
TALx86: A Realistic Typed Assembly Language∗

Greg Morrisett Karl Crary† Neal Glew Dan Grossman Richard Samuels
Frederick Smith David Walker Stephanie Weirich Steve Zdancewic

Cornell University

Abstract

The goal of typed assembly language (TAL) is to pro-
vide a low-level, statically typed target language that
is better suited than Java bytecodes for supporting
a wide variety of source languages and a number of
important optimizations. In previous work, we for-
malized idealized versions of TAL and proved impor-
tant safety properties about them. In this paper, we
present our progress in defining and implementing a
realistic typed assembly language called TALx86. The
TALx86 instructions comprise a relatively complete
fragment of the Intel IA32 (32-bit 80x86 flat model)
assembly language and are thus executable on pro-
cessors such as the Intel Pentium. The type system
for the language incorporates a number of advanced
features necessary for safely compiling large programs
to good code.

To motivate the design of the type system, we
demonstrate how various high-level language features
are compiled to TALx86. For this purpose, we present
a type-safe C-like language called Popcorn.

1 Introduction

The ability to type-check low-level or object code,
such as Java Virtual Machine Language (JVML)
bytecodes [10], allows an extensible system to ver-
ify the preservation of an important class of safety
properties when untrusted code is added to the sys-
tem. For example, a web browser can check memory
safety to ensure that applets do not corrupt arbitrary
data. Indeed, the entire JDK 1.2 security model de-
pends crucially on the ability of the JVML type sys-
tem to prevent untrusted code from by-passing run-
time checks that are needed to enforce the high-level

∗This material is based on work supported in part by the
AFOSR grant F49620-97-1-0013, ARPA/RADC grant F30602-
1-0317, NSF grant CCR-9708915, and National Science Foun-
dation Graduate Fellowships. Any opinions, findings, and con-
clusions or recommendations expressed in this publication are
those of the authors and do not reflect the views of these agen-
cies.

†Carnegie Mellon University

security policy.
To support portability and type-checking, the

JVML was defined at a relatively high level of ab-
straction as a stack-based abstract machine. The
language was engineered to make type-checking rela-
tively easy. However, the JVML design suffers from
a number of drawbacks:

1. Semantic errors have been uncovered in the
JVML verifier and its English specification.
Much recent work [1, 16, 18] has concentrated
on constructing an ex post facto formal model
of the language so that a type-soundness theo-
rem can be proven. A by-product of this work
is that we now know the design could have been
considerably improved had a formal model been
constructed in conjunction with the design pro-
cess.

2. It is difficult (or, at the least, inefficient) to
compile high-level languages other than Java to
JVML. For instance, approaches for compiling
languages with parametric polymorphism have
generally involved either code replication [2] or
run-time type checks [14]. This has even con-
strained extensions to Java itself [17]. As an-
other example, definitions of languages such as
Scheme [8] dictate that tail calls be implemented
in a space-efficient manner. However, the lim-
itations of JVML necessitate that control-flow
stacks for such languages be explicitly encoded
as heap-allocated objects.

3. Although the JVML was designed for ease of
interpretation, in practice, just-in-time (JIT)
compilers are used to achieve acceptable perfor-
mance. Since the JIT translation to native code
happens after verification, an error in the com-
piler can introduce a security hole. Further-
more, the need for rapid compilation limits the
quality of code that a JIT compiler produces.

To address these concerns, we have been studying
the design and implementation of type systems for

1

machine languages. The goal of our work is to iden-
tify typing abstractions that have general utility for
encoding a variety of high-level language constructs
and security policies, but that do not interfere with
optimization. Such abstractions are necessary even
in very expressive contexts such as proof-carrying-
code [15].

In previous work [13, 12], we presented a stat-
ically typed, RISC-based assembly language called
TAL, showed that a simple functional language could
be compiled to TAL, and proved that the type sys-
tem for TAL was sound: well-typed assembly pro-
grams could not violate the primitive typing abstrac-
tions. In later work, we described various extensions
to support stack-allocation of activation records (and
other data) [11] and separate type-checking and link-
checking of object files [6]. The languages described
were extremely simple so as to keep the formalism
manageable.

In this paper, we informally describe TALx86,
a statically typed variant of the Intel IA32 (32-bit
80x86 flat model) assembly language. The TALx86
type system is considerably more advanced than the
type systems we have described previously. In addi-
tion to providing support for stack-allocation, sepa-
rate type-checking and linking, and a number of ba-
sic type constructors (e.g., records, tagged unions,
arrays, etc.), the type system supports higher-order
and recursive type constructors, arbitrary data repre-
sentation, and a rich kind structure that allows poly-
morphism for different “kinds” of types.

To demonstrate the utility of these features, we also
describe a high-level language called Popcorn and a
compiler that maps Popcorn to TALx86. Popcorn is a
safe C-based language that provides support for first-
class polymorphism, abstract types, tagged unions,
exceptions, and a simple module system. Ultimately,
Popcorn will support other C-like features such as
stack-allocated data and “flattened” data structures.

