
Intensional Polymorphism in Type-Erasure Semantics∗

Karl Crary Stephanie Weirich Greg Morrisett

Cornell University

Abstract

Intensional polymorphism, the ability to dispatch to
different routines based on types at run time, en-
ables a variety of advanced implementation techniques
for polymorphic languages, including tag-free garbage
collection, unboxed function arguments, polymorphic
marshalling, and flattened data structures. To date,
languages that support intensional polymorphism have
required a type-passing (as opposed to type-erasure) in-
terpretation where types are constructed and passed
to polymorphic functions at run time. Unfortunately,
type-passing suffers from a number of drawbacks: it re-
quires duplication of constructs at the term and type
levels, it prevents abstraction, and it severely compli-
cates polymorphic closure conversion.

We present a type-theoretic framework that supports
intensional polymorphism, but avoids many of the dis-
advantages of type passing. In our approach, run-time
type information is represented by ordinary terms. This
avoids the duplication problem, allows us to recover
abstraction, and avoids complications with closure con-
version. In addition, our type system provides another
improvement in expressiveness; it allows unknown types
to be refined in place thereby avoiding certain beta-
expansions required by other frameworks.

1 Introduction

Type-directed compilers use type information to enable
optimizations and transformations that are impossible
(or prohibitively difficult) without such information [13,

∗This material is based upon work supported in part by
AFOSR grant F49620-97-1-001, ARPA/RADC grant FC30602-
96-1-0317, NSF grant CCR-9244739, and ONR grant N00014-92-
J-1764. The second author is also supported under a National
Science Foundation Graduate Fellowship. Any opinions, find-
ings, and conclusions or recommendations in this publication
are those of the authors and do not reflect the views of these
agencies.

11, 17, 2, 23, 25, etc.]. However, type-directed compilers
for some languages such as Modula-3 and ML face the
difficulty that some type information cannot be known
at compile time. For example, polymorphic code in ML
may operate on inputs of type α where α is not only
unknown, but may in fact be instantiated by a variety
of different types.

In order to use type information in contexts where it
cannot be provided statically, a number of advanced
implementation techniques process type information at
run time [11, 17, 28, 19, 25]. Such type information is
used in two ways: behind the scenes, typically by tag-
free garbage collectors [28, 1], and explicitly in program
code, for a variety of purposes such as efficient data rep-
resentation and marshalling [17, 11, 26]. In this paper
we focus on the latter area of applications.

To lay a solid foundation for programs that analyze
types at run time, Harper and Morrisett devised an in-
ternal language, called λML

i , that supports the first-class
intensional analysis1 of types (following earlier work by
Constable [3, 4]). The λML

i language and its derivatives
were then used extensively in the high-performance ML
compilers TIL/ML [27, 20] and FLINT [26]. The pri-
mary novelty of λML

i is the presence of “typecase” oper-
ators at the level of terms and types, that allow compu-
tations and type expressions to depend upon the values
of other type expressions at run time.

Supporting intensional type analysis (and the use of
type information at run time in general) seems to re-
quire semantics where types are constructed and passed
to polymorphic functions during computation. How-
ever, there are a number of practical and theoretical
reasons why type-passing is unattractive:

• A type-passing language such as λML
i requires that

type information always be constructed and passed
to polymorphic functions. This framework can re-
sult in considerable overhead if types are rarely ex-
amined at run time, and, as we discuss later, it
makes abstraction impossible.

• Type passing results in considerable complexity in

1“Intensional” since types are analyzed by the structure of
their names, rather than by what terms they contain. This ap-
proach is critical for practicality.

language semantics, due in large part to the num-
ber of semantic devices that must be duplicated
for both terms and types. For example, in seman-
tics that make memory allocation explicit [18, 19]
a central device is a formal heap in which data is
stored; in a type-erasure framework one such heap
suffices, but when types are passed it is necessary
to add a second heap (and all the attendant ma-
chinery) for type data.

• Type passing also greatly complicates low-level in-
termediate languages, again due in large part to the
duplication of computational devices at the type
level, and also to the need to support mixed-phase
devices (constructs with both type and term level
components). This can pose a serious problem for
typed intermediate languages, because these de-
vices can disrupt the essential symmetries on which
elegant type systems depend. For example, a type-
passing semantics for Typed Assembly Language
[21] requires additional instructions for allocating
and initializing types, which in turn requires the
typing machinery for allocation and initialization
to be lifted an additional level into the kind struc-
ture.

• As a particularly important example of the preced-
ing issue, type passing severely complicates typed
closure conversion (compare the type-passing sys-
tem of Minamide et al. [15] to the type-erasure
system of Morrisett et al. [21]). In a type-erasure
framework, the partial application of a polymor-
phic function to a type may still be considered a
value (since the application has no run-time sig-
nificance), which means that closed code may sim-
ply be instantiated with its type environment when
a closure is created. In a type-passing frame-
work, the instantiation with a type environment
can have some run-time effect, so it must be de-
layed until the function is invoked. Consequently,
closures must include a type environment, necessi-
tating complicated mechanisms including abstract
kinds and translucent types [15].

