context, and preserved by each case of the type
interpretation.

The soundness theorem relies on a few key lemmas about the
interpretation. These are all proven by induction on the same metric
that the interpretation is defined by. The first is a standard property
for step-indexed logical relations: it says that requiring values to
stay well-behaved for a larger number of steps creates a more
precise interpretation.
Lemma 4 (Downward closure). For any A, θ and ρ, if j ≤ k then
Vρ[[A]]θk ⊆ Vρ[[A]]θj .

The next two lemmas are specific to λθ because they relate the
L and P interpretations of a type. The first lemma is exactly what is
needed to handle the TFOVAL rule:
Lemma 5. For any k and ρ, if FO (A) then Vρ[[A]]Lk ⊆ Vρ[[A]]Pk .

The second lemma is needed to handle the TSUB rule. In the
proof of it we use Lemma 5 to deal with contravariance in the case
for arrow types.
Lemma 6. For any A, k, θ and ρ, Vρ[[A]]Lk ⊆ Vρ[[A]]Pk and
Cρ[[A]]Lk ⊆ Vρ[[A]]Pk .

Finally, in order to handle the TCONV rule we need a lemma
stating that equal types have the same interpretation.
Lemma 7 (Interpretation respects reduction). Suppose ρB1 V∗ A
and ρB2 V∗ A and Γ `θ B1 : ? and Γ `θ B2 : ? and Γ |=k ρ.
Then a ∈ Iρ[[A]]θk iff a ∈ Iρ[[B]]θk .

We can now prove soundness by induction on Γ `θ a : A.
Theorem 8 (Soundness of interpretation). If Γ `θ a : A and
Γ |=k ρ, then ρ a ∈ Cρ[[A]]θk .

Normalization is an immediate corollary. We also get a charac-
terization of which terms can be proven equal in the empty context.
We need such a characterization to prove progress.
Corollary 9 (Normalization). If · `L a : A, then there exists a
value v such that a ;∗ v .

Corollary 10 (Soundness of propositional equality).
If · `L a : A1 = A2, then there exists some A such that A1 V∗ A
and A2 V∗ A.

4.3 Progress
In order to prove the progress theorem we need a canonical forms
lemma. In the TCONV and TCONTRA cases we need to know
that there are no proofs of inconsistent equalities such as (Nat →
Nat) = Nat. So this lemma relies on Corollary 10.
Lemma 11 (Canonical forms).
• If · `θ v : Nat@θ1 . . .@θ2 then v is either Z or S v ′.
• If · `θ v : ((x :A)→ B)@θ1 . . .@θ2, then v is either λx .b or

rec f x .b.
• If · `θ v : (µθx .A)@θ1 . . .@θ2, then v is roll v ′.
• If · `θ v : (A + B)@θ1 . . .@θ2, then v is inl v ′ or inr v ′.

The progress theorem is now an easy induction on · `θ a : A.
Theorem 12 (Progress). If · `θ a : A, then either a is a value, or
there exists a ′ such that a ; a ′.

5. Variations
In this section we explain and justify the design choices of λθ .

Explicit introduction and elimination forms First, we have cho-
sen to make the introduction and elimination of the A@θ type im-
plicit so that typing does not interfere with equality. However, if
these forms were explicit, we could make the A@θ type nonstrict.
In such a system, there would be a single typing rule for this con-
struct, with no value restriction when embedding a programmatic
term in the logic. Thus:

Γ `θ a : A

Γ `θ′ box a : A@θ

Furthermore, the term box a would be a value and freeze the eval-
uation of a .

However, we choose not to use this semantics because it sub-
verts the CBV nature of λθ . Arguments of type A@θ would be
evaluated in a quasi-CBN fashion. There would be no way to en-
sure that an argument of type ((x : Nat)→ Nat)@P actually eval-
uates to a function value before being passed as the parameter to a
function. We already have a mechanism for delaying evaluation in
a CBV language—thunking—we do not wish to duplicate it with
the @-types.

First-order sums Another alternative that we considered was
only allowing the formation sums types (A1 + A2) where the two
component types are first order. The benefit of this change is that
the first premise of the rule TSCASE could be stated more usually
as Γ `θ a : A1 + A2. When sum types are first order, this premise
is equivalent to Γ `θ a : (A1 + A2)@θ′, because if the scrutinee
were a value, then it could come from any fragment.

However, restricting sums to first order types seems harsh—
in particular, data structures would have to tag all higher-order
components with θ. We would like to define data structures that
could be used equally well in either fragment, which seems difficult
with this restriction.

