
Down with kinds: adding dependent
heterogeneous equality to FC (Extended Version)

Stephanie Weirich Justin Hsu Richard A. Eisenberg
University of Pennsylvania

Philadelphia, PA, USA
{sweirich,justhsu,eir}@cis.upenn.edu

Abstract
FC, the core language of the Glasgow Haskell Compiler, is an
explicitly-typed variant of System F with first-class type equal-
ity proofs (i.e. coercions). This extensible proof system forms the
foundation for type system extensions such as type families (type-
level functions) and Generalized Algebraic Datatypes (GADTs).
Such features, especially in conjunction with kind polymorphism
and datatype promotion, support expressive compile-time reason-
ing.

However, the core language lacks explicit kind equality proofs.
As a result, type-level computation does not have access to kind-
level functions or promoted GADTs, the type-level analogues to
expression-level features that have been so useful. In this pa-
per, we eliminate such discrepancies by unifying types and kinds.
Our approach is based on dependent type systems with heteroge-
neous equality and the “Type-in-Type” axiom, yet it preserves the
metatheoretic properties of FC. In particular, type checking is sim-
ple, decidable and syntax directed. We prove the preservation and
progress theorems for the extended language.

1. Introduction
Is Haskell a dependently-typed programming language? That is
a difficult question. For more than a decade, clever Haskellers
have encoded many programs that were reputed to need dependent
types. At the same time, GHC, Haskell’s primary implementation,
has augmented its type system with many new features inspired
by dependently-typed languages, such as GADTs [Peyton Jones
et al. 2006; Schrijvers et al. 2009], type families [Chakravarty et al.
2005], and datatype promotion with kind polymorphism [Yorgey
et al. 2012]. These features have caused excitement among Haskell
programmers eager to take advantage of the new expressiveness.

However, these extensions do not compose well. On the one
hand, GADTs allow the programmer to exploit type equalities to
write richer terms. On the other, datatype promotion and kind
polymorphism have opened the door to much more expressive
types. But GADTs cannot currently be promoted, so the useful
type equalities available in terms cannot be lifted to useful kind
equalities available in types. (We give examples in Section 2.)

[Copyright notice will appear here once ’preprint’ option is removed.]

Our goal in this paper is to eliminate such nonuniformities,
and to do so with a single blow by unifying types and kinds.
Specifically, we make the following contributions:

• We describe an explicitly-typed intermediate language, based
directly on dependent type theory, in which we eliminate the
distinction between types and kinds by adding the “Type-in-
Type” axiom (Section 3). The language is no toy: it is an ex-
tension of the System FC intermediate language used by GHC
today [Sulzmann et al. 2007; Vytiniotis et al. 2012; Weirich
et al. 2011; Yorgey et al. 2012].

• The extended language uses explicit equality proofs at both the
type and the kind level. This means that it enjoys a simple, fast,
syntax-directed algorithm to determine the type of any term or
the kind of any type (Section 3.5).

• We extend the type preservation proof of FC to the new con-
structs (Section 4.3). The treatment of datatypes requires an im-
portant result—that the equational theory is congruent. That is,
we can derive a proof of equality for any form of type or kind,
given proofs of equalities of its subcomponents. The computa-
tional content of this theorem, called lifting, generalizes a stan-
dard substitution operation. This operation is required in the
operational semantics for datatypes.

• We also prove the progress theorem, which is true in the pres-
ence of a consistent set of axioms. Extending this theorem in the
presence of kind coercions and dependent coercion abstraction
requires two significant changes to the current proof. We dis-
cuss these changes and how they affect the design of the system
in Section 5.

As far as we are aware, this type/kind system is the first
dependently-typed language to include explicit (and irrelevant)
equality proofs. Unlike other dependently-typed languages, defi-
nitional equality in FC is only alpha-equivalence. All of the ac-
tion is in the provable equality. Furthermore, the provable equality
supports coherence, which means that type and kind coercions can
be ignored when showing equality. We discuss these differences in
more detail in Section 6, as well as comparisons with other systems.

2. Why kind equalities?
Kind equalities enable new, useful features in GHC.

First, kind equalities are necessary for kind-indexed GADTs.
Normal GADTs are nonuniform in their type parameters. For ex-
ample, a representation type reflects the type structure as a datatype
value that can be examined at runtime.

data TypeRep :: * → * where
TyInt :: Type Int
TyBool :: Type Bool

1 2012/7/10

Because of the nonuniform type index, pattern matching the data
constructors of TypeRep a determines the identity of the type
variable a. For example:

zero :: TypeRep a → a
zero TyInt = 0 -- here we know that a is Int
zero TyBool = False -- here we know that a is Bool

Type representations are useful for generic programming [Mag-
alhães 2012; Weirich 2006]. However, the GADT above can only
be used to represent types of kind ?. To represent type construc-
tors with higher kinds, such as Maybe or [], requires a separate
data structure (perhaps called TypeRep1, indexed by types of kind
? → ?). However, this approach is unsustainable. What about tu-
ple types? Do we need a TypeRep2, TypeRep3, etc? (This situa-
tion is similar to that of GHC’s Data.Typeable library, with its
Typeable, Typeable1, Typeable2, etc. type classes.)

Kind polymorphism alone will not allow us to collapse these
representations into a uniform datatype. Instead, we require a kind-
indexed GADT as shown below.

data TypeRep :: forall k. k -> * where
TyInt :: TypeRep Int
TyBool :: TypeRep Bool
TyMaybe :: TypeRep Maybe
TyApp :: TypeRep a -> TypeRep b

-> TypeRep (a b)

The data constructors of this datatype determine both the type and
the (implicit) kind parameters. For example, TyInt is not kind
polymorphic—the hidden kind parameter is ?. Pattern matching
with this datatype refines kinds as well as types. For example,
determining whether a type is of the form Maybe b makes new
kind and type equalities available.

isMaybe :: forall k (a::k). TypeRep a -> ...
isMaybe rep = case rep of

TyApp TyMaybe rb -> ..
-- here we have k ~ * and
-- a ~ Maybe b, where b :: *

Kind equalities also enable datatype promotion for GADTs.
Currently GHC may only promote a subset of Haskell 98
datatypes [Yorgey et al. 2012]. There are some datatypes that are
not available in the type level.

For example, Oury and Swierstra [2008] present a technique
for embedding Cryptol [Galois, Inc. 2002] as a domain-specific
language in Agda [Norell 2007], a full-spectrum dependently-typed
language. In Agda, the definitions relevant to this discussion are as
follows:

data Vec (A : Set) : Nat → Set where
Nil : Vec A Zero
_ :: _ : {n : Nat} → A → Vec A n → Vec A (Succ n)

data SplitView {A : Set} : {n : Nat} → (m : Nat)
→ Vec A (m * n) → Set where ...

The rest of the SplitView definition and its use is unimportant
for our discussion; we are concerned solely with its type. It is
straightforward to translate the definition for Vec into Haskell.
However, it is impossible to translate the type of SplitView while
retaining the type of the original. This is because SplitView uses
Vec as a kind. To translate this usage into Haskell, Haskell’s Vec
datatype—a GADT—would have be promoted.

Finally, kind equalities are necessary for the definition and use
of kind families. A kind family is a function that takes either types
or kinds as arguments and returns a kind. Promoting datatypes that
use type families requires kind families.

3. FC with kind equalities
FC is a language that has evolved over time, from its initial defini-
tion [Sulzmann et al. 2007], to the extensions FC2 [Weirich et al.
2011], and F ↑C [Yorgey et al. 2012].1 However, its design has al-
ways been motivated by a desire to maintain the following proper-
ties.

• Type checking is syntax directed (and decidable). Although
type inference for source Haskell programs may not terminate
in the presences of certain flags (such as UndecidableInstances)
once a core language term has been constructed, it can always
be checked simply and quickly. This capability is necessary to
ensure that transformation and optimization during compilation
preserves typability.

• Types and equality proofs may be erased prior to runtime. As
a result, the operational semantics includes a number of “push
rules” that ensure that coercions do not suspend computation.
The push rule for data constructors requires the ability to con-
gruently lift equalities through types.

• Because type families are open, the soundness of the type sys-
tem is parameterized by a consistent set of type equality ax-
ioms. More specifically, while preservation holds for any set of
axioms, progress is ensured only in contexts where equalities
between disjoint types cannot be proved.

The extensions that we describe to FC in this paper, even though
they introduce a bit of “dependency” to the type/kind language, do
not invalidate those properties. Furthermore, note that FC is the
core language for a significant compiler, GHC. Therefore we are
also constrained in that our extensions must be compatible with
prior versions of the system and not require significant modification
to the current implementation.

Type-in-Type A language with kind polymorphism, kind equali-
ties, kind coercions, type polymorphism, type equalities and type
coercions quickly becomes redundant (and somewhat overwhelm-
ing). Therefore, in this paper we follow pure type systems [Baren-
dregt 1992] and unify the syntax of types and kinds. This compres-
sion allows us to reuse the syntax of type coercions as kind coer-
cions. Furthermore, GHC already uses a shared datatype for types
and kinds so this merging brings the formalism more in line with
the actual implementation.

Following pure type systems, we could generalize over the sorts,
axioms and rules. However, for simplicity we do not do so. Instead
we combine types and kinds together semantically, by including
only a single sort ?, and the ?:? axiom. Because of this axiom, the
system does not distinguish between types and kinds.

However, we continue to use both of the words type and kind
informally. In particular, we use the word type for those members
that classify runtime expressions, and kind for those members that
classify expressions of type language. Due to datatype promotion,
which makes data constructors available to the type language, some
objects may be both types and kinds.

Even though we have the type-in-type rule, we do not have a
full-spectrum dependently-typed language. There is a still an im-
portant distinction between expressions e and types τ . This distinc-
tion reflects a phase distinction between compile-time and runtime
terms. All types and coercions will be erased prior to execution.

3.1 Syntax
The basic syntactic classes appear in Figure 1. In this figure, types
and kinds are drawn from the same syntactic class. By convention,

1 We use the name FC for the language and all of its variants. In the technical
discussion below, we contrast our new extensions with the most recent prior
version, F ↑C .

2 2012/7/10

we will use the metavariables τ and σ when treating an element of
this class as a type and use the metavariable κ for kinds.

Types and kinds There are three important differences between
types in this language and prior versions of FC:

1. Because we would like to preserve the syntax-directed nature of
FC, we must make the use of kind equality proofs explicit. We
do so via new form τ . γ of kind coercions, that, when given a
type τ , of kind κ1, and a proof γ that kind κ1 equals kind κ2,
produces a type of kind κ2.

2. As in older versions of FC, coercions can be passed as argu-
ments (using coercion abstractions λc: φ. e) and stored in data
structures (as the arguments to data constructors of GADTs).
This system deviates from earlier versions in that the types for
these objects, written ∀ c: φ. τ , name the abstracted proof with
the coercion variable c and allow the body of the type τ to de-
pend on this proof.

3. Finally, to promote GADTs, we must be able to promote data
constructors that take coercions as arguments. This requires
the new application form τ γ. Note that there is no type-level
abstraction over coercions. The form τ γ can only appear when
the head of τ is a promoted datatype constructor.

Coercions Coercions γ are proof terms that witness the equality
between types (or kinds). The modifications to the type language
require analogous modifications to the coercions that reason about
them. However, we defer the explanation of the syntax of these
coercions to Section 3.5, when we discuss their formation rules.

Expressions The only difference in the grammar for expressions
is that type abstractions and kind abstractions have been merged. In
general, the type system and operational semantics for the expres-
sion language is the same here as in prior versions of FC. Therefore,
we focus our discussion on types and coercions in the remainder of
the paper. The exception is the treatment of datatypes, covered in
Section 4.

Telescopes The bottom of the syntax figure displays the syntax
for telescopes ∆, nested bindings of type and coercion variables.
We describe the usage of telescopes in more detail in Section 3.8
and Section 4.

3.2 Syntactic sugar
To simplify the formalization, we rely on syntactic sugar listed in
Figure 2. For example, we treat the function type constructor (→)
as a right-associative, infix operator. Therefore, the type σ1 →
σ2 → σ3 is an abbreviation for (→)σ1 ((→)σ2 σ3).

Likewise, we use the metanotation σ1 ∼ σ2 for equality propo-
sitions. This notation stands for the operator (∼) applied to the ar-
guments κ1, κ2, σ1 and σ2. This operator is kind-polymorphic: the
first two arguments κ1 and κ2 are the kinds of the second two argu-
ments σ1 and σ2. Because the type system is syntax-directed, we
can always recover these kinds, so we can safely omit them from
the notation. We use the the metavariable φ to refer to types that are
of this form.

The last line of the figure defines a derived coercion proof. We
discuss this definition in Section 3.6.

3.3 Type System
The type system for this language includes the following judge-
ments which check the validity of types, expressions, contexts, co-
ercion proofs, and telescoped coercion proofs (the last is introduced
in Section 3.8).

H ::= Type constants
| (→) Arrow
| (∼) Equality proposition
| ? Type/Kind

w ::= Type-level names
| a Type variables
| T Datatype constructors
| F Type functions
| K Data constructors

σ, τ, κ::= Types and Kinds
| w Names
| H Constants
| ∀ a:κ. τ Polymorphic types
| ∀ c:φ. τ Coercion abstr. type
| τ1 τ2 Type/kind application
| τ1 . γ Casting
| τ1 γ Coercion application

γ, η ::= Coercions
| c Variables
| C Θ Axiom application
| 〈τ〉 Reflexivity
| sym γ Symmetry
| γ1 # γ2 Transitivity
| ∀ a: η. γ Type/kind abstr. cong.
| ∀ c: η. γ Coercion abstr. cong.
| γ1 γ2 Type/kind app. cong.
| γ(γ2, γ

′
2) Coercion app. cong.

| γ . γ′ Coherence
| γ@γ′ Type/kind instantiation
| γ@(γ1, γ2) Coercion instantiation
| nthi γ nth argument projection
| kind γ Kind equality extraction

e, u ::= Expressions
| x Variables
| λx: τ. e Abstraction
| e1 e2 Application
| Λa:κ. e Type/kind abstraction
| e τ Type/kind application
| λc:φ. e Coercion abstraction
| e γ Coercion application
| e . γ Casting
| K Data constructors
| case e of p → u Case analysis

p ::= Patterns
| K ∆ x: τ Data constructor pattern

∆ ::= Telescopes
| ∅ Empty
| ∆, a:κ Type variable binding
| ∆, c:φ Coercion variable binding

Note: this figure refers to φ (described in Section 3.2) and Θ
(described in Section 3.8).

Figure 1. Basic Grammar

3 2012/7/10

Function type/kind σ1 → σ2 , (→)σ1 σ2

Equality proposition, φ σ1 ∼ σ2 , (∼) κ1 κ2 σ1 σ2

Coercion compatibility γ . η1 ∼ η2 ,
(sym ((sym γ) . η2)) . η1

Figure 2. Syntactic sugar

Γ t̀y τ : κ Type/kind validity (Figure 3)
Γ t̀m e : τ Expression typing (the appendix)
ẁf Γ Context validity (Figure 4)

Γ c̀o γ : φ Coercion validity (Figure 5)
Γ t̀c ∆! Θ Telescoped coercion validity (Figure 6)

These judgements refer to contexts Γ which are lists of assump-
tions for term variables, type variables, datatype constants, data
constructors, and coercion variables and axioms.

asn::= Assumptions
| x: τ Term variables
| w:κ Type variables and constants
| c:φ Coercion variables
| C : ∀∆. φ Coercion axioms

Γ ::= Contexts
| ∅ Empty context
| Γ, bnd Binding

Before explaining these judgements, we briefly review two of
their properties. First, each of these judgements is syntax directed.
Given the information before the colon (if present) there is a simple
algorithm that determines if the judgement holds (and produces the
appropriate kind, type or proposition). For the judgements without
a colon, all the arguments are considered inputs; the algorithm sim-
ply determines whether or not the judgement holds. Second, these
typing judgements are designed to satisfy the following generation
properties that ensure that the subcomponents of each judgement
are valid. Furthermore, the produced derivations are always smaller
than the provided derivation.

Lemma 3.1 (Regularity/Generation).

1. If Γ t̀y τ : κ then Γ t̀y κ : ? and ẁf Γ.
2. If Γ t̀m e : τ then Γ t̀y τ : ? and ẁf Γ.
3. If Γ c̀o γ : σ1 ∼ σ2 then Γ t̀y σ1 : κ1 and Γ t̀y σ2 : κ2

and ẁf Γ.

Proof. The proof of this lemma is a straightforward induction on
typing derivations, appealing to substitution Lemma 3.4.

3.4 Type, expression and context validity
The rules for type formation appear in Figure 3. These rules are
fairly standard. The first three rules declare the kinds of the con-
stants: the sort ?, the function type constructor (→) and the equal-
ity proposition constructor (∼). The kinds of the first two of these
mention themselves, but that does not cause difficulties. The kind
of the third operator shows that equality is heterogeneous. As de-
scribed above, in an equality proposition, the first two arguments
are the kinds of the second two arguments and may differ.

The next rule applies to any name declared in the context that
is valid in the type language. These names w include type vari-
ables, type constants, type function names and promoted data con-
structors. Datatype promotion allows data constructors, such as
Nothing and Just, to appear in types and be the arguments of type

Γ t̀y τ : κ Kind and type validity

ẁf Γ

Γ t̀y ? : ?
K STARINSTAR

ẁf Γ

Γ t̀y (→) : ?→ ?→ ?
K ARROW

ẁf Γ

Γ t̀y (∼) : ∀ a: ? . ∀ b: ? . a → b → ?
K EQUAL

ẁf Γ w:κ ∈ Γ

Γ t̀y w : κ
K VAR

Γ t̀y τ1 : κ1 → κ2 Γ t̀y τ2 : κ1

Γ t̀y τ1 τ2 : κ2
K APP

Γ t̀y τ1 : ∀ a:κ1. κ2 Γ t̀y τ2 : κ1

Γ t̀y τ1 τ2 : κ2[τ2/a]
K TINST

Γ t̀y τ1 : ∀ c:φ. κ Γ c̀o γ1 : φ

Γ t̀y τ1 γ1 : κ[γ1/c]
K CAPP

Γ, a:κ t̀y τ : ? Γ t̀y κ : ?