In this paper we propose a typed calculus, called λR,
that ameliorates the problems of type passing without
sacrificing intensional type analysis. If run-time type
dispatch is supported, then clearly on some level types
must be passed. The fundamental idea behind our ap-
proach is to construct and pass terms that represent
types instead of the types themselves. The connection
between a type τ and its term representation e is made
in the static semantics by assigning e the special type
R(τ). Semantically, we may interpret R(τ) as a single-
ton type that contains only the representation of τ .

This framework resolves the difficulties with type pass-
ing semantics discussed above. In particular, as rep-
resentations of types are simply terms, we can use the
pre-existing term operations to deal with run-time type
information in languages and their semantics. Further-
more, we can eliminate the difficulties associated with
polymorphic closure conversion, as we show in Section
4. Finally, our approach enables the choice not to pass

representations. In turn, this choice allows us to elimi-
nate the overhead of constructing and passing represen-
tations of types where it is not necessary.2

Perhaps more importantly, the ability not to pass types
allows abstraction and parametricity to be recovered. In
most type systems, abstraction may be achieved by hid-
ing the identity of types either through parametric poly-
morphism [22] or through existential types [16]. How-
ever, when all types are passed and may be analyzed
(as in λML

i), the identity of types cannot be hidden and
consequently abstraction is impossible. In contrast, a
λR type can be analyzed only when its representation
is available at run time, so abstraction can be achieved
simply by not supplying type representations.

For example, consider the type ∃α.α. When all types
may be analyzed, this type implements a dynamic type;
an expression of this type provides an object of some
unknown type, and that unknown type’s identity can
be determined at run time by analyzing α. In λR, as
in most other type systems, ∃α.α implements an ab-
stract type (in this particular example, a useless ab-
stract type), because no representation of α is provided.
Dynamic types are implemented in λR by including a
representation of the unknown type, as in ∃α. R(α)×α.

1.1 Expressiveness

In the interest of clarity of presentation, we express λR

as an extension of Harper and Morrisett’s λML
i and focus

on their differences. The principal difference is the re-
striction of type analysis to those types for which repre-
sentations are provided. This change does not diminish
the expressiveness of our calculus; λML

i may be trans-
lated in a straightforward syntax-directed manner into
λR.

Moreover, the λR calculus incorporates an additional
improvement in expressiveness over λML

i that is indepen-
dent of explicit type passing: In λML

i , information gained
by analyzing a type is not propagated to other variables
having that type. Consequently, when analyzing a type
α with the interest of processing an object of type α, it
is necessary to create a function with argument type α
and then apply that function to the object of interest.
In other words, the type system of λML

i requires the use
of beta-expansions that are not operationally necessary.
In λR we resolve this shortcoming by strengthening the
typing rule for typecase so that it refines types in place.

1.2 Overview

The remainder of this paper is organized as follows: In
Section 2 we review the λML

i calculus. We then present,
in Section 3, our λR calculus and discuss its formal se-
mantics, including representation terms, R-types, and
the strengthened typecase rule. In Section 4, we discuss

2In fact, the TIL/ML compiler already finds it necessary to
use annotations that mark whether a type must be passed at run-
time. Our system provides a formal basis for that mechanism.

the simplification of polymorphic closure conversion by
explicit type passing. We end with related work and
conclusions in Sections 5 and 6. In the appendices we
relate our typed semantics to an untyped one through
type erasure (Appendix A), discuss the analysis of quan-
tified types (Appendix B), and provide the formal op-
erational and static semantics (Appendices C and D.)

2 Intensional Type Analysis

Suppose we wanted to efficiently store an array of
boolean values. Most computer architectures require
that memory accesses are a word at a time, but it is
a terrible waste of space to store booleans as integers.
The solution is to pack thirty two booleans into one
word and use bit manipulations to retrieve the correct
value. To subscript from a packed boolean array, we
might use the following function (with << for shift left,
& for bitwise and, and <> for inequality):

val bitsub : array[int] * int -> bool =
fn (a,i) =>
sub(a,i div 32) & (1<<(i mod 32)) <> 0

This function is fine when we know a given array con-
tains boolean values, but we would like code polymor-
phic over all arrays to be able to use this mechanism.
Below we define a new array constructor, PackedArray,
which will produce an array of integers to hold booleans,
and an ordinary array for other types. We also define an
associated subscript operation, packedsub, which calls
bitsub on arrays of booleans and the ordinary subscript
operator on arrays of other types. These constructs can
be created with intensional type analysis, where in both
cases an argument type is examined with a “typecase”
form:

type PackedArray[α] =
Typecase α of
bool => array[int]
| => array[α]

val packedsub :∀α. PackedArray[α] * int -> α =
Fn [α] =>
typecase α of
bool => bitsub
| => sub

2.1 The λML
i calculus

To formalize the tools of intensional type analysis, we
begin by summarizing Harper and Morrisett’s λML

i cal-
culus [11]. The λML

i calculus provides these tools in a
form that is relatively simple, but already quite power-
ful.

The syntax of λML
i appears below (modified slightly for

presentation). The backbone is a predicative variant of
Girard’s Fω [9, 8] in which the quantified type ∀α:κ.σ
ranges only over type constructors and “small” types
(i .e., monotypes), which do not include the quantified

types. The type analysis operators are Typerec and
typecase at the constructor and term levels respec-
tively.