We begin by giving a brief overview of the process
of compiling a Popcorn program to TALx86, verify-
ing the output of the compiler, and creating an exe-
cutable. We then discuss the salient details of Pop-
corn. Finally, we present the TALx86 type system
by showing how Popcorn programs can be translated
to type-correct TALx86 code. We close by discussing
planned extensions.

The current software release for TALx86 and Pop-
corn is available at http://www.cs.cornell.edu/
talc.

2 TALx86 Tools

This section describes how the TALx86 tools (listed
in Table 1) are used together to develop safe native
programs. As a running example, we assume the Pop-
corn source for an application is in two files, foo.pop
and main.pop.

First Popcorn compiles each file separately. If
there are no syntax or type errors, then six new files
are generated: foo.tal, foo i.tali, foo e.tali,
main.tal, main i.tali, and main e.tali. The
.tal files contain IA32 assembly language with type
annotations, as described in Section 4. A .tal file
also records what values it imports and exports by
listing typed interface files. Any extern declara-
tions are compiled into the corresponding import in-
terface file (i.tali). Non-static types and values
are compiled into the corresponding export interface
file (e.tali).

Next we can run the TALx86 type-checker (called
talc) on foo.tal and main.tal separately. This
step verifies that the TALx86 code is type-safe, given
the context implied by the corresponding import file.
If the Popcorn compiler is implemented correctly,
type-checking the individual .tal files that it pro-
duces will never fail. By running talc, however, we
are no longer assuming that the Popcorn compiler
produces safe code.

The link-verifier checks that multiple .tal files
make consistent assumptions about the values and
types they share. Popcorn code may fail to link-
check, just as traditional object files may fail to
link, due to missing or multiple definitions. Un-
like a traditional linker, the link-verifier also checks
that files agree on the types of all shared values.
Link-verification guarantees that several .tal files
are type-safe after being linked together. See Glew
and Morrisett [6] for the technical details.

The .tal files can be assembled and linked with
traditional tools. They are compatible with MASM
(Microsoft’s Macro Assembler) except that MASM
fails on long lines. We have developed an assembler
without this deficiency.

Finally, to produce a stand-alone executable some
additional trusted files are linked. One component is
the Boehm-Demers-Weiser conservative garbage col-
lector [3] which is responsible for memory manage-
ment. There is also a small runtime environment that
provides essential features such as I/O. Although the
runtime cannot be written in TALx86, the types of its
values can, so the runtime is revealed to applications
via a typed interface file.

We have described the build cycle for an executable
in detail. In practice, the tools compose these steps

2

TALx86 tools
talc Type-checks a TALx86 file.
link-verifier Verifies that linking a set of TALx86 files together is safe.
assembler Assembles a TALx86 file to produce a COFF or ELF object file.
popcorn Compiles Popcorn to TALx86.
scheme Compiles a small subset of Scheme to TALx86. Written in Popcorn.

Table 1: Components of the TALx86 implementation

by default, providing the programmer a build inter-
face similar to those in traditional, unsafe systems.

Although Popcorn is the only “serious” compiler
targeting TALx86 at this time, TALx86 is not specifi-
cally designed for Popcorn. In fact, we have written
a compiler for a small part of Scheme, thus demon-
strating the feasibility of compiling a higher-order,
dynamically typed language.

3 Popcorn

In this section, we briefly summarize the features of
Popcorn. This discussion provides a starting point
for the following section on compiling to TALx86.

The language purposely looks like C [9], but un-
safe features, such as pointer arithmetic, the address
operator, and pointer casts, are missing. Compiling
these features safely would impose a significant per-
formance penalty on all Popcorn code. Popcorn does
have several advanced features not in C such as ex-
ceptions and parametric polymorphism. It does not
have objects for reasons discussed in the Future Work
section. In addition, we avoid various Java-style se-
mantic decisions for efficiency reasons. For exam-
ple, compiling Java correctly requires run-time type
checks on array updates, and its precise exception
semantics prevents some standard optimizations.

3.1 Control Flow

The basic control constructs of Popcorn, such as if,
while, for, do, break, and continue, are identical
to those in C except that test expressions must have
type bool.1

Popcorn’s switch construct differs from C in that
execution never “falls through” cases. Furthermore,
a default case is required unless the other cases are
exhaustive. The argument of a switch test expression
can be an int, char, union, or exception. For exam-
ple, we could find the first occurrence of the character
’a’ in an array:

1The result type of relational and logical operators is bool.

int i = 0, answer;
while (true)
switch arr[i] {
case ’a’: answer = i;

break; // break from while
default: i++;

}
Array subscripts are bounds-checked at run time (see
Section 4.4); the above example will exit immediately
if arr does not contain an ’a’.

Exceptions may have different types and exception
handlers may switch on the name of an exception, as
in Java. However, exception names are not hierarchi-
cal.

3.2 Data

Currently, the simple types of Popcorn are bool,
char, short, int, string, and unsigned variants of
the numeric types. We intend to add floating point
numbers and long integers soon. Unlike C, strings
are not null-terminated. Arrays carry their size to
support bounds-checks. A special size construct re-
trieves the size of an array or string.