Γ t̀y ∀ a:κ. τ : ?
K ALLT

Γ, c:φ t̀y τ : ? Γ t̀y φ : ?

Γ t̀y ∀ c:φ. τ : ?
K ALLC

Γ t̀y τ : κ1 Γ c̀o η : κ1 ∼ κ2 Γ t̀y κ2 : ?

Γ t̀y τ . η : κ2
K CAST

Figure 3. Type formation rules

ẁf Γ Context well-formedness

ẁf ∅
GWF EMPTY

Γ t̀y κ : ? a # Γ

ẁf Γ, a:κ
GWF TYVAR

Γ t̀y κ : ? F # Γ

ẁf Γ, F:κ
GWF TYFUN

Γ t̀y ∀ a:κ. ? : ? T # Γ

ẁf Γ, T: ∀ a:κ. ?
GWF TYDATA

Γ t̀y τ : κ x # Γ

ẁf Γ, x: τ
GWF VAR

Γ t̀y ∀ a:κ. ∀∆. (σ → T a) : ? K # Γ

ẁf Γ, K : ∀ a:κ. ∀∆. (σ → T a)
GWF CON

Γ t̀y φ : ? c # Γ

ẁf Γ, c:φ
GWF CVAR

Γ,∆ t̀y φ : ? C # Γ

ẁf Γ, C : ∀∆. φ
GWF AX

Figure 4. Context formation rules

4 2012/7/10

functions. An advantage of combining types and kinds together is
that here data constructors have the same “kinds” when they are
used in the type language as their “types” when they are used in
the expression language. (Previously, the types of data constructors
had to be translated to kinds [Yorgey et al. 2012].) Because of this
uniformity, any data constructor can be promoted.

The next two rules describe when type application is well-
formed. Application is overloaded in the rules K APP and
K TINST. However, this system is still syntax-directed because
the type of the first component determines which rule applies. We
do not combine function types σ1 → σ2 and polymorphic types
∀ a: κ. σ into a single form because of type erasure. In the expres-
sion language, we must distinguish between term arguments, which
are necessary at runtime, and type arguments, which may be erased.
In kinds, the difference between nondependent and dependent ar-
guments is not meaningful. However, when data constructors are
promoted to the type level, their types maintain this distinction.

Because equality is heterogeneous, the casting rule K CAST re-
quires a third premise which ensures that the new kind has the cor-
rect classification. This premise ensures the invariant (Lemma 3.1)
that everything to the right of the colon has kind ?.

Expression typing is unchanged from prior work so we do not
discuss it here. For reasons of space, the elided rules and many of
the proofs appear in the Appendix.

The rules for context formation appear in Figure 4. These
rules ensure that all assumptions in the context are well formed
and unique. They additionally constrain the form of the kinds of
datatypes and the types of data constructors. We discuss these
forms in more detail in Section 4.

3.5 Coercion proofs
Coercions γ are proof terms witnessing the equality between types
(and kinds). The rules under which the proofs can be derived appear
in Figure 5. These rules establish properties of the type equality
relation.

• Equality is an equivalence relation, so the rules CT REFL,
CT SYM, and CT TRANS show that this relation is reflexive,
symmetric and transitive.

• Equality is compatible, meaning that any pair of types can be
shown equal by showing that their subcomponents are also
equal. Every type formation rule (except for the base cases like
variables and constants) has an associated compatibility rule.
The exception is kind coercion τ . γ, where the compatibility
rule is derivable (see Section 3.6). The compatibility rules are
mostly straightforward; we discuss the rules for quantified types
(rules CT ALLT and CT ALLC) in Section 3.7.

• Equality is hypothetical. Coercion variables and axioms add as-
sumptions about equality to the context and appear in proofs
(using rules CT VAR and CT VARAX respectively). We de-
scribe the use of parameterized axioms in Section 3.8. Such as-
sumptions can be decomposed using the next five rules. For ex-
ample, because we know that datatypes are injective type func-
tions, we can decompose a proof of the equivalence of of two
datatypes into equivalence proofs for each of the parameters
(CT NTH). Furthermore, the equivalence of two polymorphic
types, means that the kinds of the bound variables are equiv-
alent (CT NTH1TA), and that all instantiations of the bound
variables are equivalent (CT INST). The same is true for coer-
cion abstraction types (rules CT NTH1CA and CT INSTC).

• Equality is heterogeneous. The equality proposition σ1 ∼ σ2

corresponds to McBride’s “John Major” equality [McBride
2002]. Any two types can be declared to be equivalent even if
they have different kinds. The proposition asserts both that the

Γ c̀o γ : φ Coercion proof

Γ t̀y τ : κ

Γ c̀o 〈τ〉 : τ ∼ τ CT REFL

Γ c̀o γ : τ1 ∼ τ2
Γ c̀o sym γ : τ2 ∼ τ1

CT SYM

Γ c̀o γ1 : τ1 ∼ τ2 Γ c̀o γ2 : τ2 ∼ τ3
Γ c̀o γ1 # γ2 : τ1 ∼ τ3

CT TRANS

Γ c̀o γ1 : τ ′1 ∼ τ ′2 Γ c̀o γ2 : τ1 ∼ τ2
Γ t̀y τ

′
1 τ1 : κ1 Γ t̀y τ

′
2 τ2 : κ2

Γ c̀o γ1 γ2 : τ ′1 τ1 ∼ τ ′2 τ2
CT APP

Γ c̀o γ1 : τ1 ∼ τ ′1
Γ t̀y τ1 γ2 : κ Γ t̀y τ

′
1 γ
′
2 : κ′

Γ c̀o γ1(γ2, γ′2) : τ1 γ2 ∼ τ ′1 γ′2
CT CAPP

Γ c̀o η : κ1 ∼ κ2 a
•7→ (a1, a2, c)

Γ, a1:κ1, a2:κ2, c: a1 ∼ a2 c̀o γ : τ1 ∼ τ2
Γ t̀y ∀ a1:κ1. τ1 : ? Γ t̀y ∀ a2:κ2. τ2 : ?

Γ c̀o ∀ a: η. γ : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
CT ALLT

Γ c̀o η : φ1 ∼ φ2 c
•7→ (c1, c2)

c1 # |γ| c2 # |γ|
Γ, c1:φ1, c2:φ2 c̀o γ : τ1 ∼ τ2
Γ t̀y ∀ c1:φ1. τ1 : ? Γ t̀y ∀ c2:φ2. τ2 : ?

Γ c̀o ∀ c: η. γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
CT ALLC

Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ1 . γ
′ : κ

Γ c̀o γ . γ′ : τ1 . γ′ ∼ τ2
CT COH

c:φ ∈ Γ ẁf Γ

Γ c̀o c : φ
CT VAR

C : ∀∆. (τ1 ∼ τ2) ∈ Γ Γ t̀c ∆! Θ

Γ c̀o C Θ : Θ1(τ1) ∼ Θ2(τ2)
CT VARAX

Γ c̀o γ : H τ ∼ H τ ′

Γ c̀o nth
i γ : τi ∼ τ ′i

CT NTH

Γ c̀o γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)

Γ c̀o nth
1 γ1 : κ1 ∼ κ2

CT NTH1TA

Γ c̀o γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
Γ c̀o γ2 : σ1 ∼ σ2

Γ t̀y σ1 : κ1 Γ t̀y σ2 : κ2

Γ c̀o γ1@γ2 : τ1[σ1/a1] ∼ τ2[σ2/a2]
CT INST

Γ c̀o γ : (∀ c:φ. τ) ∼ (∀ c′:φ′. τ ′)
Γ c̀o nth

1 γ : φ ∼ φ′
CT NTH1CA

Γ c̀o γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
Γ c̀o γ1 : φ1 Γ c̀o γ2 : φ2

Γ c̀o γ@(γ1, γ2) : τ1[γ1/c1] ∼ τ2[γ2/c2]
CT INSTC

Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ1 : κ2 Γ t̀y τ2 : κ2

Γ c̀o kind γ : κ1 ∼ κ2
CT EXT

Figure 5. Coercion proofs

5 2012/7/10

types are equal and that their kinds are also equal. Therefore,
given a proof of an equality between two types, we can extract
from it a proof of equality between their kinds.

3.6 Coercion irrelevance and coherence
Although the type system includes a judgement that decides
whether two types are equal, and types may include explicit co-
ercion proofs, the system does not include a judgement that states
when two coercions are equal. The reason is that this relation is
trivial. All coercions between equivalent proofs can be considered
equivalent. Coercion proofs are irrelevant to type equality. As a
result, FC is open to extension by new, consistent coercion axioms.

This “proof irrelevance” is reflected in the compatibility rule
for coercion application, CT CAPP. In this rule, note that there
are no restrictions on γ2 and γ′2 other than ensuring that the appli-
cations are well-formed, which indirectly implies that they prove
equivalent equalities. Another example of irrelevance is in rule
CT INSTC. Again, the rule requires no relation between the two
coercions γ1 and γ2.

Not only is the identity of coercion proofs irrelevant, but type
equivalence also ignores their uses. The coherence rule, CT COH,
essentially says that the use of kind coercions can be ignored
when proving type equalities. Although this rule is asymmetric,
it is powerful. In particular, it can derive the compatibility and
elimination rules for coerced types. The derived compatibility rule
is below (note that the rule requires no explicit relation between η1
and η2):

Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ1 . η1 : κ1 Γ t̀y τ2 . η2 : κ2

Γ c̀o (sym ((sym γ) . η2)) . η1 : τ1 . η1 ∼ τ2 . η2
For convenience, we define notation for this coercion.

Definition 3.2 (Coercion compatibility). The notation γ . η1 ∼ η2
abbreviates the coercion (sym ((sym γ) . η2)) . η1.

Likewise, coherence derives a proof term for decomposing
equalities between coerced types.

Γ c̀o γ : τ1 . γ1 ∼ τ2 . γ2
Γ c̀o sym (〈τ1〉 . γ1) # γ # 〈τ2〉 . γ2 : τ1 ∼ τ2

3.7 Compatibility rules for quantified types
The compatibility rules for the two type forms with quantifiers,
∀ a:κ. σ and ∀ c:φ. σ, require explanation.

In prior versions of FC, the coercion ∀a:κ.γ proved the equality
proposition ∀ a:κ. τ1 ∼ ∀ a:κ. τ2, using the following rule:

Γ t̀y κ : ? Γ, a:κ c̀o γ : τ1 ∼ τ2
Γ c̀o ∀ a:κ. γ : (∀ a:κ. τ1) ∼ (∀ a:κ. τ2)

CT ALLTX

This rule sufficed in those systems because the only quantified
types that could be shown equal had the same syntactic kinds
κ for the bound variable. However, here we have a nontrivial
equality between kinds. That means that we need to show a more
general proposition: ∀ a:κ1. τ1 ∼ ∀ a:κ2. τ2, even when κ1 is not
syntactically equal to κ2. Without this generality, the language does
not satisfy the preservation lemma, which requires that the quality
relation be substitutive (see Section 4). In other words, given a valid
type σ where a appears free, and a proof Γ c̀o γ : τ1 ∼ τ2, we
must be able to derive a proof between σ[τ1/a] and σ[τ2/a]. For
this property to hold, if a occurs in the bound of a quantified type
∀ b: a. τ , then we must be able to derive ∀ b: τ1. τ ∼ ∀ b: τ2. τ .

Rule CT ALLT shows when two polytypes are equal. The first
premise requires a proof η that the kinds of the bound variables are
equal. The syntax of the proof term for this rule ∀ a: η. γ uses a
single variable a to abbreviate the three variables (a1, a2, c). We
assume the presence of a bijective function •7→ to map between a

and this triple in the second premise of the rule. Because the kinds
of the bound variables are not syntactically equal, the third premise
of the rule adds both bindings a1: κ1 and a2: κ2 to the context as
well as an assertion c that a1 and a2 are equal. Both a1 and a2
are available for γ, the proof that the bodies of the polytypes are
equal. However, the polytypes themselves can only refer to their
own variables, as verified by the last two premises of the rule.

The other type form that includes binding is the type of coercion
abstractions, ∀ c: φ. τ . The rule CT ALLC constructs a proof that
two such types of this form are equal. We can only construct such
proofs when the abstracted propositions are equal. The proof term
introduces two coercion variables into the context, similar to the
two type variables above. However, because of proof irrelevance,
there is no need for a proof of equality between coercions—so there
is no analogue to the c variable in the rule CT ALLT. Similarly, we
assume the presence of a bijective function •7→ between c and the
pair (c1, c2).

The rule CT ALLC also restricts how the variables c1 and c2
can be used in γ. The premises c1 # |γ| and c2 # |γ| prevent these
variables from appearing in the relevant parts of γ. The reason for
this restriction comes from our proof technique for the consistency
of this proof system. We define the erasure operation |·| and discuss
this issue in more detail in Section 5 and Section 6.

3.8 Axioms
In FC, top-level axioms for type equality are allowed to be axiom
schemes—they may be parameterized and must be instantiated
when used. For example, a type family declaration and instance

type family F a :: *
type instance F [a] = Maybe a

generates the following parameterized axiom

axF : ∀ a: ? .F (List a) ∼Maybe a

When we use an axiom we must fill in its parameters. For example,
instantiating the above with the type Int produces a proof of the
equality F (List Int) ∼ Maybe Int. However, FC allows a
slightly more general instantiation via coercions.2 Given a coercion

Γ c̀o γ : Int ∼ b

we can use it to instantiate the axiom above as follows

Γ t̀y axF γ : F (List Int) ∼Maybe b

The general form of an axiom gathers multiple parameters in a
telescope, a context of type and coercion variables, each of which
scope over the remainder of the telescope as well as the body of the
axiom. We specify the list of instantiations for a telescope with Θ,
a structure that we call a telescoped coercion. This structure is like
a list, and includes a coercion for each type parameter, and a pair
of coercions for each proof parameters. (We also use this structure
for the semantics of datatypes, see Section 4.)

Θ ::= ∅ | Θ, a:κ 7→ (τ1, τ2, γ) | Θ, c:φ 7→ (γ1, γ2)

The judgement form Γ t̀c ∆! Θ, shown in Figure 6, defines
when a telescoped coercion is compatible with a given telescope.

The general rule for axiom schemes requires a valid telescoped
coercion.

C : ∀∆. (τ1 ∼ τ2) ∈ Γ Γ t̀c ∆! Θ

Γ c̀o C Θ : Θ1(τ1) ∼ Θ2(τ2)
CT VARAX

Given a telescoped coercion, Θ, we must compute its effect on the
left and right hand sides of the axiom. We do so by defining two
different multisubstitutions, written Θ1(·) and Θ2(·), based on Θ.

2 This generality helps GHC with coercion simplification.

6 2012/7/10

Γ t̀c ∆! Θ Telescoped coercion compatibility

ẁf Γ

Γ t̀c ∅! ∅
TELCO EMPTY

Γ t̀c ∆! Θ
Γ t̀y σ1 : Θ1(κ) Γ t̀y σ2 : Θ2(κ)
Γ c̀o γ : σ1 ∼ σ2

Γ t̀c (∆, a:κ)! (Θ, a:κ 7→ (σ1, σ2, γ))
TELCO TY

Γ t̀c ∆! Θ
Γ c̀o η1 : Θ1(φ) Γ c̀o η2 : Θ2(φ)

Γ t̀c (∆, c:φ)! (Θ, c:φ 7→ (η1, η2))
TELCO CO

Figure 6. Telescoped coercion validity

Definition 3.3 (Telescoped coercion substitution). Θ1(·) and
Θ2(·) are multisubstitutions, applicable to types, coercions, tele-
scopes, typing contexts, and even other telescoped coercions.

1. For each a:κ 7→ (τ1, τ2, γ) in Θ, Θ1(·) maps a to τ1 and Θ2(·)
maps a to τ2.

2. For each c:σ1 ∼ σ2 7→ (γ1, γ2) in Θ, Θ1(·) maps c to γ1 and
Θ2(·) maps c to γ2.

These two substitution operations satisfy the usual substitution
lemmas. When a telescoped coercion is compatible with a given
telescope, its substitution preserves types in all of our other judge-
ments (and produces a derivation of smaller height than the sum of
the original derivation plus that of the telescoped coercion validity
judgement).

Lemma 3.4 (Telescoped coercion substitution).
Suppose Γ t̀c ∆! Θ.

1. If Γ,∆ t̀y τ : κ then Γ t̀y Θj (τ) : Θj (κ)
2. If Γ,∆ c̀o γ : φ then Γ c̀o Θj (γ) : Θj (φ)
3. If Γ,∆ t̀c ∆′! Θ′ then Γ t̀c Θj (∆

′)! Θj (Θ
′)

For space reasons, the proof of this lemma appears in the ap-
pendix. Note that the usual substitution lemmas, which substitute a
single type or coercion, are a corollary of this lemma.

4. Datatypes
Because the focus of this paper is on the treatment of equality in
the type language, we omit most of the discussion of the expression
language and its operational semantics. However, because we have
combined the semantics of types and kinds together, we must revise
the treatment of datatypes. Previously, the arguments to datatype
constructors could be stratified by dependency, with all kind ar-
guments occurring before all type arguments [Yorgey et al. 2012].
In this language, we cannot divide up the arguments in this way.
Therefore, we use the technique of telescopes to describe arbitrary
dependency between arguments.

4.1 Telescopes and Datatypes
The validity rules for contexts (see Figure 4) restricts datatype
constants T to have a kind of the form ∀ a:κ. ?. We call the
variables a the parameters of the datatype. For simplicity, the type
system requires the datatype parameters to be named even when
they are not mentioned in later kinds. For example, the kind of the
datatype List is ∀ a: ? . ? and the kind of the datatype TypeRep
(from Section 2) is ∀ a: ?, b: a. ?. Furthermore, datatypes can only
be parameterized by types and kinds; no coercion parameters are
allowed.