(kinds) κ :: = Type | κ1 → κ2

(con′s) c :: = α | int | c1 → c2 | c1 × c2 |
λα:κ.c | c1c2 |
Typerec c (cint , c→, c×)

(types) σ :: = c | σ1 → σ2 | σ1 × σ2 | ∀α:κ.σ
(terms) e :: = x | i | λx:σ.e | fix f :σ.v | e1e2 |

〈e1, e2〉 | π1e | π2e |
Λα:κ.v | e[c] |
typecase[α.σ] c of

int ⇒ eint

β → γ ⇒ e→
β × γ ⇒ e×

(values) v :: = i | λx:σ.e | fixx:σ.v |
〈v1, v2〉 | Λα:κ.v

Occasionally, for brevity, we will write typecase terms
as typecase[α.σ] c (eint , βγ.e→, βγ.e×).

fix tostring : (∀α:Type. α → string).
Λα:Type.
typecase[δ.δ → string] α of

int ⇒ int2string
string ⇒ λobj :string.obj
β → γ ⇒

λobj :(β → γ)."function"
β × γ ⇒

λobj :(β × γ).
"<"^(tostring[β](π1 obj))^
","^(tostring[γ](π2 obj))^">"

Figure 1: The function tostring

As an example of the use of type analysis in λML
i (with

the addition of another base type, string), consider the
function tostring , presented in Figure 1. This function
uses typecase to produce a string representation of a
data object. For example, the call tostring [int] 3 re-
turns the string “3”. As we cannot provide any infor-
mation about the implementation of functions, we just
return the word “function” when one is encountered, as
in the call:

tostring [(int → int) × int] 〈λx:int . x + 1, 3〉
which returns

“〈function, 3〉”.

When the argument to tostring is a product type, the
function calls itself recursively. In this branch, the type
variables β and γ are bound to the types of the first and
second components of the tuple, so that the recursive
call can be instantiated with the correct type.

The typecase form has a type annotation for type
checking without type inference; the annotation [α.σ]
indicates that given a type constructor argument c, the

typecase computes a value with type σ[c/α] (where this
syntax denotes the capture-avoiding substitution of c for
α in σ). In this example, each arm returns a function
from δ to string , where δ is replaced by the appropriate
type, such as int in the int branch, and β × γ in the
product branch.

With this intuition, the typing rule for typecase is the
natural one (but we will see that this rule is somewhat
restrictive):

Γ � c : Type Γ, α:Type � σ type
Γ � eint : σ[int/α]
Γ, β:Type, γ:Type � e→ : σ[β → γ/α]
Γ, β:Type, γ:Type � e× : σ[β × γ/α]

Γ � (typecase[α.σ] c of
int ⇒ eint

β → γ ⇒ e→
β × γ ⇒ e×

) : σ[c/α]

Often, to compute the result type σ of a typecase ex-
pression the constructor-level Typerec on the argument
α will be required. Typerec allows the creation of new
types by similar intensional analysis. Several examples
of its use appear in Harper and Morrisett [11], including
type-directed data layout, marshalling and unboxing.

While recursion in the term-level typecase is handled
by fix, at the the constructor level there is no such
mechanism. For this reason, Typerec is essentially a
“fold” operation (or catamorphism) over inductively de-
fined types. It provides primitive recursion by calling it-
self recursively on all of the components of the argument
type. Also unlike typecase, where the branches explic-
itly bind arguments for the components of the type, the
c→ and c× branches of Typerec are constructor func-
tions. For example, if the argument of a Typerec oper-
ation is c1 × c2, then that operation reduces to its c×
branch (a constructor function of four arguments) ap-
plied to the components c1 and c2, and to the result of
recursively computing the Typerec operation on those
components.

Typerec(c1 × c2) (cint , c→, c×) =
c× c1 c2

(Typerecc1 (cint , c→, c×))
(Typerecc2 (cint , c→, c×))

The kinding rule for Typerec is again the natural one.
To compute a constructor of kind κ, present a type ar-
gument and three branches returning κ constructors:

Γ � c : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � Typerec c (cint , c→, c×) : κ

3 The λR calculus

Figure 2 presents the syntax of λR, which we describe
in detail in the following section.

(kinds) κ ::= Type | κ → κ

(con′s) c ::= int | α | λα:κ.c | c1c2 |
c1 → c2 | c1 × c2 | R(c) |
Typerec c (cint , c×, c→, cR)

(types) σ ::= c | σ1 → σ2 | σ1 × σ2 |
∀α:κ.σ | ∃α:κ.σ

(terms) e ::= x | i | 〈e1, e2〉 | π1e | π2e | λx:σ.e |
e1e2 | Λα:κ.v | e[c] | fixf :σ.v |
pack e as∃α.σ1 hidingσ2 |
unpack〈α, x〉 = e1 in e2 | Rint |
R→(e1, e2) | R×(e1, e2) | RR(e) |
typecase[δ.c] e of
Rint ⇒ eint

R→(x, y) as (β → γ) ⇒ e→
R×(x, y) as (β × γ) ⇒ e×
RR(x) asR(β) ⇒ eR

(values) v ::= i | 〈v1, v2〉 | λx:σ.e |
Λα:κ.v | v[c] | fixf :σ.v |
packv as∃α.σ1 hidingσ2 | Rint |
R→(v1, v2) | R×(v1, v2) | RR(v)

Figure 2: Syntax of λR

3.1 Term Representations of Types

The key feature we add to the term language of λR is the
representations of types as terms, which remain when
the types themselves are ultimately erased. The base
type, int, has a corresponding representation constant
Rint . Likewise, inductive types have inductively defined
representations; the type int → int is represented by
the term R→(Rint , Rint).