First-order contexts Requiring sum types to be first-order is one
step towards only allowing variables with first-order types in the
context. This change would mean that we would not have to tag
variable assumptions (contexts would be the more familiar list of
bindings x : A) and all variables would be valid at any θ.

However, this restriction requires extension in the case of re-
cursive types, which add an assumption x :θ ? into the context.
Because ? is itself not first-order, we need to use the @-type to
tag the appropriate fragment for the recursive type. However, the
rules currently do not allow the formation of types like ?@θ—we
would have to lift this restriction before requiring first-order con-
texts. However, this extension is already necessary to add polymor-
phism. These changes, other than requiring sums to be first-order,
do not seem that significant. On the other hand, the benefits also
appear minor.

Drop subsumption On the other hand, we could move in the other
direction and drop the subsumption rule. This change would have
the benefit of removing the FO-restriction on functions. At this
time, we do not have enough experience with the language to know
whether the additional flexibility in function definition is worth the
loss of flexibility from subsumption.

Only logical types It is a property that all types in this system
type check both logically and programmatically. In other words,

short description of paper 10 2012/7/23

there is no Γ `θ a : ? where θ cannot be L. A simpler language
would hard-wire this property in to the type system and force all
types to be valid in the logical fragment. That modification would
simplify the treatment of recursive types (we would not need the θ)
and would allow ? to be a first-order type.

However, we do not want to limit ourselves in this way. We
plan to experiment with type system additions that are valid pro-
grammatically but not in the logical language. For example, one
goal would be to add the axiom Γ `P ? : ? to the programmatic
language, but prevent it from being used in the formation of types
in the logical language.

6. Related Work
The work most closely related to ours is Capretta’s partiality
monad [8] and F∗ [27], and we have compared them to λθ through-
out the paper. To sum up, in the partiality monad there is no di-
rect analog to dependent function application in the programmatic
fragment; reasoning about partial programs requires working with
a separate notion of equivalence; and it only provides recursive
function definitions but not general recursive types. In F∗ the appli-
cation rule is restricted to values; there is no way to state equations
involving nonterminating expressions; and there is no way to move
values from the programmatic to the logical fragment (e.g. a logi-
cal case expression cannot destruct a value from the programmatic
fragment).

Non-constructive fixpoint semantics Bertot and Komendantsky [7]
describe a way to embed general recursive functions into Coq
which does not use coinduction. They define a datatype partial A
which is isomorphic to the usual Maybe A but is understood as
representing a lifted CPO A⊥, and use classical logic axioms to
provide a fixpoint combinator fixp. When defining a recursive func-
tion the user must prove continuity side-conditions. Since recursive
functions are defined nonconstructively they can not be reduced
directly, so instead one must reason about them using the fix-point
equation.

Partial Types Nuprl has at its core an untyped lambda calculus,
capable of defining a general fixed point combinator for defining re-
cursive computations. In the core type theory, all expressions must
be proven terminating when used. Constable and Smith [10] inte-
grated potentially nonterminating computations through the addi-
tion of a type A of partial terms of type A. The fixpoint opera-
tor then has type (A → A) → A. However, to preserve the con-
sistency of the logic, the type A must be restricted to admissible.
types. Crary [12] provides an expressive axiomatization of admissi-
ble types, but these conditions lead to significant proof obligations,
especially when using Σ-types. Although we have not yet added
Σ-types to λθ , we do not believe that there will be any restrictions
on the programmatic language similar to admissibility.

Modal types for distributed computation Modal logic reasons
about statements whose truth varies in different “possible worlds”.
Our type system is formally similar, with the possible worlds being
L and P. Modal logic has previously been used to design type
systems for distributed computation [15, 21]. In particular, λθ was
inspired by ML5 [21], in which the typing judgment is indexed
by what “world” (computer in a distributed system) a program
is running on, and which includes a type A@θ internalizing that
judgement. Our rule TFOVAL is similar to the GET rule in ML5

Γ `θ
′
A A mobile

Γ `θ A
GET

The A mobile judgement in ML5 is very similar to our judgement
FO (A). On the other hand, unlike λθ , ML5 does not require that

the domain of an arrow type be first-order. As we explained in
Section 3.5 we make that restriction to accomodate our rule TSUB,
a rule which does not make sense in the context of distributed
computation.

Other TRELLYS approaches This research was carried out in
the context of the TRELLYS project, which aims to develop a
new practical dependent programming language. We have been
working simultaneously on an alternative design [17], where the
logical and programmatic fragments are syntactically separate—in
effect rejecting the rule TSUB. One of the gains is that the logical
language can be made CBN even though the programmatic one is
CBV, avoiding the need for thunking (as discussed in Section 3.4).
In order to do inductive reasoning, the language adds an explicit
“terminates” predicate.