Γ t̀el ρ : ∆

ẁf Γ

Γ t̀el ∅ : ∅
T2 EMPTY

Γ t̀y τ : κ[ρ/∆] Γ t̀el ρ : ∆

Γ t̀el ρ, τ : (∆, a:κ)
T2 CONST

Γ c̀o γ : φ[ρ/∆] Γ t̀el ρ : ∆

Γ t̀el ρ, γ : (∆, c:φ)
T2 CONSG

Figure 7. Telescope arguments

Likewise, the same validity rules force data constructors K to
have types/kinds of the form

∀ a:κ.∀∆. (σ → T a)

Each data constructor K must produce an element of T applied to
all of its parameters a:κ. Above, form ∀∆. τ is syntactic sugar for
a list of nested quantified types. The ∆ component is a telescope,
which binds type and coercion variables. The scope of the variables
includes both the remainder of the telescope and the form within the
quantification (in this case, σ → T a).

The telescope ∆ describes the “existential” arguments to the
data constructor. These arguments may be either coercions or types,
and because of the dependency of the system, must be allowed to
freely intermix. For example, the data constructor TyInt from Sec-
tion 2 (a data constructor belonging to TypeRep : ∀ a: ?, b: a. ?)
includes two coercions in its telescope, one asserting that the kind
parameter a is ?, the second asserting that the type parameter b is
Int:

TyInt : ∀ a: ? . ∀ b: a.∀ c: a ∼ ?. ∀ c′: b ∼ Int.TypeRep a b

Alternatively, the data constructor TyApp existentially binds a1,b1,
b2, and c—one kind and two type variables followed by a coercion.

TyApp : ∀a: ? .∀b: a.
∀a1: ? .∀b1: a1 → a.∀b2: a1.∀c: b ∼ b1 b2.

TypeRep (a1 → a) b1 → TypeRep a1 b2 → TypeRep a b

We use the metavariable ρ to stand for either a type τ or coercion
γ. Then, a datatype value is of the form K τ ρ e , where the τ denote
the parameters (which cannot include coercions), the ρ instantiate
the existential arguments, and e is the list of usual expression
arguments to the data constructor. When reasoning about datatype
values, we must type check its list of datatype arguments ρ against
the given telescope. The judgement form Γ t̀el ρ : ∆, in Figure 7
performs this check.

4.2 Pushing datatypes
The most intricate part of the semantics of FC are the “push rules”.
These rules ensure that coercions do not interfere with the small
step semantics by “pushing” coercions into the subcomponents of
values whenever a coerced value appears in an elimination context.
In the case of datatypes, the coercion must be distributed to all of
the arguments of the data constructor, as shown in Figure 8. In the
rest of this section, we explain the rule by describing the formation
of the telescoped coercion Θ and its use in the operation of lifting.

The S KPUSH rule uses a lifting operation, written Θ(·), to
coerce the types of its expression arguments. The intuition behind
this operation is best found in an example: Say we have a data
constructor K of type ∀ a: ? .F a → T a for some type function
F and some type constructor T . We then wish to cast an expression
K Int e (for some appropriate term e) of type T Int to type T a .
This will be done with a coercion γ of type T Int ∼ T a . In order

7 2012/7/10

K : ∀ a:κ. ∀∆. σ → (T a) ∈ Γ
Θ = {γ} ≺ ρ : ∆
τ ′ = Θ2(a)
ρ′ = Θ2(dom∆)
for each ei ∈ e,

e ′i = ei .Θ(σi)

case ((K τ ρ e) . γ) of p → u →
case (K τ ′ ρ′ e ′) of p → u

S KPUSH

Figure 8. The S KPUSH rule

to pattern-match against (K Int e) . γ, we must “push” γ into the
arguments of K so that we get an uncoerced datatype value as the
scrutinee of the pattern match. Finding the right coercion to cast
Int to a is easy enough: we use nth1 γ. However, to find the right
coercion for e we need to lift the type F a into a coercion with
respect to the original coercion γ.

In previous work, lifting was written σ[a 7→ γ], defined by
analogy with substitution—because of the close syntax between
types and coercion proofs, we could think of lifting as replacing
a type variable with a coercion to produce a new coercion. That
intuition holds true here, but requires more machinery to describe
precisely.

Lifting contexts We define lifting with respect to a lifting con-
text, denoted with Ψ. A lifting context is a generalized form of a
telescoped coercion. (A full treatment of lifting contexts appears
in the appendix.) We base lifting on telescoped coercions because
datatypes may have multiple, dependent parameters. However, the
definition of lifting is also complicated by the two type productions
that bind fresh variables: ∀ a:κ. τ and ∀ c:φ. τ . To be able to define
lifting over these types, we need to be able to extend the mapping
in a telescoped coercion with the fresh names for a and c used in
proofs. The new mappings are marked with •7→ as they are analo-
gous to the bijective function •7→ used previously.

Ψ ::= Θ | Ψ, a:κ
•7→ (a1, a2, c) | Ψ, c:φ •7→ (c1, c2)

Definition 4.1 (Lifting). We define the lifting of types to coercions,
written Ψ(τ), by induction on the type structure. (Note that the
cases with binding structure add new fresh variables to the lifting
context, and that the last line uses Notation 3.2. The notation Ψj(·)
indicates a multi-substitution analogous to Θj(·).)

Ψ(a) = γ when
a:κ 7→ (τ1, τ2, γ) ∈ Ψ

Ψ(a) = c when
a:κ

•7→ (a1, a2, c) ∈ Ψ
Ψ(τ) = 〈τ〉 when

dom (Ψ) # fv (τ)
Ψ(τ1 τ2) = Ψ(τ1) Ψ(τ2)
Ψ(τ γ) = Ψ(τ)(Ψ1(γ),Ψ2(γ))

Ψ(∀ a:κ. τ) = ∀ a: Ψ(κ). (Ψ, a:κ
•7→ (a1, a2, c))(τ)

when a
•7→ (a1, a2, c)

Ψ(∀ c:φ. τ) = ∀c : Ψ(φ).(Ψ, c:φ
•7→ (c1, c2))(τ)

when c
•7→ (c1, c2)

Ψ(τ . γ) = Ψ(τ) .Ψ1(γ) ∼ Ψ2(γ)

Note that, because a lifting context Ψ generalizes a telescoped
coercion, it is acceptable to use the notation Θ(·) to refer to the
lifting operation. Now we can state the lifting lemma which states
that Θ(τ) is a coercion between Θ1(τ) and Θ2(τ).

Lemma 4.2 (Lifting). If Γ t̀c ∆! Θ and Γ,∆ t̀y τ : κ then

Γ c̀o Θ(τ) : Θ1(τ) ∼ Θ2(τ)

Lifting context generation and extension In the S KPUSH rule,
the telescoped coercion Θ that is used for lifting is built in two
stages. We use γ to build a telescoped coercion {γ} that contains
coercions for the parameters to the datatype (the operation {·}
is defined below) and then extend this telescoped coercion with
coercions for the existential arguments to the data constructor using
the operation ≺, also defined below.

The definitions for these operations are motivated by the con-
struction of Θ. This telescoped coercion contains mappings to the
new τ ′ and ρ′ that are the “pushed” versions of the original τ and
ρ arguments. It is also used by lifting to construct each Θ(σi), the
coercion for each expression argument ei in e .

Definition 4.3 (Lifting context generation). If Γ c̀o γ : T σ ∼
T σ′ , and T: ∀ a:κ. ? ∈ Γ, then define the telescoped coercion
{γ} as

{γ} = ai:κi 7→ (σi , σ′i ,nth
i γ)

Intuitively, {γ}1(τ) replaces all parameters a in τ with the
corresponding type on the left of the ∼ in the type of γ. Similarly,
{γ}2(τ) replaces with the corresponding type on the right of the∼.
We can think of {γ}1(τ) as a “from” type and {γ}2(τ) as a “to”
type. Note that Γ c̀o γ : {γ}1(T a) ∼ {γ}2(T a).

The telescoped coercion that results from this coercion is com-
patible with the parameters of the datatype. More precisely:

Lemma 4.4 (Lifting context specification). If Γ c̀o γ : T σ ∼
T τ , and T: ∀ a:κ. ? ∈ Γ then Γ t̀c a:κ! {γ}.

Proof. Straightforward induction.

We now must define the≺ operation that extends the telescoped
coercion {γ} with mappings for the variables in ∆, the existential
parameters to the data constructor K . Because these arguments are
dependent, we must define the operation recursively. The result of
the operation is a new telescoped coercion that extends the input
one. The intuition presented before extends as well: Θ1(τ) replaces
any parameter or existential argument in τ with its corresponding
“from” type and Θ2(τ) replaces a variable with its corresponding
“to” type. The definition here is more complicated because of the
dependent nature of the substitution.

Definition 4.5 (Telescoped coercion extension). Define the opera-
tion of telescoped coercion extension Θ′ = Θ ≺ ρ : ∆ as:

Θ ≺ ∅ : ∅ = Θ
Θ ≺ ρ, τ : ∆, a:κ =

Θ′, a:κ 7→ (τ, τ .Θ′(κ), sym (〈τ〉 .Θ′(κ)))
where Θ′ = Θ ≺ ρ : ∆

Θ ≺ ρ, γ : ∆, c:σ1 ∼ σ2 =
Θ′, c:σ1 ∼ σ2 7→ (γ, sym (Θ′(σ1)) # γ # Θ′(σ2))
where Θ′ = Θ ≺ ρ : ∆

4.3 Type preservation
Now that we have explained the most novel part of the operational
semantics, we can state and prove the usual preservation theorem.

Lemma 4.6 (Preservation). If Γ t̀m e : τ and e −→ e ′ then
Γ t̀m e ′ : τ .

The proof of this theorem is by induction on the typing deriva-
tion, with a case analysis on the rule used by the operational seman-
tics. Most of the rules are straightforward, following directly by in-
duction or by substitution (using a corollary of Lemma 3.4). The
“push” rules require reasoning about coercion propagation. We in-
clude the details of the rules that differ from previous work [Weirich
et al. 2010] in the appendix.

8 2012/7/10

5. Consistency
The progress theorem holds only for closed, consistent contexts.
A context is closed if it does not contain any expression variable
bindings—as usual, open expressions could be stuck. We use the
metavariable Σ to denote closed contexts.

The definition of consistency and the canonical forms lemma
(necessary to show the progress theorem) are both stated using the
notions of uncoerced values and their types, value types. Formally,
we define values v and value types ξ, with the following grammars:

v ::= λx:σ. e | Λa:κ. e | λc:φ. e | K τ ρ e
ξ ::= σ1 → σ2 | ∀ a:κ. σ | ∀ c:φ. σ | T σ

The canonical forms lemma tells us that the shape of a value is
determined by its type:

Lemma 5.1 (Canonical Forms). Say Σ t̀m v : σ. Then σ is a
value type. Furthermore,

1. If σ = σ1 → σ2 then v is λx:σ1. e or K τ ρ e .
2. If σ = ∀ a:κ. σ′ then v is Λa:κ. e or K τ ρ e .
3. If σ = ∀ c:φ. σ′ then v is λc: τ1 ∼ τ2. e or K τ ρ e .
4. If σ = T τ then v is K τ ρ e .

Definition 5.2 (Consistency). A context Γ is consistent if whenever
Γ c̀o γ : ξ1 ∼ ξ2 it is the case that

1. If ξ1 is T σ1 then ξ2 is T σ2.
2. If ξ1 is σ1 → σ′1 then ξ2 is σ2 → σ′2.
3. If ξ1 is ∀ a:κ1. σ1 then ξ2 is ∀ a:κ2. σ2.
4. If ξ1 is ∀ c:φ1. σ1 then ξ2 is ∀ c:φ2. σ2.

Our approach to prove consistency is similar to previous versions of
FC, with two key differences: we work in an implicitly typed ver-
sion of our system, and we have had to restrict the rule CT ALLC
for forming coercions between types that abstract coercions.

At a high level, our consistency argument proceeds in four steps.

1. We define an implicitly coerced version of the language, where
coercion proofs have been erased. By working with the implicit
language, our results don’t depend on specific proofs. Deriva-
tions in the explicit language can be translated to derivations in
the implicit language.

2. We define a rewrite relation that reduces types in the implicit
system by firing axioms in the context.

3. We give a sufficient condition, which we write GoodΓ, for a
context to be consistent.

4. We argue that in good contexts, joinability of the rewrite rela-
tion is complete with respect to the implicit coercion proof sys-
tem. Since the rewrite relation preserves the head form of value
types, this gives consistency for both the implicit and explicit
systems.

5.1 Implicit language
Similar to surface Haskell, the implicitly typed language elides
coercion proofs and casts from the type language. Concretely, we
have judgements:

|= Γ Implicit context validity
Γ |= τ : κ Implicit type/kind validity
Γ |= γ : φ Implicit coercion validity
Γ |= ∆! Θ Implicit telescoped coercion validity

These judgements apply to the same forms as their explicit
analogues. However, in the implicit system, we add a new a new
form • to the syntax of coercions (γ), to mark an elided coercion
proof. Another difference between the syntax is that since the

implicit system erases casts, the system is not syntax directed—a
given type may have several syntactically different kinds.

The main differences between the types in the implicit and
explicit systems are the following two rules for type formation. In
the former, the kinds of types may be coerced at any time. In the
latter, the coercion in an application is erased to •.

Γ |= τ : κ Γ |= γ : κ ∼ κ′ Γ |= κ′ : ?

Γ |= τ : κ′
IT CAST

Γ |= τ : ∀ c:φ. κ Γ |= γ : φ

Γ |= τ • : κ
IT CAPP

We define coercion proofs between erased types in a similar
fashion. Most of the rules are the same as their counterparts in the
explicitly typed system, but here there are three major differences.

The first is that the implicit language does not include a coher-
ence rule. In the explicit language, given a coercion proof Γ c̀o γ :
τ ∼ τ ′ , the coherence rule was used to construct a proof γ . γ′

where the kind of the first type τ , had been changed, by applying
a cast τ . γ′. However, in the implicit language, we can change
the kind of τ by using IT CAST to implicitly cast the kind of τ us-
ing coercion γ′. Therefore, we don’t need a coherence form in the
implicit coercion language.

The second difference is in the rule for coercion application
compatibility:

Γ |= γ : τ ∼ τ ′
Γ |= τ • : κ Γ |= τ ′ • : κ′

Γ |= γ(•, •) : τ • ∼ τ ′ • ICT CAPP

This rule says that if two coercion applications (with proofs erased)
are well formed, then if the two coercion abstractions are equal (in
the implicit language), there is a proof that the two applications are
equal.

The final difference is in the rule for coercions between coercion
abstractions:

Γ |= η : φ1 ∼ φ2 c
•7→ (c1, c2)

c1 # γ c2 # γ
Γ, c1:φ1, c2:φ2 |= γ : τ1 ∼ τ2
Γ |= ∀ c1:φ1. τ1 : ? Γ |= ∀ c2:φ2. τ2 : ?

Γ |= ∀ c: η. γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
ICT ALLC

Note that we continue to require that the variables c1 and c2 not
be used in the (erased) coercion proof γ. The motivation for this
restriction is that when we introduce coercions into the context for
the coercion abstraction rule, they may assert bogus equalities—
we may assume a proof c: Int ∼ Bool. Coercions that mention
these spurious assumptions may equate types with different head
forms. Therefore, we require that the coercions we are adding to
the context, c1 and c2, do not show up in γ. This is the primary
motivation for restricting the coercion abstraction equality rule in
the explicit system as well.

Γ c̀o η : φ1 ∼ φ2 c
•7→ (c1, c2)

c1 # |γ| c2 # |γ|
Γ, c1:φ1, c2:φ2 c̀o γ : τ1 ∼ τ2
Γ t̀y ∀ c1:φ1. τ1 : ? Γ t̀y ∀ c2:φ2. τ2 : ?

Γ c̀o ∀ c: η. γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
CT ALLC

We use the following definition to produce an erased type or
coercion:

Definition 5.3 (Coercion Erasure). Given an explicitly typed term
σ, we define the erasure of σ, denoted |σ|, by induction on the
form of σ. The interesting cases are casting (τ . γ) and coercion

9 2012/7/10

Γ |= τ τ ′ Type parallel reduction

Γ |= τ τ
TS REFL

Γ |= κ κ′ Γ, c: a1 ∼ a2 |= σ σ′

Γ |= ∀ a1:κ. σ ∀ a2:κ′. σ′
TS ALLT

Γ |= φ φ′ Γ |= σ σ′

Γ |= ∀ c:φ. σ ∀ c:φ′. σ′ TS ALLC

C : ∀∆. (F τ ∼ τ ′) ∈ Γ

σ1 = τ [ρ/∆] σ′1 = τ ′[ρ/∆]

Γ |= F σ1 σ′1
TS RED

c: a ∼ τ ∈ Γ

Γ |= a τ
TS VARRED

Γ |= τ τ ′ Γ |= σ σ′

Γ |= τ σ τ ′ σ′
TS APP

Γ |= τ τ ′

Γ |= τ • τ ′ • TS CAPP

Figure 9. Rewrite relation

application (τ1 γ).

|τ . γ| = |τ |
|τ γ| = |τ | •

All other cases follow simply propagate the | · | operation down the
abstract syntax tree. (The full definition of this operation appears
in the appendix.)

Likewise, given an explicitly typed coercion proof γ, we define
the erasure of γ, denoted |γ|, by induction on the form of γ. The
interesting cases are coercion application, coherence and coercion
instantiation.

|γ(γ1, γ2)| = |γ|(•, •)
|γ . γ′| = |γ|
|γ@(γ′, γ′′)| = |γ|@(•, •)

Finally, we define the erasure of a context Γ, denoted |Γ| by erasing
the types and equality propositions of each binding.

Lemma 5.4 (Erasure is type preserving).

1. If ẁf Γ then |= |Γ|.
2. If Γ t̀y τ : κ then |Γ| |= |τ | : |κ|.
3. If Γ c̀o γ : φ then |Γ| |= |γ| : |φ|.
4. If Γ l̀c ∆! Θ then |Γ| |= |∆|! |Θ|.

5.2 Rewrite relation
Next, we give a non-deterministic rewrite relation on types in
Figure 9. Rewriting works with open terms in the implicit language,
and it preserves the head form of value types. From this rewrite
relation, we define a joinability relation, written Γ |= σ1 ⇔ σ2, if
both σ1 and σ2 can multistep to a common reduct.