Accordingly, the argument to the term level typecase
is the representation of a type, instead of a type. For
example, if the argument e is of the form R→(e1, e2), the
arrow branch (e→) is taken. The type variables β and
γ are still bound to the types that e1 and e2 represent,
but, because we need not only the component types but
also their representations, x and y are bound to e1 and
e2. This notion is reflected in the following rule of the
operational semantics:

typecase[δ.c] (R→(e1, e2)) (eint , βγxy.e→, . . .)
�→ e→[D(e1),D(e2), e1, e2/β, γ, x, y]

The operation D(·) in this rule converts a representa-
tion to the type that it denotes (Figure 3). The rest
of our dynamic semantics is formalized in Appendix C.
It is presented as a call-by-value, small step operational
semantics.

In order to assign a type to these representations of
types, we have extended the type constructor level of
λR with the R construct, where the representation of a
type τ is given the type R(τ), and extended the static
semantics accordingly. For example, the formation rule

D(Rint) = int
D(R×(e1, e2)) = D(e1) ×D(e2)
D(R→(e1, e2)) = D(e1) → D(e2)

D(RR(e)) = R(D(e))

Figure 3: Translating Representations to Types

for the representation of function types is

Γ � e1 : R(τ1) Γ � e2 : R(τ2)

Γ � R→(e1, e2) : R(τ1 → τ2)
(rep→)

which says that if the two subterms, e1 and e2, are type
representations of τ1 and τ2, then R→(e1, e2) will be a
representation of τ1 → τ2.

As an example of the use of λR, the tostring function
from the previous section can be transliterated into λR

by requiring it to take an additional term argument, xα

for the representation of the argument type:

fix tostring : (∀α:Type. R(α) → α → string).
Λα:Type. λxα:R(α).
typecase[δ.α → string] xα of
Rint ⇒ int2string
Rstring ⇒ λobj :string.obj
R→(x, y) asβ → γ ⇒

λobj :β → γ."function"
R×(x, y) asβ × γ ⇒

λobj :β × γ.
"<"^(tostring [β] x (π1 obj))^
","^(tostring [γ] y (π2 obj))^">"

The static semantics we have defined ensures that these
R-types are singleton types; for each one there is ex-
actly one value which inhabits it. This fact allows us to
express constraints between types and their representa-
tions at a very fine level. For instance, in the tostring
example, the representation argument must be the rep-
resentation of the type of the object.

Furthermore, as we have added a new way to form types
to the constructor language, we must add another term
construct, RR(·), to form the representation of represen-
tation types. We also extend typecase with an extra
branch to handle these terms and Typerec to handle
R-types.

3.2 In-place Refinement of Types

The typing rules of λML
i often force an inefficient use of

typecase. In the tostring example in Section 2, we were
required to create closures in each of the branches of the
typecase. It would be more efficient if we could lift the
lambdas outside of the typecase and have each branch
of the typecase return a string . We could then write

this function as:

fix tostring : (∀α:Type. R(α) → α → string).
Λα:Type. λxα:R(α). λ obj :α.
typecase[δ.string] xα of
Rint ⇒ int2string obj
Rstring ⇒ obj
R→(x, y) asβ → γ ⇒
"function"

R×(x, y) asβ × γ ⇒
"<"^(tostring [β]x (π1 obj))^
","^(tostring [γ]y (π2 obj))^">"

The reason we could not write this function in λML
i is

that it requires the type of obj to change based upon
which branch of the typecase is selected. In λML

i , all
that is known in the product branch is that obj is of
type α, not a tuple. In order to project from it in the
recursive calls, the typing rules must update the type of
obj to reflect the fact that we know that α is β × γ in
the product branch.

With the right enhancement to the static semantics this
optimization is possible. We have held off discussion of
the λR’s typecase formation rule in order to emphasize
this point. The basic idea is that in some cases typecase
increases our knowledge of the argument type. We sep-
arate the formation rule into situations where typecase
gives us new information, such as when the argument is
of type R(α), and when it does not, such as when the
argument is of type R(τ1 → τ2). In the inference rule
for type checking a typecase term, when the argument
is of type R(α), we refine types containing α to reflect
the gain in information, as shown below. For simplicity,
only some of the rule is given here (the complete rule
appears in Appendix D.3):

Γ, α:Type, Γ′ � e : R(α)
Γ, Γ′[int/α] � eint [int/α] : c[int, int/α, δ]
Γ, β:Type, γ:Type, Γ′[β → γ/α], x:R(β),

y:R(γ) � e→[β → γ/α] : c[β → γ, β → γ/α, δ]
...