Popcorn also has tuples which are useful for encod-
ing anonymous structures and multiple return values.
The new construct creates a new tuple (as well as new
struct and union values). For example, the follow-
ing code performs component-wise doubling of a pair
of ints:

*(int,int) x = new (3, 4);
*(int,int) dbl = new (x.1+x.1, x.2+x.2);

Popcorn has two kinds of structure definitions:
struct and ?struct. They resemble struct * in
C. The difference between struct and ?struct is
that values of types defined with struct cannot be
null, which is a primitive construct in the language.
Values of types defined with ?struct are checked for
null on field access; failure causes the program to exit
immediately.

Unions in Popcorn are more like ML datatypes
than C unions. Each variant consists of a tag and
an associated type (possibly void). For example,

3

union tree
{void Leaf; int Numleaf; *(tree,tree)Node};
Any value of a union type is in a particular variant,
as determined by its tag, and may not be treated
otherwise. We use switch to determine the variant
of an expression and bind the corresponding value to
a variable. Continuing our example, we can write:

int sum(tree e) {
switch e {
case Leaf: return 0;
case Numleaf(x): return x;
case Node(x): return sum(x.1)+sum(x.2);

}
}

3.3 Parametric Polymorphism

Popcorn function, struct, ?struct, and union dec-
larations may all be parameterized over types. For
example, we can define lists as:

?struct <’a>list {’a hd; <’a>list tl;}
To declare that a variable x holds a list of ints, we

instantiate the type parameter: <int>list x. Ex-
plicit type instantiation on expressions is not nec-
essary; for example, new list(3,null) has type
<int>list. Having polymorphic functions means we
can write a length function that works on any type of
list. Polymorphism is particularly useful with func-
tion pointers. For example, we can write a map func-
tion:

<’b>list map(’b f(’a), <’a>list l) {
if (l == null) return null;
return new list(f(l.hd), map(f, l.tl));

}
A call to this function could look like:

<int>list x;
...
<string>list y = map(int_to_string, x);

4 An Overview of TALx86

In this section, we give an overview of the features
found in TALx86 and describe via example how those
features may be used. In particular, we show how
Popcorn code may be compiled to well-typed TALx86.

TALx86 uses the syntax of MASM for instructions
and data, and augments it with syntax for type an-
notations necessary for verification. The type anno-
tations can be broken into the following classes:

1. Import and export interface information – used
for separately type-checking object files.

2. Type constructor declarations – used to declare
new types and type abbreviations.

3. Typing preconditions on code labels – used to
specify the types that registers must have before
control may enter the associated code.

4. Types on data labels – used to specify the type
of a static data item.

5. Typing coercions on instruction operands – used
to coerce values of one type to another.

6. Macro instructions – used to encapsulate small
instruction sequences so that the type-checker
treats the sequence as an atomic action.

The most important of these are the typing precon-
ditions on code labels (3). These annotations are of
the general form:

∀α1:κ1 · · ·αm:κm.{r1:τ1, · · · , rn:τn}

and are used by the type-checker to ensure that, if
control is ever transferred to the corresponding label,
then registers r1 through rn will contain values of
types τ1 through τn respectively. The bound type
variables, α1,. . .,αm, allow the types on the regis-
ters to be polymorphic. One must explicitly instanti-
ate a polymorphic precondition before control can be
transferred to the corresponding label. As we will see,
TALx86 supports different “kinds” of types. Conse-
quently, each type-variable is explicitly labeled with
a kind κ so that we may check that only appropriate
types are used to instantiate the bound type vari-
ables.

Given a typing precondition for a code label, the
type-checker verifies that the instructions in the asso-
ciated code block are type-correct under the assump-
tions that α1, · · · , αm are abstract types, and that ri

has type τi. By treating the type variables as ab-
stract types, we ensure that the code will be type-
correct for any appropriate instantiation.

In the rest of this section, we assume that the syn-
tax and semantics of MASM instructions and data
will be apparent, and focus our attention on the typ-
ing annotations and abstractions. We show how var-
ious high-level features from Popcorn may be com-
piled to TALx86. Due to space limitations, we omit
discussion of many TALx86 features, including excep-
tions, static data, higher-order types, and interfaces.

4

4.1 Basics

Our first example uses a loop to calculate the sum of
the first n natural numbers:

int i = n+1;
int s = 0;
while(--i > 0)

s += i;

We could translate the above fragment to the fol-
lowing TALx86 code, assuming n is initially in register
ecx:

mov eax,ecx ; i = n
inc eax ; ++i
mov ebx,0 ; s = 0
jmp test

body: {eax: B4, ebx: B4}
add ebx,eax ; s += i

test: {eax: B4, ebx: B4}
dec eax ; --i;
cmp eax,0 ; i > 0
jg body

In this example, the label preconditions say the
same thing: “control transfer to this code cannot oc-
cur unless registers eax and ebx have B4 values (4-
byte integers) in them.” The type-checker uses these
constraints to check that the operands to each in-
struction in each block are safe.