5.3 Good contexts
Consistency does not hold in arbitrary contexts, and it is difficult in
general to check whether a context is inconsistent. Therefore, like
in previous work [Weirich et al. 2010], we give sufficient conditions
for an erased context to be consistent, written GoodΓ.

Definition 5.5 (Good contexts). We have GoodΓ when the fol-
lowing conditions hold:

1. All coercion assumptions and axioms in Γ are of the form
C : ∀∆. (F τ ∼ τ ′) or of the form c: a ∼ τ .
In the first form, the arguments to the type function must behave
like patterns. For every well kinded ρ, every τi ∈ τ and every
τ ′i ∈ τ ′ such that Γ |= τi [ρ/∆] τ ′i , it must be τ ′i = τi [ρ′/∆]
for some ρ′ with Γ |= τm τ ′m for each τm ∈ ρ.

2. There is no overlap between axioms and coercion assumptions.
For each a , there is at most one assumption of the form c: a ∼ τ
in the context. For each F ρ there exists at most one prefix ρ1 of
ρ such that there exist C , σ and Θ where Γ |= C Θ : (F ρ1 ∼
σ). This C is unique for every matching F τ1.

3. Axioms equate types of the same kind. For each C : ∀∆. (F τ ∼
τ ′) in Γ, the kinds of each side must match i.e. Γ,∆ |= F τ : κ
and Γ,∆ |= τ ′ : κ and that kind must not mention bindings
in the telescope, Γ |= κ : ?.

5.4 Consistency
In the rest of this section, we sketch the proof that good contexts are
consistent. Our approach is similar to previous work [Weirich et al.
2010], but differs in two ways. First, the rewrite relation works on
types in the implicit language. Second, the rewrite relation is not
type directed: we maintain only the set of top level axioms in the
context while rewriting.

Here, we prove completeness of the rewrite reduction with re-
spect to the coercion relation. The two key lemmas of the complete-
ness proof are that joinability is preserved under substitution, and
a local diamond property of rewriting. The proofs of these lemmas
as well as the completeness theorem appear in the appendix.

Theorem 5.6 (Local diamond property). If GoodΓ, Γ |= σ
σ1, and Γ |= σ σ2 then there exists a σ3 such that Γ |= σ1
σ3 and Γ |= σ2 σ3.

Lemma 5.7 (Substitution). If GoodΓ, Γ |= σ ∗ σ′, and
Γ |= τ ∗ τ ′, then if a appears free in σ and σ′, we have
Γ |= σ[τ/a]⇔ σ′[τ ′/a].

From these lemmas we see that joinability is complete. In the
following, the proposition fcv(γ) ⊆ dom Γ′ indicates that all
coercion variables and axioms used in γ are in the domain of Γ′.
The similar proposition fcv(Θ) ⊆ dom Γ′ indicates the same for a
telescoped coercion Θ.

Theorem 5.8 (Completeness).

1. Suppose that Γ |= γ : σ1 ∼ σ2, and fcv(γ) ⊆ dom Γ′ for
some subcontext Γ′ satisfying GoodΓ′. Then Γ |= σ1 ⇔ σ2.

2. Suppose that Γ |= ∆ ! Θ, and fcv(Θ) ⊆ dom Γ′ for
some subcontext Γ′ satisfying GoodΓ′. Then for each a:κ 7→
(τ1, τ2, γ) ∈ Θ, we have Γ ` τ1 ⇔ τ2.

Theorem 5.9 (Consistency). If Good |Γ| then Γ is consistent.

Proof. Suppose Γ c̀o γ : ξ1 ∼ ξ2. Then, we have that
Γ |= |γ| : |ξ1| ∼ |ξ2|. By completeness, we have that those two
types are joinable. There is some σ such that Γ |= |ξ1| ∗ σ and
Γ |= |ξ2| ∗ σ. However, by inversion on the rewriting relation,
we see that it preserves the head forms of value types (since there
exist no axioms for those by the first condition of Good |Γ|). Also,
we know that erasure preserves head forms. Thus, ξ1 and ξ2 (and
σ) have the same head form.

6. Discussion
In this section we discuss aspect of the design and relate it to
existing systems.

10 2012/7/10

Collapsing kinds and types Blurring the distinction between
types and kinds is convenient, but is it wise? It is well known that
type systems that include the Γ t̀y ? : ? rule are inconsistent
logics [Girard 1972]. Does that cause trouble here?

The answer is no because FC, even without these extensions,
is already inconsistent. Inconsistency means that all kinds (of type
?) are inhabited. FC is extensible, so datatypes and type functions
can be declared at any such kind. Furthermore, with the addition
of kind polymorphism, the GHC standard library defines the kind-
polymorphic type constant Any, which can be used at any kind.

It is not clear whether adding the Γ t̀y ? : ? rule to source
Haskell would cause type inference to loop, as the type language
does not include anonymous abstractions. However, even in the
presence of nonterminating type expressions, the only danger is
to the decidability of type inference. Once a type equality has
been discovered by the constraint solver, it is elaborated to a finite
equality proof. In FC, type checking is always decidable.

Even though the FC language combines types and kinds, the
Haskell source language need not do so. Even if predictable type
inference algorithms require more traditional stratification, a dis-
tinction between types can kinds can be eliminated in the transla-
tion to the core language. This situation is not new—the desires of
a simple core language have already lead FC to be more expressive
than source Haskell.

Other languages that adopt dependent types and the “type-in-
type” axiom [Augustsson 1998; Cardelli 1986] do not have decid-
able type checking. These languages do not make same distinc-
tions as FC does between run-time expressions and compile-time
types, separating logically inconsistent types from logically con-
sistent equality proofs. The coercion language is limited in expres-
sive power and the consistency of this language (i.e. that there are
equalities that cannot be derived) is a consequence of this limita-
tion. This interplay between an inconsistent programming language
and a consistent metalogic is also the subject of current research in
the Trellys project [Casinghino et al. 2012; Kimmell et al. 2012].

Heterogeneous equality Heterogeneous equality is a necessary
part of this system. Even though equality proofs may only used for
casting when both sides have kind ?, heterogeneous equalities are
needed for intermediate results.

One motivation for heterogeneous equality is the coherence rule
(CT COH), which equates types that almost certainly have differ-
ent kinds. This rule, inspired by Observational Type Theory [Al-
tenkirch et al. 2007], provides a simple way of ensuring that proofs
do not interfere with equality. Without it, we would need equiva-
lence rules analogous to the many “push” rules of the operational
semantics.

Heterogeneous equality is also motivated by the presence of de-
pendent application (such as rules K INST and K CAPP), where the
kind of the result depends on the value of the argument. We would
like type equivalence to be compatible with respect to application,
as is demonstrated by rule CT APP. However, if all equalities are
required to be homogeneous, then not all uses of rule are valid be-
cause the result kinds may differ.

For example, consider the datatype TypeRep of kind ∀ a: ?
. ∀ b: ? . ?. If we have coercions Γ c̀o γ1 : ? ∼ κ and
Γ c̀o γ2 : Int ∼ τ , then we can construct the proof

Γ c̀o 〈TypeRep〉 γ1 γ2 : TypeRep ? Int ∼ TypeRepκ τ

However, this proof requires heterogeneity because the first part
(〈TypeRep〉 γ1) creates an equality between types of different
kinds: TypeRep ? and TypeRepκ. The first has kind ? → ?,
whereas the second has kind κ→ ?.

There are several choices in the semantics of heterogeneous
equality. We have chosen the most popular, where a proposition
σ1 ∼ σ2 is interpreted as a conjunction: “the types are equal

and their kinds are equal”. This semantics is similar to Epigram
1 [McBride 2002], the HeterogeneousEquality module in the
Agda standard library 3, and the treatment in Coq 4. Epigram 2 [Al-
tenkirch et al. 2007] uses an alternative semantics, interpreted as
“if the kinds are equal than the types are equal”. Guru [Stump et al.
2008] and Trellys [Kimmell et al. 2012; Sjöberg et al. 2012], use yet
another interpretation which says nothing about the kinds. These
differences arise from differences in the overall type system. The
syntax-directed types system of FC make the conjunctive interpre-
tation the most reasonable, whereas the bidirectional type system
of Epigram 2 makes the implicational version more convenient.
Trellys terms can be given many different, inequivalent types, so
that language uses a type-independent equality.

There is also a choice to be made about whether equality is rele-
vant. The coherence axiom is inspired by observational type theory.
Unlike higher-dimensional type theory [Licata and Harper 2012],
equality in this language has no computational content. Because
of the separation between objects and proofs, FC is resolutely one-
dimensional. We do not define what it means for proofs to be equiv-
alent. Instead, we ensure that in any context the identity of equality
proofs is unimportant.

The CT ALLC rule and consistency proof The rule CT ALLC
restricts how the coercion variables c1 and c2 can be used in a proof
that ∀ c1:φ1. τ1 is equal to ∀ c2:φ2. τ2. This restriction is motivated
by our consistency proof. The proof first defines what it means for a
set of assumptions to be good, and then defines a rewriting system
that is complete for good sets of assumptions. However, this rule
causes trouble for that plan—we do not know whether φ1 and φ2

can be added to the current set of good assumptions. Our solution
is to revise the statement of completeness so that not all coercion
assumptions need to be good. If the assumptions are not needed for
rewriting then we do not need any restrictions on them. The ones
that are not needed for rewriting are the ones that do not show up
in the erased coercion. (They may be used implicitly to verify that
types are valid.)

The consequence of these restrictions is that there are some
types that cannot be shown equivalent. For example, there is no
proof of equivalence between the types ∀ c1: Int ∼ b. Int and
∀ c2: Int ∼ b. b. A coercion between these two types would
need to use c1 or c2. However, this lack of expressiveness is not
significant. In source Haskell, it would show up only through uses
of first-class polymorphism. Furthermore, this restriction already
exists in GHC. GHC currently does not allow coercions between
the types (Int ∼ b)⇒ Int and (Int ∼ b)⇒ b.

Nevertheless, the restrictions on c1 and c2 in this version of FC
are due to the proof technique that we have employed. It is possible
that a completely different consistency proof would validate a rule
that does not restrict the use of these variables. However, we leave
this alternative proof to future work.

The implicit language Our proof technique for the consistency
proof, which is based on erasing explicit type conversions, is in-
spired by ICC [Miquel 2001]. Coercion proofs are irrelevant to the
definition of type equality, so to reason about type equality it is
convenient to eliminate them entirely. Following ICC* [Barras and
Bernardo 2008], we could alternatively view the implicit language
as the “real” semantics for FC, and then consider the language of
this paper as an adaptation of that semantics with annotations to
make typing decidable. Furthermore, the implicit language is inter-
esting in its own right as it is closer to source Haskell, which also
makes implicit use of type equalities.

3 http://wiki.portal.chalmers.se/agda/agda.php?n=
Libraries.StandardLibrary
4 http://coq.inria.fr/stdlib/Coq.Logic.JMeq.html

11 2012/7/10

However, although the implicit language allows type equality
assumptions to be used implicitly, it is not the same as extensional
type theory (ETT) [Martin-Löf 1984]. Foremost, it separates proofs
from programs so that it can weaken one (ensuring consistency)
while enriching the other (with “type-in-type”). The proof language
is not as expressive as that of ETT, but it is expressive enough for
Haskell. We have discussed the limitations on equalities between
coercion abstractions above. Another way in which the proof lan-
guage is weaker than ETT is the lack of η-equivalence or exten-
sional reasoning for type-level functions.

7. Conclusions and future work
This work provides the basis for the practical extension of a popular
programming language implementation. It does so without sacrific-
ing any important metatheoretic properties. This extension is a nec-
essary step towards making Haskell more dependently typed. The
next step in this research plan is to lift these extensions to the source
language, incorporating these features with GHC’s constraint solv-
ing algorithm. Although the interaction between dependent types
and type inference brings new research challenges, these challenges
can be addressed in the context of a firm semantic basis.

Acknowledgements
Thanks to Simon Peyton Jones, Dimitrios Vytiniotis, Iavor Di-
atchki, José Pedro Magalhães and Conor McBride for discussion.
This material is based upon work supported by the National Sci-
ence Foundation under Grant Nos. 0910500 and 1116620.

References
T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now!

In Proceedings of the 2007 workshop on Programming languages meets
program verification, PLPV ’07, pages 57–68, New York, NY, USA,
2007. ACM.

L. Augustsson. Cayenne—a language with dependent types. In Proceedings
of the third ACM SIGPLAN international conference on Functional
programming, ICFP ’98, pages 239–250, New York, NY, USA, 1998.
ACM. doi: 10.1145/289423.289451.

H. P. Barendregt. Handbook of logic in computer science (vol. 2). chapter
Lambda calculi with types, pages 117–309. Oxford University Press,
Inc., New York, NY, USA, 1992.

B. Barras and B. Bernardo. The implicit calculus of constructions
as a programming language with dependent types. In Proceedings
of the Theory and practice of software, 11th international confer-
ence on Foundations of software science and computational structures,
FOSSACS’08/ETAPS’08, pages 365–379, Berlin, Heidelberg, 2008.
Springer-Verlag.

L. Cardelli. A polymorphic lambda calculus with type:type. Technical
Report 10, 1986.

C. Casinghino, V. Sjöberg, and S. Weirich. Step-indexed normalization for a
language with general recursion. In Fourth workshop on Mathematically
Structured Functional Programming (MSFP ’12), 2012.

M. M. T. Chakravarty, G. Keller, and S. Peyon Jones. Associated type
synonyms. In Proceedings of the tenth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’05, pages 241–253,
New York, NY, USA, 2005. ACM. ISBN 1-59593-064-7.

Galois, Inc. Cryptol Reference Manual. 2002.

J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieu. PhD thesis, Université Paris 7, 1972.

G. Kimmell, A. Stump, H. D. Eades III, P. Fu, T. Sheard, S. Weirich, C. Cas-
inghino, V. Sjöberg, N. Collins, and K. Y. Ahn. Equational reasoning
about programs with general recursion and call-by-value semantics. In
Sixth ACM SIGPLAN Workshop Programming Languages meets Pro-
gram Verification (PLPV ’12), 2012.

D. R. Licata and R. Harper. Canonicity for 2-dimensional type theory. In
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’12, pages 337–348, New
York, NY, USA, 2012. ACM.

J. P. Magalhães. The right kind of generic programming. In 8th ACM SIG-
PLAN Workshop on Generic Programming, WGP 2012, Copenhagen,
Denmark, New York, NY, USA, 2012. ACM. To appear.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

C. McBride. Elimination with a motive. In Selected papers from the
International Workshop on Types for Proofs and Programs, TYPES ’00,
pages 197–216, London, UK, UK, 2002. Springer-Verlag.

A. Miquel. The implicit calculus of constructions: extending pure type sys-
tems with an intersection type binder and subtyping. In Proceedings
of the 5th international conference on Typed lambda calculi and appli-
cations, TLCA’01, pages 344–359, Berlin, Heidelberg, 2001. Springer-
Verlag.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

N. Oury and W. Swierstra. The power of Pi. In Proceedings of the 13th
ACM SIGPLAN international conference on Functional programming,
ICFP ’08, pages 39–50, New York, NY, USA, 2008. ACM. ISBN 978-
1-59593-919-7.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In Proceedings of the
eleventh ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’06, pages 50–61, New York, NY, USA, 2006. ACM.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for GADTs. In Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming,
ICFP ’09, pages 341–352, New York, NY, USA, 2009. ACM.

V. Sjöberg, C. Casinghino, K. Y. Ahn, N. Collins, H. D. Eades III, P. Fu,
G. Kimmell, T. Sheard, A. Stump, and S. Weirich. Irrelevance, het-
erogenous equality, and call-by-value dependent type systems. In
Fourth workshop on Mathematically Structured Functional Program-
ming (MSFP ’12), 2012.

A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified
programming in guru. In Proceedings of the 3rd workshop on Program-
ming languages meets program verification, PLPV ’09, pages 49–58,
New York, NY, USA, 2008. ACM.

M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Donnelly. System F
with type equality coercions. In Proceedings of the 2007 ACM SIGPLAN
international workshop on Types in languages design and implementa-
tion, TLDI ’07, pages 53–66, New York, NY, USA, 2007. ACM.

D. Vytiniotis, S. Peyton Jones, and J. P. Magalhães. Equality proofs and
deferred type errors a compiler pearl. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming, ICFP
2012, Copenhagen, Denmark, New York, NY, USA, 2012. ACM.

S. Weirich. RepLib: A library for derivable type classes. In Haskell
Workshop, pages 1–12, Portland, OR, USA, Sept. 2006.

S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Gener-
ative type abstraction and type-level computation (extended version).
Technical report, University of Pennsylvania, Nov. 2010. URL http:
//www.cis.upenn.edu/~sweirich/papers/newtypes.pdf.

S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Generative
type abstraction and type-level computation. In Proceedings of the 38th
annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’11, pages 227–240, New York, NY, USA, 2011.
ACM.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving Haskell a promotion. In Proceedings of the 8th ACM
SIGPLAN workshop on Types in Language Design and Implementation,
TLDI ’12, pages 53–66, New York, NY, USA, 2012. ACM.

12 2012/7/10

A. Additional semantics
Below, we list a few syntactic forms, rules and definitions not
included in the main discussion.

A.1 Grammars
ρ ::= Telescope argument

| τ
| γ

v ::= Values
| λx: τ. e
| Λa:κ. e
| λc:φ. e
| K τ ρ e

cv ::= Coerced values
| v . γ
| v

tbnd ::= Telescoped Coercion Binding
| a:κ 7→ (τ1, τ2, γ)
| c:φ 7→ (γ1, γ2)

pbnd ::= Lifting Binding
| a:κ

•7→ (τ1, τ2, γ)

| c:φ •7→ (γ1, γ2)

Θ ::= Telescoped Coercion
| ∅
| Θ, tbnd

Ψ ::= Lifting Context
| ∅
| Θ, tbnd
| Ψ, pbnd

A.2 Expression typing and operational semantics

Γ t̀m e : τ Expression typing

ẁf Γ x: τ ∈ Γ

Γ t̀m x : τ
T VAR

Γ, x: τ1 t̀m e : τ2

Γ t̀m λx: τ1. e : τ1 → τ2
T ABS

Γ t̀m e : τ1 → τ2 Γ t̀m u : τ1

Γ t̀m e u : τ2
T APP

Γ, c:φ t̀m e : τ Γ t̀y φ : ?