Γ, α:Type, Γ′ � typecase[δ.c]e (eint , βγxy.e→, . . .) : c[α/δ]

For example, to typecheck the e→ branch, we substitute
β → γ for α everywhere, including the surrounding con-
text.3 Consequently the types of the variables bound in
the context will be refined by that substitution. Be-
cause λML

i only makes this substitution in the return
type of the branch, and not in the context, in order to
propagate this information one must abstract over all
variables of interest.

When we know more about the argument because of
the singularity of the R-types, we can deduce statically
which branch of the typecase will be taken. Therefore
we do not need to typecheck the other branches at all,
leading to a much simpler rule. For example, if we know

3The substitution for α is applied within the branches them-
selves in order to avoid creating a hole in the scope of α. In
practice, a typechecker would implement this operation by a lo-
cal type definition, rather than by substitution.

Judgment Meaning

Γ � c : κ c is a valid constructor of kind κ
Γ � σ σ is a valid type
Γ � c1 = c2 : κ c1 and c2 are equal constructors
Γ � σ1 = σ2 σ1 and σ2 are equal types
Γ � e : σ e is a term of type σ

Figure 4: Judgments of λR

the argument is of type R(τ1 → τ2), we only need to
examine the e→ branch, as in the rule:

Γ � e : R(τ1 → τ2)
Γ, x:R(τ1), y:R(τ2) � e→[τ1, τ2/β, γ] : c[τ1 → τ2/δ]

Γ � typecase[δ.c] e (eint , βγxy.e→, . . .) : c[τ1 → τ2/δ]

3.3 Properties of the Formal Semantics

Formally, the static semantics of λR consists of a collec-
tion of rules for deriving judgments of the forms shown
in Figure 4. In these judgments, Γ is a unified type and
kind context, mapping constructor variables (α, β, ...) to
kinds and term variables (x, y, ...) to types. The formal
operational and static semantics of λR appear in Ap-
pendices C and D, and from them we can prove several
useful properties about λR.

First, we would like to prove the decidability of λR type-
checking. The only mildly difficult part is equivalence
checking for constructors. Based upon the equivalence
rules in Appendix D.2 we can define a notion of con-
structor reduction to a normal form in an obvious man-
ner. This reduction relation can be proved strongly nor-
malizing and confluent (in a manner similar to Morrisett
[17]) from which it follows that constructor equivalence
is decidable. Therefore we can state the following theo-
rem:

Theorem 3.1 (Decidability) It is decidable whether
or not Γ � e : τ is derivable in λR.

Next, we would like to show that the static semantics
guarantees safety; that is, if a term typechecks, then
the operational semantics will not get stuck (where a
term that is not a value, and for which no rule of our
operational semantics applies, is stuck):

Theorem 3.2 (Type Safety) If ∅ � e : σ and e �→∗

e′ then e′ is not stuck.

The proof of this theorem is standard, relying on the
usual progress, subject reduction and substitution lem-
mas.

4 Polymorphic Typed Closure Conversion

As a final example, we consider typed closure conver-
sion in a λR-like framework. The key idea behind clo-
sure conversion is to shift from a substitution-based
model of execution to an environment-based model via
a source-to-source translation. In particular, all func-
tions are replaced with explicit closures which are rep-
resented within the language as pairs consisting of a
λ-abstraction (the code of the closure), and a tuple (the
environment of the closure). The environment contains
values for the free variables of the function. The code
abstracts the environment as well as the arguments of
the function and is thus closed. Hence, the code may be
hoisted to the top-level, allocated at compile time, and
shared among all substitution instances. Application is
rewritten so that the code of a closure is first applied to
its environment and then to its arguments.

In the monomorphic case no discrepancy arises between
type-passing [15] and type-erasure [21] closure conver-
sion. An existential type is used to hold the type of
the closure’s environment abstract, so a closure for a
τ1 → τ2 function is given the type ∃α.((τ1×α) → τ2)×α.

However, with the introduction of polymorphism, sig-
nificant differences arise between type-passing and type-
erasure. The issue stems from the fact that functions
may contain free type variables as well as free value
variables, and closed code must abstract both. Closures
must then provide someway to apply such code to the
appropriate type variables. In a type-erasure setting,
type application has no run-time effect, so the partial
application of code to the appropriate type variables
may be performed when closures are created. Con-
sequently, these type variables do not appear in the
type of a closure. In fact, closures have the same type
(∃α.((τ1 × α) → τ2) × α) as before.

However, in a type-passing semantics, the application to
type arguments is a run-time operation and so such ap-
plications must be suspended until the closure is called.
Thus, it is necessary for the closure to include a type en-
vironment as well as a value environment. The kind of
the type environment must be hidden (as did the type of
the value environment in the monomorphic case), and
the closure’s type must enforce the requirement that
the code be applied only to the proper type environ-
ment (see Minamide et al. [15] for detailed explanations
of why). The former requires the use of abstract kinds
and the latter requires the use of translucent types [10].
This approach results in a closure having the consider-
ably more complicated type (again, see Minamide et al.
[15] for a formalization of the necessary type theory):

∃ktenv:Kind. ∃αvenv:Type.∃βtenv:ktenv.
(∀γ:ktenv=βtenv. (τ1 × αvenv) → τ2) × αvenv

In the above type, ktenv abstracts the kind of the type
environment, αvenv abstracts the type of the value of the
value environment, and βtenv provides the type environ-
ment. The code type then takes a type environment γ
of kind ktenv as an argument, but γ is constrained (using
translucent types) to be the appropriate environment,
βtenv.