Assume for our example that we know ecx initially
contains a B4. Then after the first instruction, eax
also has a B4. The increment is therefore legal; it is
not legal to increment pointers. The third instruction
puts a B4 in ebx. Hence the verifier is assured that the
precondition for jumping to the test label is satisfied.
The test label requires a B4 in ebx even though it
does not use the value because it transfers control to
body which does use it.

Now consider writing a function:

int sum(int n) {
// previous example is the body
return s;

}
Of course, the function must have some way to

return to the caller. Assume for the moment that
the caller places the return address in register ebp.
In the code below, the typing precondition assumes
that ecx contains a 4-byte integer and ebp contains
a code label with its own precondition. In particular,
the type annotation ebp: {eax: B4} should be read,
“ebp contains a pointer to code that expects a B4 in
eax.”

sum: {ecx: B4, ebp: {eax: B4}}
<as above>

body: {eax: B4, ebx: B4, ebp: {eax: B4}}
<as above>

test: {eax: B4, ebx: B4, ebp: {eax: B4}}
dec eax ; --i;
cmp eax,0 ; i > 0
jg body ; if so, goto body
mov eax,ebx ; otherwise,
jmp ebp ; return s

The final jmp verifies because eax contains a B4.
(Notice it would verify even without the preceding
mov instruction; type soundness does not guarantee
algorithmic correctness.) The type on the sum label
describes a non-standard calling convention with the
argument in ecx, the return address in ebp, and the
result in eax. Such calling conventions are typically
used for leaf procedures in an optimizing compiler.
One way to “call” sum is to use jmp.

mov ebp,after
mov ecx,10
jmp sum

after: {eax: B4}
<code that uses result>

The code explicitly moves the return address
(after) into ebp, moves the integer argument into
ecx, and then jumps to sum. The jump type-checks
because the precondition on sum requires an integer
in ecx and a return address in ebp that expects an
integer in eax.

4.2 Stacks and Function Calls

To support richer and more realistic calling conven-
tions, TALx86 has a control-flow stack abstraction
and stack types. The following examples demonstrate
how these types are used. For a theoretical discus-
sion, see Morrisett et al [11].

The standard C calling convention on Win32 re-
quires that the return address be placed on top of
the stack,2 followed by the arguments. Before return-
ing, a function pops the return address. The caller is
responsible for popping the arguments.3

TALx86 describes the shape of the stack as a list of
types, where se represents an empty stack and if σ
is a stack type, then τ ::σ is the type that describes
stacks where the top-most element has type τ and
the rest of the stack is described by σ. For example,

2Stacks “grow” towards lower addresses; the “top” is the
lowest address.

3Also, ebp is callee-save; we will incorporate this shortly.

5

{eax: B4}::B4::B4::se
is the type of a stack with three elements: a return
address expecting a B4 in eax and then two B4 values.
If a register points to a stack (as esp generally does),
we write esp: sptr σ where σ is a stack type.

If we give our sum function the type {esp: sptr
{eax: B4}::B4::se}, then we can only call sum
when the stack contains exactly the return address
and the argument. Clearly we would like calls to sum
to type-check regardless of the depth of the stack. To
overcome this problem, TALx86 supports stack poly-
morphism to abstract portions of the stack. For ex-
ample, we could assign sum the type:

∀ρ:Ts.
{esp: sptr{eax: B4, esp: sptr B4::ρ}::B4::ρ}
which says, “for any stack shape ρ, sum can be called
whenever esp contains a pointer to a stack with a
suitable return address, followed by an integer, fol-
lowed by a stack with shape ρ.” The code associated
with sum is verified treating ρ as an abstract type.

Notice that if sum returns by jumping to the given
return address, the stack must have the same shape
as on input except without the return address. In-
deed, a much stronger property holds since sum is
type-checked holding ρ abstract: The input stack cor-
responding to ρ will remain unmodified throughout
the lifetime of the procedure [4]. Hence, a caller is
assured that sum will not read or modify the caller’s
local data (or that of its caller, etc.).

Returning to our example, mov eax,ecx at the be-
ginning of sum would now become, mov eax,[esp+4]
so as to load the integer argument from the stack
into eax. The final jmp would be replaced with retn,
which pops the return address and then jumps to it.
A call to sum must now have an additional annotation
that instantiates ρ with the actual stack type (not in-
cluding the input argument, which is not part of ρ).
A simple example is:

main: {esp: se}
push 42 ; hidden on stack
push 10 ; input argument
call tapp(sum, <B4::se>)

after:
<code after>

The call instruction pushes the return address
(after) before jumping, and the tapp instantiates
ρ with B4::se.

Usually a call will occur in a context where part of
the stack is already abstract, so the instantiation of
ρ will use a stack variable in scope at the call site.
Indeed, ρ can be instantiated with a stack type con-
taining ρ! In this respect, TALx86 supports a form of

polymorphic recursion. For example, Figure 1 shows
a recursive implementation of sum. The recursive call
says that the stack now has one more B4 and return
address on it.