Γ t̀m λc:φ. e : ∀ c:φ. τ T CABS

Γ t̀m e : ∀ c:φ. τ
Γ c̀o γ : φ

Γ t̀m e γ : τ [γ/c]
T CAPP

Γ, a:κ t̀m e : τ

Γ t̀m Λa:κ. e : ∀ a:κ. τ
T TABS

Γ t̀m e : ∀ a:κ. τ Γ t̀y τ
′ : κ

Γ t̀m e τ ′ : τ [τ ′/a]
T TAPP

Γ t̀m e : τ1 Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ2 : ?

Γ t̀m e . γ : τ2
T CAST

ẁf Γ K : τ ∈ Γ

Γ t̀m K : τ
T CON

Γ t̀m e : T τ ′

for each i
Ki:∀ a:κ.∀∆i . σi → (T a) ∈ Γ

∆′i = ∆i [τ ′/a]

σ′i = σi [τ ′/a]

Γ,∆′i , xi:σ
′
i t̀m ui : τ

Γ t̀m case e of Ki ∆′i xi:σ
′
i → ui : τ

T CASE

e −→ e ′ Step reduction, parameterized by toplevel context

(λx: τ. e) e ′ −→ e[e ′/x]
S BETA

e1 −→ e ′1
e1 e2 −→ e ′1 e2

S EAPP

Γ c̀o γ : σ1 → σ2 ∼ τ1 → τ2

(v . γ) e −→ (v (e . sym (nth1 γ))) . nth2 γ
S PUSH

(Λa:κ. e) τ −→ e[τ/a]
S TBETA

e1 −→ e ′1
e1 σ −→ e ′1 σ

S TAPP

Γ c̀o γ : ∀ a:κ1. σ1 ∼ ∀ a:κ2. σ2

γ′ = sym (nth1 γ)
τ ′ = τ . γ′

(v . γ) τ −→ (v τ ′) . γ@(〈τ〉 . γ′) S TPUSH

(λc:σ1 ∼ σ2. e) γ −→ e[γ/c]
S CBETA

e1 −→ e ′1
e1 γ −→ e ′1 γ

S CAPP

Γ c̀o γ : (∀ c:φ. τ) ∼ (∀ c′:φ′. τ ′)
γ′′ = (((nth3 (nth1 γ)) # γ′) # (sym (nth4 (nth1 γ))))

(v . γ) γ′ −→ v γ′′ . γ@(γ′′, γ′)
S CPUSH

(v . γ1) . γ2 −→ v . (γ1 # γ2)
S COMB

e −→ e ′

e . γ −→ e ′ . γ
S COERCE

Ki ∆i xi:σi → ui ∈ p → u

case Ki τ ρ e of p → u −→ ui [e/xi] [ρ/∆i]
S CASEMATCH

e −→ e ′

case e of p → u −→ case e ′ of p → u
S CASE

K : ∀ a:κ.∀∆. σ → (T a) ∈ Γ
Θ = {γ} ≺ ρ : ∆
τ ′ = Θ2(a)
ρ′ = Θ2(dom∆)
for each ei ∈ e,

e ′i = ei .Θ(σi)

case ((K τ ρ e) . γ) of p → u →
case (K τ ′ ρ′ e ′) of p → u

S KPUSH

13 2012/7/10

A.3 Erasure operation

|a| = a
|H | = H
|F | = F
|K | = K
∀ a:κ. τ	= ∀ a:	κ	.	τ
∀ c:φ. τ	= ∀ c:	φ	.	τ
τ1 τ2	=	τ1		τ2
τ1 . γ	=	τ1		
τ1 γ	=	τ1	•	

|c| = c
|C Θ| = C |Θ|
|〈τ〉| = 〈|τ |〉
sym γ	= sym	γ		
γ1 # γ2	=	γ1	#	γ2
∀ a: η. γ	= ∀ a:	η	.	γ
∀ c: η. γ	= ∀ c:	η	.	γ
γ1 γ2	=	γ1		γ2
γ(γ1, γ2)	=	γ	(•, •)	
γ . γ′	=	γ		
γ@γ′	=	γ	@	γ′
γ@(γ′, γ′′)	=	γ	@(•, •)	
nthi γ	= nthi	γ		
kind γ	= kind	γ		

|∅| = ∅
|Γ, a:κ| = |Γ|, a: |κ|
|Γ, c:φ| = |Γ|, c: |φ|

|∅| = ∅
|Θ, a:κ 7→ (τ1, τ2, γ)| = |Θ|, a: |κ| 7→ (|τ1|, |τ2|, |γ|)
|Θ, c:φ 7→ (γ1, γ2)| = |Θ|, c: |φ| 7→ (•, •)

A.4 Implicit Language Typing

|= Γ Implicit Validity

|= ∅
IV EMPTY

Γ |= κ : ? a # Γ

|= Γ, a:κ
IV TYVAR

Γ |= κ : ? F # Γ

|= Γ, F:κ
IV TYFUN

Γ |= ∀ a:κ. ? : ? T # Γ

|= Γ, T: ∀ a:κ. ?
IV TYDATA

Γ |= τ : κ x # Γ

|= Γ, x: τ
IV VAR

Γ |= ∀ a:κ. ∀∆. (σ → T a) : ? K # Γ

|= Γ, K :∀ a:κ.∀∆. (σ → T a)
IV CON

Γ |= φ : ? c # Γ

|= Γ, c:φ
IV CVAR

Γ,∆ |= φ : ? C # Γ

|= Γ, C : ∀∆. φ
IV AX

Γ |= ∆! Θ Implicit Lifting

|= Γ

Γ |= ∅! ∅
IL EMPTY

Γ |= ∆! Θ
Γ |= σ1 : Θ1(κ)
Γ |= σ2 : Θ2(κ)
Γ |= γ : σ1 ∼ σ2

Γ |= (∆, a:κ)! (Θ, a:κ 7→ (σ1, σ2, γ))
IL TY

Γ |= ∆! Θ
Γ |= η1 : Θ1(φ)
Γ |= η2 : Θ2(φ)

Γ |= (∆, c:φ)! (Θ, c:φ 7→ (•, •)) IL CO

Γ |= τ : κ Implicit Kinding

|= Γ

Γ |= ? : ?
IT STARINSTAR

|= Γ

Γ |= (→) : ?→ ?→ ?
IT ARROW

|= Γ

Γ |= (∼) : ∀ a: ? . ∀ b: ? . a → b → ?
IT EQUAL

|= Γ w:κ ∈ Γ

Γ |= w : κ
IT VAR

Γ |= τ1 : κ1 → κ2 Γ |= τ2 : κ1

Γ |= τ1 τ2 : κ2
IT APP

Γ |= τ1 : ∀ a:κ1. κ2 Γ |= τ2 : κ1

Γ |= τ1 τ2 : κ2[τ2/a]
IT TINST

Γ |= τ : ∀ c:φ. κ Γ |= γ : φ

Γ |= τ • : κ
IT CAPP

Γ, a:κ |= τ : ? Γ |= κ : ?

Γ |= ∀ a:κ. τ : ?
IT ALLT

Γ, c:φ |= τ : ? Γ |= φ : ?

Γ |= ∀ c:φ. τ : ?
IT ALLC

Γ |= τ : κ Γ |= γ : κ ∼ κ′ Γ |= κ′ : ?

Γ |= τ : κ′
IT CAST

Γ |= γ : φ Implicit Coercion Typing

Γ |= γ : τ ∼ τ ′
Γ |= τ • : κ Γ |= τ ′ • : κ′

Γ |= γ(•, •) : τ • ∼ τ ′ • ICT CAPP

Γ |= η : φ1 ∼ φ2 c
•7→ (c1, c2)

c1 # γ c2 # γ
Γ, c1:φ1, c2:φ2 |= γ : τ1 ∼ τ2
Γ |= ∀ c1:φ1. τ1 : ? Γ |= ∀ c2:φ2. τ2 : ?

Γ |= ∀ c: η. γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
ICT ALLC

Γ |= γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
Γ |= γ2 : σ1 ∼ σ2

Γ |= σ1 : κ1 Γ |= σ2 : κ2

Γ |= γ1@γ2 : τ1[σ1/a1] ∼ τ2[σ2/a2]
ICT INST

Γ |= γ : (∀ c:σ1 ∼ σ2. τ) ∼ (∀ c′:σ′1 ∼ σ′2. τ ′)
Γ |= γ1 : σ1 ∼ σ2 Γ |= γ2 : σ′1 ∼ σ′2

Γ |= γ@(•, •) : τ ∼ τ ′ ICT INSTC

Γ |= τ : κ

Γ |= 〈τ〉 : τ ∼ τ ICT REFL

Γ |= γ : τ1 ∼ τ2
Γ |= sym γ : τ2 ∼ τ1

ICT SYM

14 2012/7/10

Γ |= γ1 : τ1 ∼ τ2 Γ |= γ2 : τ2 ∼ τ3
Γ |= γ1 # γ2 : τ1 ∼ τ3

ICT TRANS

Γ |= γ1 : τ ′1 ∼ τ ′2 Γ |= γ2 : τ1 ∼ τ2
Γ |= τ ′1 τ1 : κ1 Γ |= τ ′2 τ2 : κ2

Γ |= γ1 γ2 : τ ′1 τ1 ∼ τ ′2 τ2
ICT APP

Γ |= η : κ1 ∼ κ2 a
•7→ (a1, a2, c)

Γ, a1:κ1, a2:κ2, c: a1 ∼ a2 |= γ : τ1 ∼ τ2
Γ |= ∀ a1:κ1. τ1 : ? Γ |= ∀ a2:κ2. τ2 : ?

Γ |= ∀ a: η. γ : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
ICT ALLT

c:φ ∈ Γ |= Γ

Γ |= c : φ
ICT VAR

C : ∀∆. (τ1 ∼ τ2) ∈ Γ Γ |= ∆! Θ

Γ |= C Θ : Θ1(τ1) ∼ Θ2(τ2)
ICT VARAX

Γ |= γ : H τ ∼ H τ ′

Γ |= nthi γ : τi ∼ τ ′i
ICT NTH

Γ |= γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)

Γ |= nth1 γ1 : κ1 ∼ κ2

ICT NTH1TA

Γ |= γ : (∀ c:φ. τ) ∼ (∀ c′:φ′. τ ′)
Γ |= nth1 γ : φ ∼ φ′

ICT NTH1CA

Γ |= γ : τ1 ∼ τ2 Γ |= τ1 : κ2 Γ |= τ2 : κ2

Γ |= kind γ : κ1 ∼ κ2
ICT EXT

A.5 Telescope reduction

Γ |= ρ ρ′ Telescope reduction

Γ |= ∅ ∅
RNIL

Γ |= τ τ ′ Γ |= ρ ρ′

Γ |= ρ, τ ρ′, τ ′
RCONS

B. Preservation
This section presents the necessary details for the proof of the
preservation theorem. The theorem itself is proved by induction
on the typing derivation with a case analysis of the rule used in the
operational semantics. Below, we present only three cases, those
for S KPUSH, S TPUSH, and S CPUSH. These are the only cases
that differ from the proof described in previous work [Weirich et al.
2010]. We also present many supporting lemmas needed for these
cases, particularly regarding the treatment of lifting contexts.

B.1 Lifting Contexts
Section 4 describes telescoped coercions Θ and refers to lifting
contexts Ψ. This section expands upon lifting contexts, which are
required to prove the lifting lemma (Lemma 4.2).

A lifting context Ψ is a telescoped coercion Θ with special map-
pings appended on the end. These special mappings are denoted
with •7→ instead of 7→ and map a variable to 3 (for types) or 2 (for
coercions) fresh variables, analogous to the bijective functions also
denoted with •7→.

Throughout this section, the notation ?7→ means either 7→ or •7→.
The use of Ψ as a multisubstitution is a straightforward exten-

sion of the use of Θ:

Definition B.1 (Lifting context substitution).

1. For each a:κ
?7→ (τ1, τ2, γ) in Ψ, Ψ1(·) maps a to τ1 and Ψ2(·)

maps a to τ2.

2. For each c:φ
?7→ (γ1, γ2) in Ψ, Ψ1(·) maps c to γ1 and Ψ2(·)

maps c to γ2.

We can view these fresh bindings as a typing context:

Definition B.2 (Single flattening). The operation Ψ̇j turns a lifting
context into a typing context.

1. For each a: κ
•7→ (a1, a2, c), the context includes the binding

aj: Ψj (κ).
2. For each c: φ

•7→ (c1, c2), the context includes the binding
cj: Ψj (φ).

Definition B.3 (Flattening). The operation Ψ̇ turns a lifting context
into a typing context.

1. For each a: κ
•7→ (a1, a2, c), the context includes the bindings

a1: Ψ1(κ), a2: Ψ2(κ), c: a1 ∼ a2.
2. For each c: φ

•7→ (c1, c2), the context includes the bindings
c1: Ψ1(φ), c2: Ψ2(φ).

Lemma B.4 (Telescoped coercion domains). If Γ t̀c ∆ ! Θ,
then the domain of ∆ equals the set of variables mapped in Θ.

Proof. Straightforward induction on the derivation of Γ t̀c ∆ !
Θ.

Lemma B.5 (Lifting context domains). If Γ l̀c ∆! Ψ, then the
domain of ∆ equals the set of variables mapped in Ψ.

Proof. Straightforward induction on the derivation of Γ l̀c ∆ !
Ψ, using Lemma B.4 in the LC THETA case.

The following lemma is a generalization of Lemma 3.4 (Telescoped
Coercion Substitution) from Section 3.8 to lifting contexts.

Lemma B.6 (Lifting context substitution). Suppose Γ l̀c ∆ !
Ψ.

1. If Γ,∆ t̀y τ : κ then Γ, Ψ̇j t̀y Ψj (τ) : Ψj (κ)

2. If Γ,∆ c̀o γ : φ then Γ, Ψ̇j c̀o Ψj (γ) : Ψj (φ)

3. If Γ,∆ l̀c ∆′! Ψ′ then Γ, Ψ̇j l̀c Ψj (∆
′)! Ψj (Ψ

′)

4. If Γ,∆ t̀el ρ : ∆′ then Γ, Ψ̇j t̀el Ψj (ρ) : Ψj (∆
′)

5. If ẁf Γ,∆, then ẁf Γ, Ψ̇j

Proof. We proceed by mutual induction. However, we will need
to strengthen the lemma even more to get a usable induction hy-
pothesis. The stronger version of the lemma replaces Γ,∆ in the
if clauses with Γ,∆,Γ′ and replaces the Γ, Ψ̇j in the conclusions
with Γ, Ψ̇j ,Ψj (Γ

′).
There are many cases to consider. We consider the interesting

ones here:

Case K VAR: We know Γ,∆,Γ′ t̀y w : κ, and by inversion, ẁf

Γ,∆,Γ′ and w:κ ∈ Γ,∆,Γ′. We must show Γ, Ψ̇j ,Ψj (Γ
′) t̀y

Ψj (w) : Ψj (κ).
We have two cases:
w ∈ domΓ: Because w /∈ dom∆, Ψj (w) = w . Furthermore,

because κ appears in Γ,∆,Γ′ before any element in ∆
is declared, we know that κ cannot refer to any variable
declared in ∆. Therefore, Ψj (κ) = κ. By the induction
hypothesis, ẁf Γ, Ψ̇j ,Ψj (Γ

′), and we can use rule K VAR

to get Γ, Ψ̇j ,Ψj (Γ
′) t̀y w : κ as desired.

w ∈ dom∆: By Lemma B.5, a mapping w: κ
?7→ (τ1, τ2, γ)

must exist in Ψ. Here, we have two further cases, depending
on the nature of the mapping:

15 2012/7/10

7→: Inverting Γ l̀c ∆ ! Ψ eventually gives us Γ t̀y

Ψj (w) : Ψj (κ) (from rule TELCO TY). Weakening
then gives us Γ, Ψ̇j ,Ψj (Γ

′) t̀y Ψj (w) : Ψj (κ) as
desired.

•7→: By the definition of Ψ̇j , w: Ψj (κ) ∈ Ψ̇j . By the
induction hypothesis, we can derive ẁf Γ, Ψ̇j ,Ψj (Γ

′).
Then, we apply rule K VAR to get Γ, Ψ̇j ,Ψj (Γ

′) t̀y

Ψj (w) : Ψj (κ) as desired.
w ∈ domΓ′: Because w /∈ dom∆, Ψj (w) = w . Further-

more, we know w: κ ∈ Γ′ and therefore w: Ψj (κ) ∈
Ψj (Γ

′). The induction hypothesis gives us ẁf Γ, Ψ̇j ,Ψj (Γ
′)

and we can use rule K VAR to derive Γ, Ψ̇j ,Ψj (Γ
′) t̀y

Ψj (w) : Ψj (κ) as desired.
w /∈ dom∆:

Case K ALLC: We know Γ,∆,Γ′ t̀y ∀ c: φ. τ : ?, and by
inversion, Γ,∆,Γ′, c: φ t̀y τ : ? and Γ,∆,Γ′ t̀y φ : ?.
We must show Γ, Ψ̇j ,Ψj (Γ

′) t̀y ∀ c: Ψj (φ).Ψj (τ) : ?.
The induction hypothesis gives us Γ, Ψ̇j ,Ψj (Γ

′), c: Ψj (φ) t̀y

Ψj (τ) : ? (letting Γ′ in the inductive step include the bind-
ing for c) and Γ, Ψ̇j ,Ψj (Γ

′) t̀y Ψj (φ) : ?. Thus, by rule
K ALLC, Γ, Ψ̇j ,Ψj (Γ

′) t̀y ∀ c: Ψj (φ).Ψj (τ) : ? and we are
done.

Case CT ALLC: We know

Γ,∆,Γ′ c̀o ∀ c: η. γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)

and by inversion

Γ,∆,Γ′ c̀o η : φ1 ∼ φ2

c
•7→ (c1, c2)

c1 # |γ|
c2 # |γ|
Γ,∆,Γ′, c1:φ1, c2:φ2 c̀o γ : τ1 ∼ τ2
Γ,∆,Γ′ t̀y ∀ c1:φ1. τ1 : ?