Since our framework is one of type-erasure, type en-
vironments may be resolved by partial application, re-
sulting in the simpler type for closures. However, it is
instructive to examine the details. Suppose the func-
tion to be closure-converted is the function f = λx:τ1.e
with type τ1 → τ2 and suppose further that the function
contains free occurrences of the type variable α and its
representation xα:R(α).

First the function is rewritten in closed form as:

f ′ : ∀α. (τ1 × R(α)) → τ2

= Λα.λy:(τ1 × R(α)). e[π1y, π2y/x, xα]

Then (at run time) f ′ is instantiated with the type en-
vironment (that is, α):

f ′′ : (τ1 × R(α)) → τ2 = f ′[α]

Finally, a closure is created:

f ′′′ = pack 〈f ′′, xα〉 as∃β. ((τ1 × β) → τ2) × β
hidingR(α)

Consider what has become of the mechanisms for type-
passing closure conversion: The type of f ′′ requires that
it be applied (for its second argument) only to the rep-
resentation of α. So the translucency mechanism ap-
pears again, suggesting that translucency is inherent in
type-passing closure conversion. However, this version
of translucency has two advantages; the necessary type
theory is simpler, and the translucency is completely
hidden by the existential packaging in the eventual clo-
sure. On the other hand, abstract kinds do not appear
in the process, suggesting them to be an artifact of true
type-passing.

5 Related Work

Closely related to our work is the work of Minamide on
lifting of type parameters for tag-free garbage collection
[14]. Minamide was interested in lifting type parame-
ters out of code so they could be preallocated at compile
time. His lifting procedure required the maintenance
of interrelated constraints between type parameters to
retain type soundness, and he used a system similar
to ours that makes explicit the passing of type param-
eters in order to simplify the expression of such con-
straints. The principal difference between Minamide’s
system and ours is that Minamide did not consider in-
tensional type analysis or first-class polymorphism. Mi-
namide’s system also makes a distinction between type
representations (which he calls evidence, following Jones
[12]) and ordinary terms, while λR type representations
are fully first-class.

The issue of type parameter lifting is an important one
for compilers based on λR. The construction of type
representations at run time would likely lead to signifi-
cant cost and, in practice, should be lifted out to compile
time whenever possible. (Unfortunately, in the presence
of polymorphic recursion, which λR supports, it is not
always possible.) Mechanisms for such lifting have been

developed by Minamide (in the work discussed above)
and by Saha and Shao [24].

Dubois et al. [6] also pass explicit type representations
to polymorphic functions when compiling ad-hoc poly-
morphism. However, their system differs from ours and
Minamide’s in that no mechanism is provided for con-
necting representations to the types they denote, and
consequently, information gained by analyzing type rep-
resentations does not propagate into the type system.

Duggan [7] proposes another typed framework for in-
tensional type analysis that is similar in some ways to
λML

i . Like λML
i , Duggan’s system passes types implicitly

and allows for the intensional analysis of types at the
term level. Duggan’s system does not support inten-
sional type analysis at the constructor level, as λML

i and
λR do, but it adds a facility for defining type classes (us-
ing union and recursive kinds) and allows type analysis
to be restricted to members of such classes.

6 Conclusions and Future Directions

We have presented a type-theoretic framework that sup-
ports the passing and analysis of type information at
run time, but that avoids the shortcomings associated
with previous such frameworks (e.g., duplication of con-
structs, lack of abstraction, and complication of closure
conversion). This new framework makes it feasible to
use intensional type analysis in settings where the short-
comings previously made it impractical.

For example, Morrisett et al. [21] developed typing
mechanisms for low-level intermediate and target lan-
guages that allow type information to be used all the
way to the end of compilation. It would be desirable, in
a system based on those mechanisms, to be able to ex-
ploit that type information using intensional type anal-
ysis. Unfortunately, the shortcomings of type-passing
semantics made it incompatible with some of those low-
level typing mechanisms. This unfortunate incompat-
ibility has made it infeasible to use the mechanisms
of Morrisett et al. in type-analyzing compilers such as
TIL/ML [27, 20] and FLINT [26], and has made it infea-
sible to use intensional type analysis in the end-to-end
typed compiler TALC [21]. The framework in this pa-
per makes it possible to unify these two lines of work
for the first time.

In pursuance of this aim, an important direction for fu-
ture work is to extend the mechanisms of λR into lower-
level typed intermediate languages such as typed as-
sembly language [21]. Among the issues to be explored
in such research is how to analyze the more compli-
cated types used in typed assembly language, and how
to perform type-directed dispatch without an atomic
typecase construct. Another issue to explore is anal-
ysis of quantified types (an initial proposal appears in
Appendix B), and whether such mechanisms are useful
in practice.