We can also use polymorphism to encode callee-
save registers into the calling convention. To force
sum to preserve the value in ebp, we require that ebp
has a value of distinct abstract type α on entry and
exit. We would write:

∀α:T4 ρ:Ts.
{ebp: α, esp: sptr{ebp: α, ...}, ...}

where T4 means that α can be any 4-byte type. A call
would now have to instantiate α and ρ appropriately.

TALx86 supports addition of constants to stack
pointers, and values may be written into arbitrary
non-abstract stack slots. Thus, it is not necessary to
replace a value on the stack via a sequence of pushes
and pops; the element can be directly overwritten.

Additional constructs in the stack-typing discipline
of TALx86 support other compiler tasks. For in-
stance, to compile Popcorn exceptions, the code gen-
erator needs to pop off a dynamic amount of data
from the control stack. To support this, TALx86 pro-
vides a limited form of pointers into the middle of
the stack. These limited pointers are also sufficient
to support displays (static links) for compiling lan-
guages such as Pascal. However, they are not suffi-
cient to support general stack-allocation of data.

4.3 Memory Allocation

To support general heap allocation of data, TALx86
provides additional constructs that we now explore,
beginning with tuples. Recall our Popcorn tuple code
from Section 3:

*(int,int) x = new (3, 4);
*(int,int) dbl = new (x.1+x.1, x.2+x.2);

At the assembly level, creating a new pair involves
two separate tasks: allocating memory and initializ-
ing the fields. This TALx86 code corresponds to the
preceding Popcorn:

malloc 8,<[:B4,:B4]> ; get space for x
mov [eax+0],3 ; initialize x.1
mov [eax+4],4 ; initialize x.2
push eax ; save x
malloc 8,<[:B4,:B4]> ; get space for dbl
mov ebx,[esp+0] ; x in ebx
mov ecx,[ebx+0] ; x.1 in ecx
add ecx, ecx ; x.1+x.1 in ecx
mov [eax+0], ecx ; initialize dbl.1
mov ecx,[ebx+4] ; x.2 in ecx

6

int sum(int n) {
if (n==0)

return 0;
else

return n+sum(n-1);
}

sum: ∀ρ:Ts. {esp: sptr{eax: B4, esp: sptr B4::ρ}::B4::ρ}
cmp [esp+4],0
jne tapp(iffalse, <ρ>)
mov eax,0
retn

iffalse: ∀ρ:Ts. {esp: sptr{eax: B4, esp: sptr B4::ρ}::B4::ρ}
mov ebx,[esp+4]
dec ebx
push ebx

; recursive call instantiates ρ using current stack shape
call tapp(sum, <{eax: B4, esp: sptr B4::ρ}::B4::ρ>)
add esp,4
add eax,[esp+4]
retn

Figure 1: Recursive Function with C Calling Convention

add ecx,ecx ; x.2+x.2 in ecx
mov [eax+4], ecx ; initialize dbl.2

The malloc “instruction” is actually a macro that
expands to code that allocates memory of the appro-
priate size. This routine puts a pointer to the newly-
allocated space into eax. The verifier then knows
that eax contains a pointer to uninitialized fields as
specified in the typing annotation <[:B4,:B4]>.

Tracking initialization is important for safety be-
cause fields may themselves be pointers, and the type
system should prevent dereferencing an uninitialized
pointer. To do this, the type of every field has a
variance, one of u, r, w, or rw, standing for unini-
tialized, read-only, write-only, and read-write respec-
tively. The type system does not allow uninitialized
fields to be read. However, uninitialized fields may be
written with a value of the appropriate type, and then
the field is changed to a read-write field. Sub-typing
allows a read-write field to be used as read-only or
write-only.

Here are the first three lines of our example where
the comment describes the type that the verifier as-
signs to eax after each instruction:

malloc 8,<[:B4,:B4]> ; ^*[B4u, B4u]
mov [eax+0],3 ; ^*[B4rw, B4u]
mov [eax+4],4 ; ^*[B4rw, B4rw]

For example, the second type says, “a pointer to a
tuple with two fields, an initialized B4, followed by
an uninitialized B4.” Of course, these pointer types
can appear anywhere B4 can, such as in part of a
stack type or label type.

TALx86 places no restrictions on the order in which
fields are initialized, nor does it require that all fields
be initialized before passing the pointer to another
function. It is possible for a field to be “initialized”
more than once by creating an alias. For example:

malloc 8,<[:B4,:B4]>
mov ecx, eax ; ecx aliases eax
mov [eax+0],3 ; init 1st field
mov [ecx+0],4 ; init it again

In this code, when the contents of eax are moved
into ecx, ecx is assigned the same type as eax. The
two stores thus initialize the same field twice. This
aliasing does not lead to a type unsoundness because
the two values have the same type. Since the type sys-
tem does not track aliasing, some semantically mean-
ingful optimizations cannot be expressed in code that
type-checks. For instance, the verifier rejects the fol-
lowing code because it assumes that the field [ecx+0]
is uninitialized:

malloc 8,<[:B4,:B4]>
mov ecx, eax ; ecx aliases eax
mov [eax+0],3 ; init 1st field
mov ebp,[ecx+0] ; type error!