7. Future work
We view this system as a framework for future extension. We have
structured our language definition and metatheory with the plan
of extension. We use a collapsed syntax so that we can add new
features, such as polymorphism, type-level computation and large
eliminations, with only small change to the language definition. We
have formalized our metatheory in Coq so that we can check that
future extensions do not invalidate the necessary properties of λθ .

Irrelevance Dependently-typed programming often requires spec-
ificational arguments. These arguments do not affect runtime be-
havior, so should be irrelevant to an operational-based definition
of equivalence. Following Linger and Sheard [20] and Barras and
Bernardo [6] we would like to extend this language with such
arguments. In our previous workshop paper [26], we discuss the in-
teractions between implicit arguments, programmatic computation,
and operational-based equality.

Polymorphism and Type-level computation Although types and
terms share a common syntax, this language contains only a single
sort. As a result, polymorphic and higher-order types are not sup-
ported. We would like to extend both fragments of our language
to include these features. Our current plan is to extend the proof
following a normalization argument for the Calculus of Construc-
tions [13].

Data structures Currently, only programmatic terms can use re-
cursive datatypes. We have already mentioned the possibility of us-
ing Mendler-style combinators following the Nax language of Ahn
and Sheard 5. This language places no restriction on what sorts of
data types can be defined or how they can be constructed. Instead, it
limits the analysis of data structures to ensure the soundness of the
logic. At the same time, we would also like to allow type-level elim-
ination of data structures, i.e. large eliminations. However, again
such mechanisms complicate our type interpretation.

Termination case This paper presents the interactions between
two different type systems, called L and P. However, we could gen-
eralize this framework to allow other sets of typing rules. For ex-
ample, one reasoning principle that would strengthen the reasoning
of the metalogic is termination-case—a case analysis on whether
a programmatic expression evaluates to a value or diverges [17].
Unfortunately, this operator is unimplementable, so we would not
want to allow proofs that use this reasoning to be used as programs.
One solution is to introduce a new consistency classifier O, for
oracular. By not allowing O expressions to be used as programs,
we could control and track the use of termination case.

5 Personal communication

short description of paper 11 2012/7/23

8. Conclusion
This paper presents a framework for interacting logics and pro-
gramming languages. The consistency classifiers, θ, describe the
set of typing rules that determine the properties of each well-typed
expression. At the same time, many standard typing rules are poly-
morphic in this classifier, leading to uniformity between the sys-
tems. Internalizing this judgement as a type and observing that
some values can move freely allows the fragments to interact in
nontrivial ways, thereby leading to an expressive foundation for
dependently-typed programming.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant Nos. 0910500 and 1116620.

References
[1] A. Ahmed. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP, 2006, 2006.

[2] K. Y. Ahn and T. Sheard. A hierarchy of mendler style recursion
combinators: taming inductive datatypes with negative occurrences.
In Proceedings of the 16th ACM SIGPLAN international conference
on Functional programming, ICFP ’11, pages 234–246, New York,
NY, USA, 2011. ACM.

[3] A. W. Appel and D. McAllester. An indexed model of recursive types
for foundational proof-carrying code. ACM Trans. Program. Lang.
Syst., 23(5):657–683, 2001.

[4] L. Augustsson. Cayenne – a language with dependent types. In ICFP
’98: Proceedings of the 3rd ACM SIGPLAN international conference
on Functional Programming, pages 239–250. ACM, 1998.

[5] H. P. Barendregt. Lambda calculi with types. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic
in Computer Science, pages 117–309. Oxford University Press, 1992.

[6] B. Barras and B. Bernardo. The Implicit Calculus of Constructions as a
Programming Language with Dependent Types. In 11th international
conference on Foundations of Software Science and Computational
Structures (FOSSACS 2008), volume 4962 of LNCS, pages 365–379.
Springer, 2008.

[7] Y. Bertot and V. Komendantsky. Fixed point semantics and partial
recursion in coq. In Proceedings of the 10th international ACM SIG-
PLAN conference on Principles and practice of declarative program-
ming, PPDP ’08, pages 89–96, New York, NY, USA, 2008. ACM.

[8] V. Capretta. General recursion via coinductive types. Logical Methods
in Computer Science, 1(2):1–18, 2005.