Another important question is whether a parametricity

theorem like that of Reynolds [22] can be shown for λR.
Polymorphism is clearly non-parametric in λML

i , but the
lowering of type analysis to explicit term-level represen-
tatives makes it plausible that some sort of parametric-
ity could be shown for λR. In other words, we discussed
at an intuitive level in Section 1 how the explicit pass-
ing of types restores the ability to abstract types that
was discarded by λML

i ; it would be interesting to explore
how that intuition may be formalized.

7 Acknowledgments

We would like to thank Neal Glew, Fred Smith, Chris
Stone, Dave Walker, Steve Zdancewic, and the anony-
mous referees for comments and suggestions.

References

[1] S. Aditya and A. Caro. Compiler-directed type
reconstruction for polymorphic languages. In Con-
ference on Functional Programming Languages and
Computer Architecture, pages 74–82, Copenhagen,
June 1993.

[2] L. Birkedal, M. Tofte, and M. Vejlstrup. From re-
gion inference to von Neumann machines via region
representation inference. In Twenty-Third ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 171–183, St. Pe-
tersburg, Jan. 1996.

[3] R. L. Constable. Intensional analysis of functions
and types. Technical Report CSR-118-82, Depart-
ment of Computer Science, University of Edin-
burgh, June 1982.

[4] R. L. Constable and D. R. Zlatin. The type theory
of PL/CV3. ACM Transactions on Programming
Languages and Systems, 6(1):94–117, Jan. 1984.

[5] J. Despeyroux, F. Pfenning, and Carsten
Schürmann. Primitive recursion for higher-
order abstract syntax. In Third International
Conference on Typed Lambda Calculi and Applica-
tions, volume 1210 of Lecture Notes in Computer
Science, pages 147–163, Nancy, France, Apr. 1997.
Springer-Verlag. Extended version published
as Carnegie Mellon University technical report
CMU-CS-96-172.

[6] C. Dubois, F. Rouaix, and P. Weis. Extensional
polymorphism. In Twenty-Second ACM SIGACT-
SIGPLAN Symposium on Principles of Program-
ming Languages, pages 118–129, San Francisco,
Jan. 1995.

[7] D. Duggan. A type-based semantics for user-
defined marshalling in polymorphic languages. In
Second Workshop on Types in Compilation, Mar.
1998.

[8] J.-Y. Girard. Une extension de l’interprétation de
Gödel à l’analyse, et son application à l’élimination

de coupures dans l’analyse et la théorie des types.
In J. E. Fenstad, editor, Proceedings of the Sec-
ond Scandinavian Logic Symposium, pages 63–92.
North-Holland Publishing Co., 1971.

[9] J.-Y. Girard. Interprétation fonctionelle et
élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

[10] R. Harper and M. Lillibridge. A type-theoretic
approach to higher-order modules with sharing.
In Twenty-First ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages,
pages 123–137, Portland, Oregon, Jan. 1994.

[11] R. Harper and G. Morrisett. Compiling polymor-
phism using intensional type analysis. In Twenty-
Second ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 130–
141, San Francisco, Jan. 1995.

[12] M. P. Jones. A theory of qualified types. In Fourth
European Symposium on Programming, volume 582
of Lecture Notes in Computer Science, Rennes,
France, 1992. Springer-Verlag.

[13] X. Leroy. Unboxed objects and polymorphic typ-
ing. In Nineteenth ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages,
pages 177–188, 1992.

[14] Y. Minamide. Full lifting of type parameters. Sub-
mitted for publication. Earlier version published
as “Compilation Based on a Calculus for Explicit
Type-Passing” in the Second Fuji International
Workshop on Functional and Logic Programming,
1996.

[15] Y. Minamide, G. Morrisett, and R. Harper.
Typed closure conversion. In Twenty-Third ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 271–283, St. Pe-
tersburg, Florida, Jan. 1996.

[16] J. C. Mitchell and G. D. Plotkin. Abstract types
have existential type. ACM Transactions on Pro-
gramming Languages and Systems, 10(3):470–502,
July 1988.

[17] G. Morrisett. Compiling with Types. PhD thesis,
Carnegie Mellon University, School of Computer
Science, Pittsburgh, Pennsylvania, Dec. 1995.

[18] G. Morrisett, M. Felleisen, and R. Harper. Ab-
stract models of memory management. In Con-
ference on Functional Programming Languages and
Computer Architecture, 1995.

[19] G. Morrisett and R. Harper. Semantics of memory
management for polymorphic languages. In A. D.
Gordon and A. M. Pitts, editors, Higher Order
Operational Techniques in Semantics. Cambridge
University Press, 1997.

[20] G. Morrisett, D. Tarditi, P. Cheng, C. Stone,
R. Harper, and P. Lee. The TIL/ML compiler:
Performance and safety through types. In Work-
shop on Compiler Support for Systems Software,
Tucson, Feb. 1996.

[21] G. Morrisett, D. Walker, K. Crary, and N. Glew.
From System F to typed assembly language. In
Twenty-Fifth ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages,
pages 85–97, San Diego, Jan. 1998. Extended ver-
sion published as Cornell University technical re-
port TR97-1651.