Though it would be possible to augment TALx86
to conservatively track aliasing, doing so would fur-
ther complicate the type system. Thus far, we have
favored this simpler approach.

Finally, though TALx86 supports explicit alloca-
tion and deallocation of stack-allocated objects, it
does not support general purpose pointers to stack-
allocated objects. In contrast, general purpose point-

7

ers to heap-allocated objects are supported, but ex-
plicit deallocation is not. Rather, we link the TALx86
code against a conservative garbage collector so that
unreachable objects may be reclaimed. To sup-
port explicit deallocation would require an extensive
change to the type system [5].

4.4 Arrays

Support for arrays in TALx86 is perhaps the most
complicated feature in the language. The critical is-
sue is that array sizes and array indices cannot always
be determined statically, yet to preserve type-safety,
we must ensure that any index lies between 0 and
the physical size of the array. TALx86 provides a
very flexible mechanism for tracking the size of an
array without requiring that the size be placed in a
pre-determined position.

Array subscript and update require special macro
instructions (asub and aupd) which take an array
pointer, the size of the array, an integer offset, and
for aupd, a value to place in the array. The macros
expand into code sequences that perform a bounds
check, exit immediately when the index is out of
bounds, and otherwise perform the appropriate sub-
script or update operation. Because the array bounds
checks are not separated from the subscript or up-
date operations, an optimizer cannot eliminate or re-
schedule them. Also, no pointers into the middle of
arrays are allowed by the current type system, further
limiting optimization.

To support arrays, the TALx86 type system in-
cludes two new type constructors. The first, S(s),
is called a singleton type, where s is a compile-time
expression corresponding to an integer. The primary
purpose of singleton types is to statically track the ac-
tual integer value of a register or word in memory. For
instance, if eax has type S(3), then the value in eax
must be equal to 3 (i.e., it is drawn from the single-
ton set {3}). As with other kinds of type expressions,
integer type expressions can be polymorphic. Thus,
if ecx has type S(α), then we cannot determine stat-
ically the (integer) value contained in ecx. However,
if ebx also has type S(α), then the type system can
conclude that the contents of the two registers are
equal. The type system treats singleton integer types
as subtypes of B4 so that they may be used whenever
a B4 is required.

The second new type constructor is of the form
array(s,τv) where τ is the type of the array ele-
ments, v is their variance, and s is a type expression
that represents the size of the array. Notice that s
could be a constant, in which case the size of the
array is known statically, or it could be a type vari-

able, in which case the size of the array is unknown.
Furthermore, as with other type expressions, s is a
purely static construct used only for verification —
it is not available as a run-time value. As we shall
show, this gives us the flexibility to place the run-
time array size anywhere we want instead of in some
fixed position. Furthermore, if the size of the array
can be determined statically, then the size need not
be tracked at run-time.

The crucial issue is to enforce the property that
only a run-time integer value equal to the size of the
array is passed to asub or aupd for the appropriate
bounds check. In particular, if the array has type
array(s,τv), then the integer passed as the size of
the array must have type S(s). For example, the
following TALx86 code increments index 2 of a size 5
array of B4 values:

lab: {eax: array(5, B4rw), ebx: S(5)}
mov ecx, 2

; put eax[ecx] into edx.
; array size in ebx, element size is 4.

asub edx, eax, 4, ecx, ebx
inc edx

; put edx into eax[ecx].
; array size in ebx, element size is 4.

aupd eax, 4, ecx, edx, ebx

This example may only be used on arrays of size 5. To
support arrays whose size is unknown statically, we
must introduce an integer type variable and quantify
over it to achieve “size polymorphism”:

lab:∀s:Sint.{eax: array(s,B4rw), ebx: S(s)}
(The instructions do not need to change.)

Our compiler represents all Popcorn arrays as a
pointer to a data structure containing the (run-time)
size followed by the array elements. An existential
type is used to tie the type of the run-time size with
the type of the array as in:

∃s:Sint.^*[S(s)r,array(s,B4rw)]
The type reads as “there exists some integer s such
that I am a pointer to a structure containing an in-
teger equal to s, followed by s B4 values.” Using an
existential to package the run-time size with the ar-
ray, we can pass the data structure to any function,
or place it in any data structure and yet maintain
enough information that we can always perform a
checked subscript or update on the array. Notice that
though this is the default representation used by our
compiler, it is not required by TALx86. In particular,
the run-time size and the underlying array could be
“unboxed” when the Popcorn array does not escape.