Γ,∆,Γ′ t̀y ∀ c2:φ2. τ2 : ?

We wish to show

Γ, Ψ̇j ,Ψj (Γ
′) ` ∀ c: Ψj (η).Ψj (γ) :

(∀ c1: Ψj (φ1).Ψj (τ1)) ∼ (∀ c2: Ψj (φ2).Ψj (τ2)).

To use rule CT ALLC, we need to show

Γ, Ψ̇j ,Ψj (Γ
′) c̀o Ψj (η) : Ψj (φ1) ∼ Ψj (φ2) (1)

c
•7→ (c1, c2) (2)

c1 # |Ψj (γ)| (3)
c2 # |Ψj (γ)| (4)

Γ, Ψ̇j ,Ψj (Γ
′), c1: Ψj (φ1), c2: Ψj (φ2) c̀o Ψj (γ) : Ψj (τ1) ∼ Ψj (τ2)

(5)

Γ, Ψ̇j ,Ψj (Γ
′) t̀y ∀ c1: Ψj (φ1).Ψj (τ1) : ? (6)

Γ, Ψ̇j ,Ψj (Γ
′) t̀y ∀ c2: Ψj (φ2).Ψj (τ2) : ? (7)

We know (1), (5), (6), and (7) by the induction hypothesis.
(Note that we extend Γ′ for induction with (5).) We know (2) by
inversion, above. We can derive (3) and (4) by noting that Ψj(·)
and | · | commute with each other and that c1, c2 do not appear
in Ψ. Therefore, if c1 # |γ|, then c1 # |Ψj (γ)| and likewise
for c2. Now, we can apply CT ALLC and we are done.

Case CT VARAX: We know Γ,∆,Γ′ c̀o C Θ : Θ1(τ1) ∼
Θ2(τ2), and by inversion, C : ∀∆′. (τ1 ∼ τ2) ∈ Γ,∆,Γ′ and
Γ,∆,Γ′ t̀c ∆′! Θ. We must show

Γ, Ψ̇j ,Ψj (Γ
′) c̀o Ψj (C Θ) : Ψj (Θ1(τ1) ∼ Θ2(τ2))

or, equivalently,

Γ, Ψ̇j ,Ψj (Γ
′) c̀o Ψj (C) Ψj (Θ) : Ψj (Θ)1(Ψj (τ1)) ∼ Ψj (Θ)2(Ψj (τ2))

To use CT VARAX to prove this fact, we need, in turn

Ψj (C) : ∀∆′′.(Ψj (τ1) ∼ Ψj (τ2)) ∈ Γ, Ψ̇j ,Ψj (Γ
′)

Γ, Ψ̇j ,Ψj (Γ
′) t̀c ∆′′! Ψj (Θ)

Choose ∆′′ = Ψj (∆
′). Then, the induction hypothesis gives us

the second fact above.
By the definition of the form of Ψ, we can see that no axiom
schemes (with type ∀∆. φ) can be mapped from Ψ. We now
have two cases:
C ∈ domΓ: Because C appears in Γ, the type of C can-

not mention any variables in ∆. Thus, Ψj (∆
′) = ∆′,

Ψj (τ1) = τ1 and Ψj (τ2) = τ2. Then, we can conclude
that C : ∀∆′. (τ1 ∼ τ2) ∈ Γ, Ψ̇ and we are done.

C ∈ domΓ′: In this case, we can conclude that

C : ∀Ψj (∆
′). (Ψj (τ1) ∼ Ψj (τ2)) ∈ Ψj (Γ

′)

and we are done.

We will need the following lemmas to prove the lifting lemma:

Lemma B.7 (Telescoped coercion coercions). If Γ t̀c ∆ ! Θ
and Θ contains the mapping a: κ 7→ (τ1, τ2, γ), then Γ c̀o γ :
τ1 ∼ τ2.

Proof. Straightforward induction on Γ t̀c ∆! Θ.

Lemma B.8 (Lifting context coercions). If Γ l̀c ∆ ! Ψ and Ψ

contains the mapping a: κ
?7→ (τ1, τ2, γ), then Γ, Ψ̇ c̀o γ : τ1 ∼

τ2.

Proof. Straightforward induction on Γ l̀c ∆ ! Ψ, using
Lemma B.7 in the LC THETA case.

Lemma B.9 (Weakened lifting context substitution). Suppose Γ l̀c

∆! Ψ.

1. If Γ,∆ t̀y τ : κ then Γ, Ψ̇ t̀y Ψj (τ) : Ψj (κ)

2. If Γ,∆ c̀o γ : φ then Γ, Ψ̇ c̀o Ψj (γ) : Ψj (φ)

3. If Γ,∆ l̀c ∆′! Ψ′ then Γ, Ψ̇ l̀c Ψj (∆
′)! Ψj (Ψ

′)

4. If Γ,∆ t̀el ρ : ∆′ then Γ, Ψ̇ t̀el Ψj (ρ) : Ψj (∆
′)

(This lemma is the same as Lemma B.6, except the j subscripts in
the conclusion contexts are removed.)

Proof. Immediate from Lemma B.6 and weakening, noting that any
difference between Ψ̇j and Ψ̇ are guaranteed to be fresh bindings.

Lemma B.10 (Fresh variables).

1. If a # Γ and a
•7→ (a1, a2, c), then a1 # Γ, a2 # Γ, and

c # Γ.
2. If c # Γ and c

•7→ (c1, c2), then c1 # Γ and c2 # Γ.

Proof. Immediate from the definition of •7→.

Lemma B.11 (Erased lifted coercions). Let Ψ contain the mapping
c: φ

•7→ (c1, c2). If Γ l̀c ∆ ! Ψ and Γ,∆ t̀y τ : κ, then
c1 # |Ψ(τ)| and c2 # |Ψ(τ)|.

Proof. We proceed by induction on the typing derivation for τ .

16 2012/7/10

Cases K STARINSTAR, K ARROW, and K EQUAL: Trivial.
Case K VAR: τ = w , and we know ẁf Γ,∆ and w: κ ∈ Γ,∆.

Here we have two cases:
w ∈ dom∆: We know w is a type variable, so w 6= c. Thus,

w appears either after or before c in Ψ. If w appears after
c, then, by the fact that all mappings with 7→ precede all
mappings with •7→ in Ψ, Ψ(w) is some fresh variable c′,
and thus c1 # |Ψ(w)| and c2 # |Ψ(w)| as desired. Going
forward, we can assume w occurs before c in Ψ. Now,
the mapping from w may be built with 7→ or •7→. We have
already handled the latter case, so going forward, we can
assume that the mapping is built with 7→. Ψ(w) = γ for
some γ. However, this γ is built from components all of
which are out of scope of c, c1, and c2. Thus, neither c1
nor c2 appear in γ and thus do not appear in |γ|. Thus,
c1 # |Ψ(w)| and c2 # |Ψ(w)| as desired.

w /∈ dom∆: In this case Ψ(w) = 〈w〉. Because the spaces of
type variables and coercion variables are distinct, we know
that w 6= c1 and w 6= c2, as desired.

Case K APP: τ = τ1 τ2, and we know Γ,∆ t̀y τ1 : κ1 → κ2

and Γ,∆ t̀y τ2 : κ1. Here, Ψ(τ1 τ2) = Ψ(τ1) Ψ(τ2).
The induction hypothesis tells us that c1, c2 do not appear in
|Ψ(τ1)|, |Ψ(τ2)|. Since |γ1 γ2| = |γ1| |γ2|, the desired result
follows directly from this result.

Case K TINST: Analogous to K APP.
Case K CAPP: τ = τ1 γ1, and we know Γ,∆ t̀y τ1 : ∀ c: φ. κ

and Γ,∆ c̀o γ1 : φ. We have Ψ(τ1 γ1) = Ψ(τ1)(Ψ1(γ1),Ψ2(γ1)).
The induction hypothesis tells us that c1, c2 do not appear in
|Ψ(τ1)|. By the definition of | · |, |Ψ(τ1 γ1)| = |Ψ(τ1)|(•, •).
Thus, c1, c2 do not appear in |Ψ(τ1 γ1)| as desired.

Case K ALLT: τ = ∀ a: κ. τ ′, and we know Γ,∆, a: κ t̀y

τ ′ : ? and Γ,∆ t̀y κ : ?. Letting Ψ′ = Ψ, a: κ
•7→

(a1, a2, c), we have |Ψ(∀ a: κ. τ ′)| = |∀ a: Ψ(κ).Ψ′(τ ′)| =
∀ a: |Ψ(κ)|. |Ψ′(τ ′)|. The induction hypothesis tells us that
c1, c2 do not appear in |Ψ(κ)| and |Ψ′(τ ′)|, so we are done.

Case K ALLC: Analogous to K ALLT.
Case K CAST: τ = τ ′.η and we know Γ,∆ t̀y τ

′ : κ1, Γ,∆ c̀o

η : κ1 ∼ κ2, and Γ,∆ t̀y κ2 : ?. We have |Ψ(τ ′ . η)| =
|Ψ(τ ′) .Ψ1(η) ∼ Ψ2(η)| = |sym ((symΨ(τ ′)) .Ψ2(η)) .
Ψ1(η)| = sym (sym |Ψ(τ ′)|). The induction hypothesis tells
us that c1, c2 do not appear in |Ψ(τ ′)|, so we are done.

Proof of Lemma 4.2 (Lifting): This lemma is proved by generaliz-
ing it to the following lemma that applies to lifting contexts Ψ.

Lemma B.12 (Generalized Lifting). If Γ l̀c ∆! Ψ and Γ,∆ t̀y

τ : κ, then

Γ, Ψ̇ c̀o Ψ(τ) : Ψ1(τ) ∼ Ψ2(τ)

Proof. We proceed by induction on the typing derivation for τ .

Case K STARINSTAR: Trivial: Γ, Ψ̇ c̀o 〈?〉 : ? ∼ ?.
Case K ARROW: Trivial: Γ, Ψ̇ c̀o 〈(→)〉 : (→) ∼ (→).
Case K EQUAL: Trivial: Γ, Ψ̇ c̀o 〈(∼)〉 : (∼) ∼ (∼).
Case K VAR: τ = w , and we know ẁf Γ,∆ and w: κ ∈ Γ,∆.

Here we have two cases:
w ∈ dom∆: By the definition of ∆, w must be a type variable

a . Using Lemma B.5, there must exist a mapping a: κ
?7→

(τ1, τ2, γ) in Ψ. Then, we know Ψ(w) = γ, Ψ1(w) = τ1,
and Ψ2(w) = τ2. By Lemma B.8, we can get Γ, Ψ̇ c̀o γ :
τ1 ∼ τ2, and thus Γ, Ψ̇ c̀o Ψ(w) : Ψ1(w) ∼ Ψ2(w) as
desired.

w /∈ dom∆: Trivial: Γ, Ψ̇ c̀o 〈w〉 : w ∼ w .
Case K APP: τ = τ1 τ2, and we know Γ,∆ t̀y τ1 : κ1 → κ2

and Γ,∆ t̀y τ2 : κ1. Ψ(τ1 τ2) = Ψ(τ1) Ψ(τ2). The induction
hypothesis gives us

Γ, Ψ̇ c̀o Ψ(τ1) : Ψ1(τ1) ∼ Ψ2(τ1)

Γ, Ψ̇ c̀o Ψ(τ2) : Ψ1(τ2) ∼ Ψ2(τ2).

We now wish to use rule CT APP, but we need to know

Γ, Ψ̇ t̀y Ψ1(τ1) Ψ1(τ2) : σ1

Γ, Ψ̇ t̀y Ψ2(τ1) Ψ2(τ2) : σ2

for some types σ1 and σ2. Lemma B.9 applied to the types of
τ1 and τ2, along with straightforward typing rule applications,
gives us exactly these facts. Thus,

Γ, Ψ̇ c̀o Ψ(τ1) Ψ(τ2) : Ψ1(τ1) Ψ1(τ2) ∼ Ψ2(τ1) Ψ2(τ2)

or
Γ, Ψ̇ c̀o Ψ(τ1 τ2) : Ψ1(τ1 τ2) ∼ Ψ2(τ1 τ2)

as desired.
Case K TINST: τ = τ1 τ2, and we know Γ,∆ t̀y τ1 : ∀ a:κ1. κ2

and Γ,∆ t̀y τ2 : κ1. This case then proceeds identically to
the previous case.

Case K CAPP: τ = τ1 γ1, and we know Γ,∆ t̀y τ1 : ∀ c: φ. κ
and Γ,∆ c̀o γ1 : φ. Ψ(τ1 γ1) = Ψ(τ1)(Ψ1(γ1),Ψ2(γ1)).
The induction hypothesis gives us

Γ, Ψ̇ c̀o Ψ(τ1) : Ψ1(τ1) ∼ Ψ2(τ1).

We now wish to use rule CT CAPP, but we need to know

Γ,∆ t̀y Ψ1(τ1) Ψ1(γ1) : κ

Γ,∆ t̀y Ψ2(τ1) Ψ2(γ1) : κ′

for some types κ and κ′. Lemma B.9 applied to the types of
τ1 and γ1, along with straightforward typing rule applications,
gives us exactly these facts. Thus,

Γ, Ψ̇ c̀o Ψ(τ1 γ1) : Ψ1(τ1) Ψ1(γ1) ∼ Ψ2(τ1) Ψ2(γ1)

or
Γ, Ψ̇ c̀o Ψ(τ1 γ1) : Ψ1(τ1 γ1) ∼ Ψ2(τ1 γ1)

as desired.
Case K ALLT: τ = ∀ a:κ. τ ′, and we know Γ,∆, a:κ t̀y τ

′ : ?
and Γ,∆ t̀y κ : ?. We can use LC TY to derive Γ l̀c

∆, a: κ! Ψ, a: κ
•7→ (a1, a2, c). Write Ψ′ for this extended

lifting context.
We wish to show

Γ, Ψ̇ c̀o Ψ(∀ a:κ. τ ′) : Ψ1(∀ a:κ. τ ′) ∼ Ψ2(∀ a:κ. τ ′)

or, equivalently,

Γ, Ψ̇ c̀o ∀ a: Ψ(κ).Ψ′(τ ′) :

∀ a1: Ψ1(κ).Ψ′1(τ ′) ∼ ∀ a2: Ψ2(κ).Ψ′2(τ ′)

By the induction hypothesis, we have

Γ, Ψ̇ c̀o Ψ(κ) : Ψ1(κ) ∼ Ψ2(κ)

Γ, Ψ̇′ c̀o Ψ′(τ ′) : Ψ′1(τ ′) ∼ Ψ′2(τ ′)

We wish to use CT ALLT. The first three premises are already
satisfied. We must show

Γ, Ψ̇ t̀y ∀aj : Ψj (κ).Ψj (τ
′) : ?

This fact comes directly from the use of Lemma B.9 applied to
the type of ∀ a:κ. τ ′.
Thus, we can apply CT ALLT, and we are done.

17 2012/7/10

Case K ALLC: τ = ∀ c:φ. τ ′, and we know Γ,∆, c:φ t̀y τ
′ : ?

and Γ,∆ t̀y φ : ?. We can use LC CO to derive Γ l̀c

∆, c: φ ! Ψ, c: φ
•7→ (c1, c2). Write Ψ′ for this extended

lifting context.
We wish to show

Γ, Ψ̇ c̀o Ψ(∀ c:φ. τ ′) : Ψ1(∀ c:φ. τ ′) ∼ Ψ2(∀ c:φ. τ ′)
or, equivalently,

Γ, Ψ̇ c̀o ∀c : Ψ(φ).Ψ′(τ ′) :

∀ c1: Ψ1(φ).Ψ′1(τ ′) ∼ ∀ c2: Ψ2(φ).Ψ′2(τ ′)

By the induction hypothesis, we have

Γ, Ψ̇ c̀o Ψ(φ) : Ψ1(φ) ∼ Ψ2(φ)

Γ, Ψ̇′ c̀o Ψ′(τ ′) : Ψ′1(τ ′) ∼ Ψ′2(τ ′)

We wish to use CT ALLC. The first, second, and fifth
premises are already satisfied. The third and fourth premises
are c1 # |Ψ′(τ ′)| and c2 # |Ψ′(τ ′)|, respectively. We use
Lemma B.11 to get these conditions. Now, it remains only to
show

Γ, Ψ̇ t̀y ∀cj : Ψj (φ).Ψ′j (τ
′) : ?

This fact comes directly from the use of Lemma B.9 applied to
the type of ∀ c:φ. τ ′.
Thus, we can apply CT ALLC, and we are done.

Case K CAST: τ = τ ′ . η, and we know Γ,∆ t̀y τ ′ : κ1,
Γ,∆ c̀o η : κ1 ∼ κ2, and Γ,∆ t̀y κ2 : ?. We wish to
show

Γ, Ψ̇ c̀o Ψ(τ ′ . η) : Ψ1(τ ′ . η) ∼ Ψ2(τ ′ . η)

or, equivalently,

Γ, Ψ̇ c̀o sym ((symΨ(τ ′)) .Ψ2(η)) .Ψ1(η) :

Ψ1(τ ′) .Ψ1(η) ∼ Ψ2(τ ′) .Ψ2(η).

By the induction hypothesis, we have

Γ, Ψ̇ c̀o Ψ(τ ′) : Ψ1(τ ′) ∼ Ψ2(τ ′).

Using this fact with straightforward application of typing rules
gives us the desired result.

B.2 Metatheory for S KPUSH Preservation
Having defined and proved the generalized lifting lemma, we still
must present and prove a number of other lemmas before proving
that the types are preserved in the S KPUSH case.

Lemma B.13 (Telescope substitution). If Γ t̀c ∆ ! Θ and
ẁf ∆, then Θj (∆) = ∆.

Proof. By Lemma B.4, the domain of Θ equals the domain of ∆.
Furthermore, ẁf ∆ implies that all kinds in ∆ (constructs to the
right of a colon) are well-scoped—that is, no variable is mentioned
before it is declared. Because the Θj(∆) operation is defined only
to substitute in kinds and to not substitute a variable after it is
locally bound, it is impossible for the substitution to change ∆.
Thus, Θj (∆) = ∆, as desired.

Lemma B.14 (Θj-consistency). If Γ t̀c ∆ ! Θ, then Γ t̀el

Θj (dom∆) : ∆.