[9] C. Casinghino, V. Sjöberg, and S. Weirich. Step-indexed normaliza-
tion for a language with general recursion. In J. Chapman and P. B.
Levy, editors, MSFP ’12: Proceedings of the Fourth Workshop on
Mathematically Structured Functional Programming, volume 76 of
Electronic Proceedings in Theoretical Computer Science, pages 25–
39. Open Publishing Association, 2012.

[10] R. L. Constable and S. F. Smith. Partial objects in constructive type
theory. In LICS, 1987, pages 183–193, 1987.

[11] T. Coquand and G. Huet. The calculus of constructions. Inf. Comput.,
76(2-3):95–120, 1988.

[12] K. Crary. Type Theoretic Methodology for Practical Programming
Languages. PhD thesis, Cornell University, 1998.

[13] H. Geuvers. A short and flexible proof of Strong Normalization for
the Calculus of Constructions. In TYPES ’94, volume 996 of LNCS,
pages 14–38, 1995.

[14] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII,
1972.

[15] L. Jia and D. Walker. Modal proofs as distributed programs (extended
abstract). In ESOP, 2004, pages 219–233. Springer, 2004.

[16] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic. AURA: A programming language for authorization
and audit. In ICFP ’08:Proceedings of the 13th ACM SIGPLAN
international conference on Functional Programming), pages 27–38,
2008.

[17] G. Kimmell, A. Stump, H. D. E. III, P. Fu, T. Sheard, S. Weirich,
C. Casinghino, V. Sjöberg, N. Collins, and K. Y. Ahn. Equational
reasoning about programs with general recursion and call-by-value
semantics. In PLPV ’12: Proceedings of the sixth workshop on Pro-
gramming languages meets program verification, 2012.

[18] D. R. Licata and R. Harper. Positively dependent types. In Proceed-
ings of the 3rd workshop on Programming languages meets program
verification, PLPV ’09, pages 3–14, New York, NY, USA, 2008. ACM.

[19] C. McBride and J. McKinna. The view from the left. J. Funct.
Program., 14(1):69–111, 2004.

[20] N. Mishra-Linger and T. Sheard. Erasure and Polymorphism in Pure
Type Systems. In 11th international conference on Foundations of
Software Science and Computational Structures (FOSSACS 2008),
volume 4962 of LNCS, pages 350–364. Springer, 2008.

[21] T. Murphy, VII, K. Crary, and R. Harper. Type-safe distributed
programming with ML5. In Trustworthy Global Computing 2007,
November 2007.

[22] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, September 2007.

[23] S. Peyton-Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ICFP ’06: Proceed-
ings of the 11th ACM SIGPLAN international conference on Func-
tional Programming, pages 50–61, 2006.

[24] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceed-
ings of the ACM SIGPLAN 1988 conference on Programming Lan-
guage design and Implementation, PLDI ’88, pages 199–208, New
York, NY, USA, 1988. ACM.

[25] C.-C. Shan. A static simulation of dynamic delimited control. Higher
Order Symbol. Comput., 20(4):371–401, Dec. 2007. ISSN 1388-3690.

[26] V. Sjöberg, C. Casinghino, K. Y. Ahn, N. Collins, H. D. E. III, P. Fu,
G. Kimmell, T. Sheard, A. Stump, and S. Weirich. Irrelevance, het-
erogeneous equality, and call-by-value dependent type systems. In
J. Chapman and P. B. Levy, editors, MSFP ’12: Proceedings of the
Fourth Workshop on Mathematically Structured Functional Program-
ming, volume 76 of Electronic Proceedings in Theoretical Computer
Science, pages 112–162. Open Publishing Association, 2012.

[27] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure Distributed Programming with Value-dependent Types. In
ICFP ’11: Proceedings of the 16th ACM SIGPLAN international con-
ference on Functional Programming, pages 285–296. ACM, 2011.

[28] W. W. Tait. Intensional interpretations of functionals of finite type i.
The Journal of Symbolic Logic, 32(2):pp. 198–212, 1967.

[29] T. C. D. Team. The Coq Proof Assistant, Frequently Asked Questions.
INRIA, 2011. URL http://coq.inria.fr/faq/.

[30] The Coq Development Team. The Coq Proof Assistant Reference
Manual, Version 8.3. INRIA, 2010. Available from http://coq.
inria.fr/V8.3/refman/.

[31] B. Werner. Une Théorie des Constructions Inductives. PhD thesis,
Université Paris 7, 1994.

[32] H. Xi and F. Pfenning. Dependent types in practical programming. In
POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT sympo-
sium on Principles of Programming Languages, pages 214–227, 1999.

short description of paper 12 2012/7/23