8

?struct int_list {
int hd;
int_list tl;

}
int len(int_list lst){
int i = 0;
while (lst != null){

++i;
lst = lst.tl;

}
return i;

}

type <int_list:T4 = ^.(0)*[B4rw,‘int_listrw]>

len: ∀ρ:Ts.
{esp: sptr{eax: B4, esp: sptr ‘int_list::ρ}::‘int_list::ρ}
mov eax, 0 ; i=0 in eax
mov ebx, [esp+4] ; lst in ebx
jmp tapp(test, <ρ>)

body: ∀ρ:Ts.{esp: ..., eax: B4, ebx: ^*[B4rw,‘int_listrw]}
inc eax ; ++i
mov ebx, [ebx+4] ; lst = lst.tl
fallthru <ρ>

test: ∀ρ:Ts.{esp: ..., eax: B4, ebx:‘int_list}
coerce unroll(ebx) ; int_list -> ^.(0)*[B4rw,‘intlistrw]
btagi ne, ebx, 0, tapp(body,<ρ>) ; check if ebx is null (0)
retn ; otherwise return

Figure 2: List of Integers Implementation

When the size of the array is known at compile-time,
an optimizer could avoid storing the size entirely.

Finally, there are two ways to create arrays in
TALx86. An n-tuple of values, all of some type τ
and variance v, may be coerced to an array of type
array(n,τv). Second, the trusted runtime provides
a function which takes an integer n and a value x
of type τ and returns an array of size n with each
element initialized to x.

We are currently working to eliminate the asub and
aupd macros and to expose the bounds checks so that
an optimizer could eliminate them. To do so requires
supporting a more expressive symbolic language of
static integer expressions within the type system and
the ability to prove inequalities between such expres-
sions as in Xi and Pfenning [19, 20].

4.5 Sums and Recursive Types

To demonstrate TALx86 sums and recursive types, we
now consider implementing a linked list of integers
(see Figure 2). There are two critical points here:
First, a list is fundamentally a sum type: a value of
type list is either null or a pointer to a tuple, and
we must ensure that the code works in either case.
Second, the list type is recursive.

The Popcorn code has a ?struct definition for lists
and a len function which calculates a list’s length.
The TALx86 code has a corresponding type definition
and corresponding code. The TALx86 type definition
says a value can be coerced to have type int list if
it is either the singleton value 0 (for null) or a pointer

to a pair of an integer and an int list.
Upon entry to the len label, the integer variable

i is initialized to 0 and placed in register eax. The
list argument is placed in ebx and the code jumps
to the loop test. The test coerces ebx from the
type int list to its representation type, namely
the corresponding sum type. The next instruction,
btagi, is a macro instruction that tests whether ebx
is not equal (ne) to 0, and if so, branches to the
body. The macro expands into a simple compare and
branch. The type-checker verifies that the register be-
ing tested has a sum type, and using the value tested
against, refines the type of the register. In particular,
at the label body, we are allowed to make the stronger
assumption that ebx is in fact a pointer, and not null.
This assumption allows the mov ebx,[ebx+4] oper-
ation to verify, which has the effect of setting ebx to
the tail of the list.

Our current Popcorn compiler generates more
näıve code. The list is tested for null once as part
of the while test, and then again when the tail of the
list is selected. However, it is clear that an optimizing
compiler can use dataflow analysis to determine that
the second check is redundant. What is not as clear is
whether an optimizing compiler can easily maintain
the appropriate typing annotations.

4.6 Making Types Smaller

The TALx86 type annotations take far less space than
we have suggested so far. For example, the verifier
allows the typing preconditions to be dropped for cer-

9

tain labels. In particular, labels that serve only as
forward branch targets need no typing precondition.
The verifier simply re-verifies the corresponding code
block for each branch. The restriction to forward
branches ensures termination of the verifier.

The verifier also supports type abbreviations so
that the common sub-terms of types may be ab-
stracted. For example, Popcorn gives the same type
to every string. Rather than repeat this type every-
where, Popcorn defines a str abbreviation and uses
it in place of the unabbreviated form:

type <str = ∃s:Sint.^*[S(s)r,array(s,B1rw)]>
Another source of repetition is the code types. For

example, our code types essentially repeat the type
of the stack twice, once for the stack and once for
the type of the return address. We can abstract the
calling convention with a function abbreviation:

type <F = fn ret:T4 s:Ts.
{esp: sptr {eax: ret, esp: sptr s}::s}>

For example, the fully expanded type of the polymor-
phic map function is the rather unwieldy:

map: ∀α:T4 β:T4 ρ:Ts.
{esp: sptr

{eax:(‘list β),
esp:sptr(∀ρ′:Ts.

{esp: sptr{eax:β esp: sptr α::ρ′}
::α::ρ′})

::(‘list α)::ρ}
::(∀ρ′:Ts.

{esp: sptr{eax:β esp: sptr α::ρ′}
::α::ρ′})

::(‘list α)::ρ}
but with the above abbreviation becomes:

map: ∀α:T4 β:T4 ρ:Ts.
F (‘list β)

((∀ρ′:Ts. F β (α::ρ′))::(‘list α)::ρ)

which is smaller, more readable, and in practice faster
to verify.