Proof. We wish to use clause 5 of the lifting context substitution
lemma (Lemma B.6), with ρ = dom∆ and ∆′ = ∆. We must

show Γ,∆ t̀el dom∆ : ∆. This is true by straightforward in-
duction on the length of ∆. Then, we apply Lemma 3.4 to get
Γ t̀el Θj (dom∆) : Θj (∆). By Lemma B.13, this can be rewritten
as Γ t̀el Θj (dom∆) : ∆, as desired.

Lemma B.15 (Telescoped coercion extension consistency). If Γ t̀c

∆1 ! Θ, ẁf Γ,∆1,∆2, Γ t̀el ρ2 : Θ1(∆2), and Θ′ = Θ ≺ ρ2 :
∆2, then Γ t̀c ∆1,∆2 ! Θ′.

Proof. We proceed by induction on the derivation of Γ t̀el ρ2 :
Θ1(∆2).

• Case ρ2 = ∅; ∆2 = ∅: In this case Θ′ = Θ, and thus we must
show Γ t̀c ∆1 ! Θ, which we know by assumption.

• Case ρ2 = ρ′2, τ ; ∆2 = ∆′2, a:κ:
The inductive hypothesis is: if ẁf Γ,∆1,∆

′
2, Γ t̀el ρ

′
2 :

Θ1(∆′2), and Θ′′ = Θ ≺ ρ′2 : ∆′2, then Γ t̀c ∆1,∆
′
2 ! Θ′′.

We must show Γ t̀c ∆1,∆
′
2, a: κ! Θ′, where Θ′ = Θ ≺

ρ′2, τ : ∆′2, a:κ.
By the definition of the ≺ operation, we know we will have
to use rule TELCO TY. It is easy to see from the definition of
≺ that Θ′ is Θ′′ with an additional mapping from a. Thus,
Γ t̀c ∆1,∆

′
2 ! Θ′′ fulfills the first premise of TELCO TY.

To use TELCO TY, we must show the following:
1. Γ t̀y τ : Θ′′1 (κ)

We know Γ t̀el ρ
′
2, τ : Θ1(∆′2, a: κ). Inverting gives us

Γ t̀y τ : Θ1(κ)[ρ′2/Θ1(∆′2)]. Because we care only about
the names of the variables in the substitution expression,
we can rewrite this as Γ t̀y τ : Θ1(κ)[ρ′2/∆

′
2]. From

the definition of ≺, we can see that all of the substitutions
performed by Θ′′1 (·) that are not in Θ map a domain element
of ∆′2 to its corresponding ρ ∈ ρ′2. Thus, we can rewrite the
judgement above as Γ t̀y τ : Θ′′1 (κ) as desired.

2. Γ t̀y τ .Θ′′(κ) : Θ′′2 (κ)
We wish to use the lifting lemma (Lemma 4.2). We know
Γ t̀c ∆1,∆

′
2 ! Θ′′. We must show Γ,∆1,∆

′
2 t̀y κ : σ

for some σ. This fact, for σ = ?, comes directly from
inversion on ẁf Γ,∆1,∆

′
2, a:κ.

Now, we apply the lifting lemma to get Γ c̀o Θ′′(κ) :
Θ′′1 (κ) ∼ Θ′′2 (κ). As shown in the previous case, Γ t̀y

τ : Θ′′1 (κ). Therefore, by simple application of typing
rules, we can derive Γ t̀y τ .Θ′′(κ) : Θ′′2 (κ) as desired.

3. Γ c̀o sym (〈τ〉 .Θ′′(κ)) : τ ∼ (τ .Θ′′(κ))
Straightforward application of typing rules.

• Case ρ2 = ρ′2, γ; ∆2 = ∆′2, c:φ:
The inductive hypothesis is the same as in the previous case.
We must show Γ t̀c ∆1,∆

′
2, c: φ! Θ′, where Θ′ = Θ ≺

ρ′2, γ : ∆′2, c:φ.
By the definition of the ≺ operation, we know we will have
to use rule TELCO CO. It is easy to see from the definition of
≺ that Θ′ is Θ′′ with an additional mapping from c. Thus,
Γ t̀c ∆1,∆

′
2 ! Θ′′ fulfills the first premise of TELCO CO.

To use TELCO CO, we must show the following:
1. Γ c̀o γ : Θ′′1 (φ)

We know Γ t̀el ρ
′
2, γ : Θ1(∆′2, c: φ). Inverting gives us

Γ c̀o γ : Θ1(φ)[ρ′2/Θ1(∆′2)]. Because we care only
about the names of the variables in the substitution expres-
sion, we can rewrite this as Γ c̀o γ : Θ1(φ)[ρ′2/∆

′
2]. From

the definition of ≺, we can see that all of the substitutions
performed by Θ′′1 (·) that are not in Θ map a domain element
of ∆′2 to its corresponding ρ ∈ ρ′2. Thus, we can rewrite the
judgement above as Γ c̀o γ : Θ′′1 (φ), as desired.

2. Γ c̀o sym (Θ′′(σ1)) # γ # Θ′′(σ2) : Θ′′2 (σ1) ∼ Θ′′2 (σ2),
where φ = σ1 ∼ σ2

We wish to use the lifting lemma (Lemma 4.2) twice to

18 2012/7/10

get the types of Θ′′(σ1) and Θ′′(σ2).. We know Γ l̀c

∆1,∆2 ! Θ′′. We must show Γ,∆1,∆2 t̀y σ1 : κ1

for some κ1 and Γ,∆1,∆2 t̀y σ2 : κ2 for some
κ2. Inversion on ẁf Γ,∆1,∆2, c: σ1 ∼ σ2 gives us
Γ,∆1,∆2 t̀y σ1 ∼ σ2 : ?, which stands for Γ,∆1,∆2 t̀y

((((∼)κ1)κ2)σ1)σ2 : ? for some κ1 and κ2. Further in-
version on this judgement gives us Γ,∆1,∆2 t̀y σ1 : κ1

and Γ,∆1,∆2 t̀y σ2 : κ2 as desired.
Now, we apply the lifting lemma to get Γ c̀o Θ′′(σi) :
Θ′′1 (σi) ∼ Θ′′2 (σi). As shown in the previous case, Γ c̀o

γ : Θ′′1 (σ1) ∼ Θ′′1 (σ2). Therefore, by simple application
of typing rules, we can derive Γ c̀o sym (Θ′′(σ1)) # γ #
Θ′′(σ2) : Θ′′2 (σ1) ∼ Θ′′2 (σ2) as desired.

Lemma B.16 (Telescope composition). If Γ t̀el ρ1 : ∆1 and
Γ t̀el ρ1, ρ2 : ∆1,∆2, then Γ t̀el ρ2 : ∆2[ρ1/∆1].

Proof Sketch. By induction on the length of ρ2.

Lemma B.17 (S KPUSH preservation). If

1. Γ t̀m case (K τ ρ e . γ) of p → u : σ and
2. case (K τ ρ e.γ) of p → u −→ case (K τ ′ ρ′ e ′) of p → u ,

then

Γ t̀m case (K τ ′ ρ′ e ′) of p → u : σ

Proof. By inversion we know that:

• K : ∀ a:κ. ∀∆. σ → (T a)
• Θ = {γ} ≺ ρ : ∆
• τ ′ = Θ2(a)
• ρ′ = Θ2(dom∆)
• e ′i = ei .Θ(σi)
• Γ t̀m ei : σi [τ/a][ρ/∆]
• Γ t̀m (K τ ρ e) . γ : T τ ′.
• Γ t̀m K τ ρ e : T τ .

We will have to use rule T CASE to get the desired result.
Because the patterns are not changing, we need only show that
Γ t̀m K τ ′ ρ′ e ′ : T τ ′.

By convention, we have chosen the length of the list τ to be the
same as that of the list a:κ in the type of K . Thus, we know that
Γ t̀y K τ ′ : ∀∆[τ ′/a]. (σ[τ ′/a]→ T τ ′).

Now, we must show that Γ t̀el ρ
′ : ∆[τ ′/a]. This can be

rewritten as Γ t̀el Θ2(dom∆) : ∆[τ ′/a].
We know from Lemma B.15 that Γ t̀c a:κ,∆ ! Θ (using

Lemma 4.4 to get Γ t̀c a:κ ! {γ}). Lemma B.14 then gives
us Γ t̀el Θ2(a, dom∆) : a:κ,∆. Invoking Lemma B.16 gives us
Γ t̀el Θ2(dom∆) : ∆[τ ′/a] as desired.

We have now shown that Γ t̀y K τ ′ ρ′ : Θ2(σ) → T τ ′.
We need to show that Γ t̀m e ′i : Θ2(σi), or equivalently,
Γ t̀m ei . Θ(σi) : Θ2(σi). We will need the lifting lemma
(Lemma 4.2). We have already shown Γ t̀c a:κ,∆ ! Θ; we
must show Γ, a:κ,∆ t̀y σi : κi for some type κi . By repeated
inversion on the typing judgement for K , we will get Γ, a:κ,∆ t̀y

σi : κi as desired. Thus, the lifting lemma gives us Γ c̀o Θ(σi) :
Θ1(σi) ∼ Θ2(σi). We note that, by construction, Θ1(·) maps
a to τ and dom∆ to ρ. Thus, σi [τ/a][ρ/∆] = Θ1(σi). Now,
by straightforward application of typing rules, we can see that
Γ t̀m ei .Θ(σi) : Θ2(σi) as desired.

Thus, Γ t̀m K τ ′ ρ′ e ′ : T τ ′ as desired, and we are done.

B.3 Other preservation cases
Lemma B.18 (TPush Preservation). If

1. Γ t̀m (v . γ) τ : σ2[τ/a2] and
2. Γ c̀o γ : ∀ a1:κ1. σ1 ∼ ∀ a2:κ2. σ2

3. (v . γ) τ −→ e ′ where
4. e ′ = v (τ . γ′) . γ@(〈τ〉 . γ′) and
5. γ′ = sym (nth1 γ),

then Γ t̀m e ′ : σ2[τ/a2].

Proof. By inversion of the typing derivation we know that Γ t̀m

v . γ : ∀ a2: κ2. σ2 and Γ t̀y τ : κ2. An additional inversion
gives us Γ t̀m v : ∀ a1:κ1. σ1. Therefore we can show that

• Γ c̀o γ
′ : κ2 ∼ κ1, by the rules for symmetry and nth and

• Γ t̀y τ . γ
′ : κ1, by casting and

• Γ t̀m v (τ . γ′) : σ1[τ . γ′/a1], by type application.

Furthermore, we have

• Γ c̀o 〈τ〉 . γ′ : τ . γ′ ∼ τ , by reflexivity and coherence and
• Γ c̀o γ@(〈τ〉 . γ′) : σ1[τ . γ′/a1] ∼ σ2[τ/a2], by

instantiation.

Thus the final term has the desired type by casting.

Lemma B.19 (CPush Preservation). If

1. Γ t̀m (v . γ) γ′ : σ and
2. (v . γ) γ′ −→ v γ′′ . γ@(γ′′, γ′), where
3. γ′′ = (((nth3 (nth1 γ)) # γ′) # (sym (nth4 (nth1 γ)))) and
4. Γ c̀o γ : (∀ c:φ. τ) ∼ (∀ c′:φ′. τ ′),

then Γ t̀m v γ′′ . γ@(γ′′, γ′) : σ.

Proof. By inversion, we have

• Γ t̀m v . γ : ∀ c′:φ′. τ ′
• Γ t̀m v : ∀ c:φ. τ
• Γ c̀o γ

′ : φ′

• σ = τ ′[γ′/c′].

From these, we can show

• Γ c̀o nth
1 γ : φ ∼ φ′, by CT NTH1CA

• φ = (∼) κ1 κ2 σ1 σ2 and φ′ = (∼) κ′1 κ
′
2 σ
′
1 σ
′
2, by expanding

notation.
• Γ c̀o nth

3 (nth1 γ) : σ1 ∼ σ′1, by nth rule.
• Γ c̀o sym (nth4 (nth1 γ)) : σ′2 ∼ σ2, by symmetry and

nth.
• Γ c̀o γ

′′ : σ1 ∼ σ2, by definition of transitivity.
• Γ t̀m v γ′′ : τ [γ′′/c], by coercion instantiation.
• Γ c̀o γ@(γ′′, γ′) : τ [γ′′/c] ∼ τ ′[γ′/c′], by CT INSTC.

The final term has the desired type by casting.

C. Metatheory for Consistency
In this section, we show that good contexts are consistent contexts
following the plan laid out in Section 5. Recall the conditions of a
good context:

We have GoodΓ when the following conditions hold:

1. All coercion assumptions and axioms in Γ are of the form
C : ∀∆. (F τ ∼ τ ′) or of the form c: a ∼ τ .
In the first form, the arguments to the type function must behave
like patterns. For every well kinded ρ, every τi ∈ τ and every
τ ′i ∈ τ ′ such that Γ |= τi [ρ/∆] τ ′i , it must be τ ′i = τi [ρ′/∆]
for some ρ′ with Γ |= τm τ ′m for each τm ∈ ρ.

19 2012/7/10

2. There is no overlap between axioms and coercion assumptions.
For each a , there is at most one assumption of the form c: a ∼ τ
in the context. For each F ρ there exists at most one prefix ρ1 of
ρ such that there exist C , σ and Θ where Γ |= C Θ : (F ρ1 ∼
σ). This C is unique for every matching F τ1.

3. Axioms equate types of the same kind. For each C : ∀∆. (F τ ∼
τ ′) in Γ, the kinds of each side must match i.e. Γ,∆ |= F τ :
κ and Γ,∆ |= τ ′ : κ and that kind must not mention bindings
in the telescope, Γ |= κ : ?.

Showing that these conditions ensure that the context cannot
prove two value types equal requires a number of auxiliary lemmas.

Lemma C.1 (No free coercion variables in erased types). If Γ t̀y

τ : κ, then c#|τ |.

Proof. Proof is by inspection of the erasure function. All coercions
are removed from types.

Proof of Lemma 5.4 (Erasure is type preserving)

1. If ẁf Γ then |= |Γ|.
2. If Γ t̀y τ : κ then |Γ| |= |τ | : |κ|.
3. If Γ c̀o γ : φ then |Γ| |= |γ| : |φ|.
4. If Γ l̀c ∆! Θ then |Γ| |= |∆|! |Θ|.

Proof. By simultaneous induction on the length of the explicit
typing derivation. We present a few representative cases.

Case K CAST: Given rule:

Γ t̀y τ : κ1 Γ c̀o η : κ1 ∼ κ2 Γ t̀y κ2 : ?

Γ t̀y τ . η : κ2
K CAST

By induction, we have |Γ| |= |τ | : |κ1| and |Γ| |= |η| :
|κ1| ∼ |κ2| and |Γ| |= |κ2| : | ? |. By the rule IT CAST, we
have |Γ| |= |τ | : |κ2|. Finally, by definition of erasure, we
have |τ . η| = |τ |, and we are done.

Case K CAPP: Given rule:

Γ t̀y τ1 : ∀ c:φ. κ Γ c̀o γ1 : φ

Γ t̀y τ1 γ1 : κ[γ1/c]
K CAPP

By induction and definition of erasure, we have |Γ| |= |τ1| :
∀ c: |φ|. |κ|, and |Γ| |= |γ1| : |φ|. Hence, by rule IT CAPP,
we have |Γ| |= |τ1| • : |κ|, and by erasure |τ1 γ1| = |τ1| •.
Finally, we have |κ[γ/c]| = |κ|, as the erasure operation erases
all coercions within κ.

Case CT COH: Given rule:

Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ1 . γ
′ : κ

Γ c̀o γ . γ′ : τ1 . γ′ ∼ τ2
CT COH

By induction and erasure, we have |Γ| |= |γ| : |τ1| ∼ |τ2|.
But also by erasure, we have |γ .γ′| = |γ| and |τ1 .γ′ ∼ τ2| =
|τ1| ∼ |τ2|, so we are done.

Case CT CAPP: Given rule:

Γ c̀o γ1 : τ1 ∼ τ ′1
Γ t̀y τ1 γ2 : κ Γ t̀y τ

′
1 γ
′
2 : κ′

Γ c̀o γ1(γ2, γ′2) : τ1 γ2 ∼ τ ′1 γ′2
CT CAPP

By induction and definition of erasure, we have |Γ| |= |τ1| • :
|κ|, |Γ| |= |τ ′1| • : |κ′|, and |Γ| |= |γ| : |τ1| ∼ |τ ′1|. Hence,
by rule ICT CAPP, we have |Γ| |= |γ|(•, •) : |τ1| • ∼ |τ ′1| •,
and we are done by erasure.

Case CT ALLC: Given rule:

Γ c̀o η : φ1 ∼ φ2 c
•7→ (c1, c2)

c1 # |γ| c2 # |γ|
Γ, c1:φ1, c2:φ2 c̀o γ : τ1 ∼ τ2
Γ t̀y ∀ c1:φ1. τ1 : ? Γ t̀y ∀ c2:φ2. τ2 : ?

Γ c̀o ∀ c: η. γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
CT ALLC

By induction and definition of erasure, we have
• |Γ| |= |η| : |φ1| ∼ |φ2|,
• |Γ|, c1: |φ1|, c2: |φ2| |= |γ| : |τ1| ∼ |τ2|,
• |Γ| |= ∀ c1: |φ1|. |τ1| : ?, and
• |Γ| |= ∀ c2: |φ2|. |τ2| : ?.

Furthermore, the original rule restricted c1 and c2 from appear-
ing in |γ|. Hence by, ICT ALLC, we have |Γ| |= ∀ c: |η|. |γ| :
(∀ c1: |φ1|. |τ1|) ∼ (∀ c2: |φ2|. |τ2|) and we are done by era-
sure.

Lemma C.2 (Application). If GoodΓ and Γ |= σ1 ⇔ σ′1 and
Γ |= σ2 ⇔ σ′2 then Γ |= σ1 σ2 ⇔ σ′1 σ

′
2.

Proof. Let τ1 be a join point of σ1, σ
′
1, and τ2 a join point for

σ2, σ
′
2. By repeatedly applying rule TS APP and reflexivity of

rewriting, we find that τ1 τ2 is a join point for σ1 σ2 and σ′1 σ′2.

Lemma C.3 (Type function preservation). Suppose that C : ∀∆. (F τ ∼
τ ′) ∈ Γ, and GoodΓ. Now, suppose that Γ |= F ρ σ, where
ρ has length strictly smaller than the size of the telescope τ . Then,
σ = F ρ′, such that Γ |= ρ ρ′.

Proof. By induction on the length of the telescope ρ. The base case
is trivial. For the induction step, note that the rule that applies in the
given reduction cannot be TS RED, as there aren’t enough terms
in the telescope to reduce. Thus, it must be TS APP that applies.
Therefore, if ρ = ρ′, σ′, then Γ |= F ρ′ σ′, and Γ |= σ′ σ′′.
By induction, σ′ = F ρ′′, and by rule TS CONS, Γ |= ρ ρ′′, σ′′

as desired.

Proof of Theorem 5.6 (Local diamond property) If GoodΓ,
Γ |= σ σ1, and Γ |= σ σ2 then there exists a σ3 such
that Γ |= σ1 σ3 and Γ |= σ2 σ3.

Proof. Induction on lengths of the two step derivations with a case
analysis on the last rule used in each.

The overlapping cases are TS REFL and anything else,
TS APP-TS RED (and symmetric), and all instances with the
same final rule on both sides. The reflexivity overlaps are trivial. All
other pairs of rules apply to types with different head forms. Of the
same-same overlaps, most follow by induction. (We demonstrate
an example of this pattern with case TS APP-TS APP below.) The
exception is TS RED-TS RED and TS VARRED-TS VARRED
which are both deterministic. Below, we complete the proof with
the TS APP-TS RED case.

case TS APP-TS APP Concretely, we have a type τ σ with reduc-
tions:

Γ |= τ σ τ ′ σ′, Γ |= τ σ τ ′′ σ′′

Now, we can deduce:

Γ |= σ σ′, Γ |= σ σ′′

So by induction, we can find σ′′′ that is a common reduct. We
also know

Γ |= τ τ ′, Γ |= τ τ ′′

20 2012/7/10

So, also by induction, we can find τ ′′′ that is a common reduct
of the two. Hence, by TS TAPP,

Γ |= τ ′ σ′ τ ′′′ σ′′′ Γ |= τ ′′ σ′′ τ ′′′ σ′′′

case TS RED-TS APP Concretely, we have a type F ρ, with re-
ductions:

Γ |= (F ρ) σ1, Γ |= (F ρ) σ′2 σ
′

where the first reduction is a type function reduction. Now
note that, since context is good, type functions axioms are non-
overlapping. Now say that ρ = ρ0, σ We have by inversion,
Γ |= F ρ0 σ′2. By Lemma C.3, we have that σ′2 = F ρ′0,
such that Γ |= ρ0 ρ′0, and so that Γ |= ρ0, σ ρ′0, σ

′.
We have that if the coercion for F is C : ∀∆. (F τ ∼ τ ′), then
we have ρ0, σ = τ [ρ1/∆], and now by the second condition of
good contexts, we have a ρ′1, such that

ρ′0, σ
′ = τ [ρ′1/∆] Γ |= ρ1 ρ′1

In which case we have a reduction Γ |= F ρ′0 σ
′ τ ′[ρ′1/∆].

But, by an extension of Lemma C.5 for telescopes, we have that

σ1 = τ ′[ρ1/∆] Γ |= σ1 τ ′[ρ′1/∆]

as desired.
case TS RED-TS RED Concretely, we have a type F σ1 σ2,

which can also be written as F σ3 σ4, such that we have re-
ductions:

Γ |= F σ σ′, Γ |= F σ σ′′

But since good contexts have non-overlapping axioms, we have
that only one axiom applies. Hence, we are done: σ′ = σ′′.

Lemma C.4 (Transitivity of Rewriting). If GoodΓ and Γ |=
σ1 ⇔ σ2 and Γ |= σ2 ⇔ σ3, then Γ |= σ1 ⇔ σ3.

Proof. Appeal to the local diamond property. Suppose σ12 is a join
point for σ1, σ2 and σ23 is a join point for σ2, σ3. By 5.6, there is a
join point σ0 for σ12, σ23, and hence is a join point for σ1, σ3.

Lemma C.5 (Single Step Substitution). If GoodΓ and Γ |= τ
τ ′ then for a free in σ and σ implicitly well-typed under Γ, we have
Γ |= σ[τ/a] σ[τ ′/a].

Proof Sketch. By induction on the form of σ. For example, if σ is
of the form ∀ a: κ. σ, by induction, we have that Γ |= σ[τ/a ′]
σ[τ ′/a ′], for a 6= a′. Hence, by rule TS ALLT, we have that
Γ |= (∀ a:κ. σ)[τ/a ′] (∀ a:κ. σ)[τ/a ′].

Lemma C.6 (Multistep Substitution). If GoodΓ and Γ |= τ ∗

τ ′ then for a free in σ and σ implicitly well-typed under Γ, we have
Γ |= σ[τ/a] ∗ σ[τ ′/a].

Proof. By induction on the length of Γ |= τ ∗ τ ′. The base case
is trivial. The induction case uses Lemma C.5.

Lemma C.7 (Single Step Substitution 2). If GoodΓ and Γ |=
σ σ′, then for a free in σ, σ′, we have Γ |= σ[τ/a] σ′[τ/a]

Proof Sketch. By induction on Γ |= σ σ′. For example, for rule

C : ∀∆. (F τ ∼ τ ′) ∈ Γ

σ1 = τ [ρ/∆] σ′1 = τ ′[ρ/∆]

Γ |= F σ1 σ′1
TS RED

Suppose we want to substitute τ ′′ for a free. Thus, we would
continue to have σ1[τ ′′/a] = τ [ρ/∆][τ ′′/a] and σ2[τ ′′/a] =
(τ ′[ρ/∆][τ ′′/a]), so we conclude

Γ |= (F σ1 σ2)[τ ′′/a] (τ ′ σ2)[τ ′′/a]

Proof of Lemma 5.7 (Substitution) If GoodΓ, Γ |= σ ∗ σ′,
and Γ |= τ ∗ τ ′, then if a appears free in σ and σ′, we have
Γ |= σ[τ/a]⇔ σ′[τ ′/a].

Proof. Induction on the length of reduction Γ |= σ ∗ σ′.
The base case is Lemma C.6, while the induction step is first by
Lemma C.6, and then by Lemma C.7 along with Lemma C.4.

Corollary C.8 (Joinability substitution). If GoodΓ, Γ |= σ ⇔
σ′, Γ |= τ ⇔ τ ′, then if a appears free in σ and σ′, then we have
Γ |= σ[τ/a]⇔ σ′[τ ′/a].

Proof. By induction on the lengths of the derivations. The base
case is trivial. For the induction step, we can use the induction
hypothesis, combined with Lemma 5.7.

Lemma C.9 (Joinability strengthening). If GoodΓ and Γ, a:κ |=
τ1 ⇔ τ2, then Γ |= τ1 ⇔ τ2.

Proof. By inspection on the rewrite relation. The rewrite relation
does not depend on any type bindings in the context, only axioms.

We need a lemma to deal with the kind γ construct. Essentially,
this lemma states that we don’t need the kind γ construct (it is
already internalized in our system).

Lemma C.10 (Admissibility of kind). Suppose we have a deriva-
tion Γ |= γ : σ1 ∼ σ2, such that Γ |= τ1 : κ1 and Γ |= τ2 : κ2

and fcv(γ) ⊆ dom Γ′ for some subcontext Γ′ satisfying GoodΓ′.
Then, there exists a derivation Γ |= η : κ1 ∼ κ2 at strictly lower
height, for some η, such that fcv(η) ⊆ dom Γ′.

Proof Sketch. By induction on the derivation Γ |= γ : τ1 ∼ τ2.
Most cases are straightforward. We consider two here.

Case ICT TRANS: Given rule:
Γ |= γ1 : τ1 ∼ τ2 Γ |= γ2 : τ2 ∼ τ3

Γ |= γ1 # γ2 : τ1 ∼ τ3
ICT TRANS

Note that the free coercion variables of γ1 # γ2 lie in a good
context, so the same is true of γ1 and γ2. Hence, by induction,
we are able to find derivations of Γ,Γ′ |= η1 : κ1 ∼ κ2 and
Γ,Γ′ |= η2 : κ2 ∼ κ3 that conclude strictly above the premise
of this rule, satisfying the required freshness condition. Now, by
ICT TRANS, we are able to create a proof Γ |= η1 #η2 : κ1 ∼
κ3 at height strictly above the conclusion, and we are done.

Case ICT VARAX: Given rule:
C : ∀∆. (τ1 ∼ τ2) ∈ Γ Γ |= ∆! Θ

Γ |= C Θ : Θ1(τ1) ∼ Θ2(τ2)
ICT VARAX

Note that the free coercion variables of CΘ lie in a good
context, so the same is true of C and Θ. Thus, the axiom lies
in a good subcontext. By definition of GoodΓ′, we have that
both sides are kind κ for a closed kind. Hence, simply 〈κ〉
suffices. This derivation requires total height 2, and so works
as long as Γ |= ∆ ! Θ is of height at least 2, which is true
by the rules defining the judgement. Evidently, as the coercion
doesn’t mention any coercion variables, the freshness condition
is satisfied as well.

21 2012/7/10

Lemma C.11 (Nth joinability). Suppose that Γ |= H ρ ⇔ H ρ′,
and GoodΓ. Then, Γ |= ρi ⇔ ρ′i .

Proof. By induction on the length of the telescopes (by inversion,
both have the same length). The base case is trivial. For induction,
note that H ρ,H ρ′ must both step by TS APP. Hence, by the form
of that rewrite rule, say that ρ = ρ0, ρ0 and ρ′ = ρ′0, ρ

′
0, and the

length of the telescopes are preserved. So, Γ |= ρ0 ⇔ ρ′0, and
we want the last element in the telescope, we are done. Otherwise,
Γ |= H ρ0 ⇔ H ρ′0. By induction, we have the result.

From these lemmas we see that joinability is complete.
Proof of Theorem 5.8 (Completeness)

1. Suppose that Γ |= γ : σ1 ∼ σ2, and fcv(γ) ⊆ dom Γ′ for
some subcontext Γ′ satisfying GoodΓ′. Then Γ |= σ1 ⇔ σ2.

2. Suppose that Γ |= ∆ ! Θ, and fcv(Θ) ⊆ dom Γ′ for
some subcontext Γ′ satisfying GoodΓ′. Then for each a:κ 7→
(τ1, τ2, γ) ∈ Θ, we have Γ ` τ1 ⇔ τ2.

Proof. By joint induction on the structures of Γ |= γ : σ1 ∼ σ2,
and Γ |= ∆! Θ.

Case ICT CAPP: We have rule:
Γ |= γ : τ ∼ τ ′
Γ |= τ • : κ Γ |= τ ′ • : κ′

Γ |= γ(•, •) : τ • ∼ τ ′ • ICT CAPP

Note that the free coercion variables of γ(•, •) lie in a good
context, so the same is true of γ. Hence, by induction, Γ |=
τ ⇔ τ ′. Then, by Lemma C.2, we are done.

Case ICT ALLC:
Γ |= η : φ1 ∼ φ2 c

•7→ (c1, c2)
c1 # γ c2 # γ
Γ, c1:φ1, c2:φ2 |= γ : τ1 ∼ τ2
Γ |= ∀ c1:φ1. τ1 : ? Γ |= ∀ c2:φ2. τ2 : ?

Γ |= ∀ c: η. γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
ICT ALLC

Note that the free coercion variables of ∀ c: η. γ lie in a good
context, so the same is true of γ and η. Hence, by induction,
there is a join point φ for φ1, φ2. Also by induction, there is a
join point τ for τ1, τ2. By rule TS ALLC, we have that

Γ |= ∀ c1:φ1. τ1
∗ ∀ c1:φ. τ

and
Γ |= ∀ c2:φ2. τ2

∗ ∀ c2:φ. τ
and hence they are joinable.

Case ICT INST:
Γ |= γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
Γ |= γ2 : σ1 ∼ σ2

Γ |= σ1 : κ1 Γ |= σ2 : κ2

Γ |= γ1@γ2 : τ1[σ1/a1] ∼ τ2[σ2/a2]
ICT INST

Note that the free coercion variables of γ@γ′ lie in a good
context, so the same is true of γ and γ. Hence, by induction,
Γ |= σ1 ⇔ σ2, and Γ |= (∀ a1: κ1. τ1) ⇔ (∀ a2: κ2. τ2).
Now, by inversion on the step relation for quantified types, we
find that Γ |= τ1 ⇔ τ2. Hence, by substitution (Lemma 5.7)
and transitivity (Lemma C.4), we have that Γ |= τ1[σ1/a1] ⇔
τ2[σ2/a2], as desired.

Case ICT INSTC:
Γ |= γ : (∀ c:σ1 ∼ σ2. τ) ∼ (∀ c′:σ′1 ∼ σ′2. τ ′)
Γ |= γ1 : σ1 ∼ σ2 Γ |= γ2 : σ′1 ∼ σ′2

Γ |= γ@(•, •) : τ ∼ τ ′ ICT INSTC

Note that the free coercion variables of γ@(•, •) lie in a good
context, so the same is true of γ. Hence, by induction, Γ |=
(∀ c: σ1 ∼ σ2. τ) ⇔ (∀ c: σ′1 ∼ σ′2. τ

′). Now, by inversion
on the step relation for quantified types, we find that Γ |=
τ ⇔ τ ′. Hence, by substitution (Lemma 5.7) and transitivity
(Lemma C.4), we have that Γ |= τ ⇔ τ ′, as desired (τ, τ ′ have
no free coercion variables) .

Case ICT REFL: Trivial.
Case ICT SYM: Trivial.
Case ICT TRANS: Follows from Lemma C.4.
Case ICT APP: Follows from Lemma C.2.
Case ICT ALLT:

Γ |= η : κ1 ∼ κ2 a
•7→ (a1, a2, c)

Γ, a1:κ1, a2:κ2, c: a1 ∼ a2 |= γ : τ1 ∼ τ2
Γ |= ∀ a1:κ1. τ1 : ? Γ |= ∀ a2:κ2. τ2 : ?

Γ |= ∀ a: η. γ : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
ICT ALLT

Note that the free coercion variables of ∀ a: η. γ lie in a good
context, so the same is true of γ since c: a1 ∼ a2 is a good
assumption that doesn’t overlap with the previous axioms, as
the variables a1, a2 are fresh. Hence, by induction, we have
Γ, a1: κ1, a2: κ2, c: a1 ∼ a2 |= τ1 ⇔ τ2, which we can
strengthen to Γ, c: a1 ∼ a2 |= τ1 ⇔ τ2, by Lemma C.9. Also
by induction, we have Γ |= κ1 ⇔ κ2, which allows us to finish
the rule by TS ALLT.

Case ICT VAR: Trivial, all assumptions are rewrite rules in good
contexts. Note that c must be a good assumption in the context.

Case ICT VARAX: We have the rule:
C : ∀∆. (τ1 ∼ τ2) ∈ Γ Γ |= ∆! Θ

Γ |= C Θ : Θ1(τ1) ∼ Θ2(τ2)
ICT VARAX

Note that the free coercion variables of CΘ lie in a good con-
text, so the same is true of C and Θ. Hence, we may apply
the induction hypothesis. Note that Θ1(τ), Θ2(τ) are both sub-
stitutions, by definition. Further, note that by the induction hy-
pothesis, we have that for every free variable a that is substi-
tuted for, with binding a: κ 7→ (σ1, σ2, γ) in Θ, we have that
Γ |= σ1 ⇔ σ2. Hence, we can make the substitutions one by
one, and using Corollary C.8 repeatedly, we have the desired
result.

Case ICT NTH: We have the rule:
Γ |= γ : H τ ∼ H τ ′

Γ |= nthi γ : τi ∼ τ ′i
ICT NTH

Note that the free coercion variables of nthi γ lie in a good
context, so the same is true of γ. Hence, by induction, then
Lemma C.11, we are done.

Case ICT NTH1TA: We have rule:
Γ |= γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)

Γ |= nth1 γ1 : κ1 ∼ κ2

ICT NTH1TA

Note that the free coercion variables of nth1 γ1 lie in a good
context, so the same is true of γ1. Hence, by induction on γ1,
the two quantified types have a join point. By inversion on the
rewrite relation, both sides must step via TS ALLT. Hence, we
can find a join point for the kinds, and Γ |= κ1 ⇔ κ2 as desired.

Case ICT NTH1CA: We have rule:
Γ |= γ : (∀ c:φ. τ) ∼ (∀ c′:φ′. τ ′)

Γ |= nth1 γ : φ ∼ φ′
ICT NTH1CA

Virtually identical to the previous case.
Case ICT EXT: We have rule:

Γ |= γ : τ1 ∼ τ2 Γ |= τ1 : κ2 Γ |= τ2 : κ2

Γ |= kind γ : κ1 ∼ κ2
ICT EXT

22 2012/7/10

By the admissibility of kind γ (Lemma C.10) we can construct
a derivation of Γ |= η : κ1 ∼ κ2 at strictly smaller height
that proves the same equality, such that η has free variables in a
good context. Then, we are done by induction.

For the derivation Γ |= ∆′! Θ′, there are two cases. Suppose
we want to show that for a0: κ0 7→ (τ1, τ2, γ) ∈ Θ, we have
Γ |= τ1 ⇔ τ2.

Case IL TY: We have rule:
Γ |= ∆! Θ
Γ |= σ1 : Θ1(κ)
Γ |= σ2 : Θ2(κ)
Γ |= γ : σ1 ∼ σ2

Γ |= (∆, a:κ)! (Θ, a:κ 7→ (σ1, σ2, γ))
IL TY

Note that the free coercion variables of Θ lie in a good context.
Now, case on whether a0 = a or not. If so, we are done by
induction on the coercion Γ |= γ : τ1 ∼ τ2. If not, by
induction on the judgement Γ,Γ′ |= ∆! Θ, we are done.

Case IL CO: Since we are only interested in the type bindings, we
are done by induction.

23 2012/7/10