5 Summary and Future Work

We have described the currently available tools for
producing TALx86, including a compiler for the C-
like language Popcorn. Through examples, we have
demonstrated how TALx86 ensures the safety of as-
sembly code, even in the presence of advanced struc-
tures and optimizations.

Planned extensions to our system will both add
tools and increase the expressiveness of the languages.
They include:

1. A binary object file format to replace TALx86’s
current ASCII format. This format will save
both space and parsing time. It will also pro-
vide a better setting for evaluating verifier per-
formance.

2. Support for floating point and MMX instruc-
tions. We do not expect this to be difficult.

3. Support for run-time code generation, as devel-
oped by Trevor Jim and Like Hornoff at the
University of Pennsylvania [7]. In addition,
an extension to Popcorn called Cyclone makes
these features available at a higher level. We
are currently working through some minor inter-
operability issues.

4. A more advanced dependent type system to al-
low bounds-check elimination when it can be
proven that it is safe to do so.

5. Support for object abstractions in TALx86. To
support objects in TALx86 requires either hav-
ing object types or typing constructs to trans-
late object types into. Having object types in
TALx86 would restrict TALx86 to OO languages
compatible with that object model. While a
lot of research has been done on translating ob-
ject types, these translations either sacrifice the-
oretical properties or introduce run-time over-
head. We are currently investigating a new ef-
ficient object encoding that involves sub-typing,
F-bounded quantification, and self quantifiers.

6 Acknowledgments

We thank Chris Hawblitzel who wrote the first ver-
sion of Popcorn. Trevor Jim and Luke Hornoff pro-
vided invaluable feedback on the system in addition
to adding support for run-time code generation.

References

[1] Mart́ın Abadi and Raymie Stata. A type sys-
tem for Java bytecode subroutines. In Twenty-
Fifth ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 149–160,
San Diego, California, USA, January 1998.

[2] Nick Benton, Andrew Kennedy, and George Rusell.
The MLJ User Guide, 1998.

[3] Hans-Juergen Boehm and Mark Weiser. Garbage col-
lection in an uncooperative environment. Software
Practice and Experience, 18(9):807–820, 1988.

10

[4] Karl Crary. A simple proof technique for cer-
tain parametricity results. Technical Report CMU-
CS-98-185, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, December 1998.

[5] Karl Crary, David Walker, and Greg Morrisett.
Typed memory management in a calculus of capa-
bilities. In Twenty-Sixth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages, pages 262–275, San Antonio, Texas, USA,
January 1999.

[6] Neal Glew and Greg Morrisett. Type safe linking
and modular assembly language. In Twenty-Sixth
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 250–261, San An-
tonio, Texas, USA, January 1999.

[7] Luke Hornof and Trevor Jim. Certifying compilation
and run-time code generation. In ACM Workshop
on Partial Evaluation and Semantics-Based Program
Manipulation, pages 60–74, San Antonio, Texas,
USA, January 1999.

[8] Richard Kelsey, William Clinger, and Jonathan
Rees. Revised5 report on the algorithmic lan-
guage Scheme. ACM SIGPLAN Notices, 33(9):26–
76, September 1998. With H. Abelson, N. I. Adams,
IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.
Friedman, R. Halstead, C. Hanson, C. T. Haynes, E.
Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas,
G. L. Steele, Jr., G. J. Sussman, and M. Wand.

[9] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice-Hall, Englewood
Cliffs, NJ 07632, USA, second edition, 1988.

[10] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, 1996.

[11] Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. Stack-based typed assembly language. In
Workshop on Types in Compilation, volume 1473
of Lecture Notes in Computer Science, pages 28–52,
Kyoto, Japan, March 1998.

[12] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language
(extended version). Technical Report TR97-1651,
Department of Computer Science, Cornell Univer-
sity, Ithaca, New York, USA, November 1997.

[13] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language. In
Twenty-Fifth ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 85–
97, San Diego, California, USA, January 1998.

[14] Andrew C. Myers, Joseph A. Bank, and Barbara
Liskov. Parameterized types for Java. In Twenty-
Fourth ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 132–
145, Paris, France, 1997.

[15] George Necula. Proof-carrying code. In Twenty-
Fourth ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 106–
119, Paris, France, 1997.

[16] Robert O’Callahan. A simple, comprehensive
type system for Java bytecode subroutines. In
Twenty-Sixth ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 70–
78, San Antonio, Texas, USA, January 1999.

[17] Martin Odersky and Philip Wadler. Pizza into Java:
Translating theory into practice. In Twenty-Fourth
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 146–159, Paris,
France, January 1997.

[18] OOPSLA’98 Workshop. Formal Underpinnings of
Java. Vancouver, Canada, October 1998.

[19] Hongwei Xi and Frank Pfenning. Eliminating ar-
ray bound checking through dependent types. In
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 249–257,
Montreal, Canada, June 1998.

[20] Hongwei Xi and Frank Pfenning. Dependent types
in practical programming. In Twenty-Sixth ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 214–227, San Anto-
nio, Texas, USA, January 1999.

11