[22] J. C. Reynolds. Types, abstraction and paramet-
ric polymorphism. In Information Processing ’83,
pages 513–523. North-Holland, 1983. Proceedings
of the IFIP 9th World Computer Congress.

[23] E. Ruf. Partitioning dataflow analyses using types.
In Twenty-Fourth ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages,
pages 15–26, Paris, Jan. 1997.

[24] B. Saha and Z. Shao. Optimal type lifting. In
Second Workshop on Types in Compilation, Mar.
1998.

[25] Z. Shao. Flexible representation analysis. In
1997 ACM SIGPLAN International Conference on
Functional Programming, pages 85–98, Amster-
dam, June 1997.

[26] Z. Shao. An overview of the FLINT/ML compiler.
In 1997 Workshop on Types in Compilation, Am-
sterdam, June 1997. ACM SIGPLAN. Published
as Boston College Computer Science Department
Technical Report BCCS-97-03.

[27] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,
R. Harper, and P. Lee. TIL: A type-directed opti-
mizing compiler for ML. In 1996 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 181–192, May 1996.

[28] A. Tolmach. Tag-free garbage collection using ex-
plicit type parameters. In ACM Conference on
Lisp and Functional Programming, pages 1–11, Or-
lando, June 1994.

A Untyped Calculus

Although the formal static and operational semantics
for λR are for a typed language, we would like to em-
phasize the point that types are unnecessary for com-
putation and can safely be erased. Accordingly, we ex-
hibit an untyped language, λR

◦, a translation of λR to
this language through type erasure, and the following
theorem, which states that execution in the untyped
language mirrors execution in the typed language:

Theorem A.1 1. If e1 �→∗ e2 then e1
◦ �→∗ e2

◦.

2. If ∅ � e1 : τ and e1
◦ �→∗ u then there exists e2 such

that e1 �→∗ e2 and e2
◦ = u.

From this theorem and type safety for λR it follows that
our untyped semantics is safe.

Corollary A.2 If ∅ � e : τ and e◦ �→∗ u then u is not
stuck.

A.1 Syntax of Untyped Calculus

(terms) u :: = x | i | λx.u | fixf.w | u1u2 |
〈u1, u2〉 | π1u | π2u | Rint |
R→(u1, u2) | R×(u1, u2) | RR(u) |
typecase u of
Rint ⇒ uint

R→(x, y) ⇒ u→
R×(x, y) ⇒ u×
RR(x) ⇒ uR

(values) w :: = i | 〈w1, w2〉 | λx.u | fixf.w |
Rint | R×(w1, w2) | R→(w1, w2) |
RR(w)

A.2 Type Erasure

x◦ = x
i◦ = i

〈e1, e2〉◦ = 〈e1
◦, e2

◦〉
(πie)

◦ = πie
◦

(λx:c.e)◦ = λx.e◦

(Λα:κ.v)◦ = v◦

(fixf :c.v)◦ = fixf.v◦

(e1e2)
◦ = e1

◦e2
◦

e[c]◦ = e◦

pack e as c hiding c′◦ = e◦

unpack 〈α,x〉 = e1 in e2
◦ = (λx.e2

◦) e1
◦

Rint
◦ = Rint

R→(e1, e2)
◦ = R→(e1

◦, e2
◦)

R×(e1, e2)
◦ = R×(e1

◦, e2
◦)

RR(e1)
◦ = RR(e1

◦)
(typecase[δ.c] e of
Rint ⇒ eint

R→(x, y) as
(β → γ) ⇒ e→

R×(x, y) as
(β × γ) ⇒ e×

RR(x) as
R(β) ⇒ eR)◦

= typecase e◦of
Rint ⇒ eint

◦

R→(x, y) ⇒ e→◦

R×(x, y) ⇒ e×◦

RR(x) ⇒ eR
◦

A.3 Operational Semantics of λR
◦

(λx.u)w �→ u[w/x]

(fix f.w)w′ �→ (w[fixf.w/f])w′

π1〈w1, w2〉 �→ w1 π2〈w1, w2〉 �→ w2

typecase Rint (uint , xy.u→,
xy.u×, x.uR) �→ uint

typecase(R×(w1, w2)) (uint , xy.u→,
xy.u×, x.uR) �→ u×[w1, w2/x, y]

typecase(R→(w1, w2)) (uint , xy.u→,
xy.u×, x.uR) �→ u→[w1, w2/x, y]

typecase(RR(w)) (uint , xy.u→,
xy.u×, x.uR) �→ uR[w/x]

u1 �→ u′
1

u1u2 �→ u′
1u2

u �→ u′

wu �→ wu′

u1 �→ u′
1

〈u1, u2〉 �→ 〈u′
1, u2〉

u �→ u′

〈w,u〉 �→ 〈w,u′〉
u �→ u′

π1u �→ π1u
′

u �→ u′

π2u �→ π2u
′

u1 �→ u′
1

R→(u1, u2) �→ R→(u′
1, u2)

u �→ u′

R→(w, u) �→ R→(w,u′)

u1 �→ u′
1

R×(u1, u2) �→ R×(u′
1, u2)

u �→ u

R×(w, u) �→ R×(w, u′)

u �→ u′

RR(u) �→ RR(u′)

u �→ u′

typecase u (uint , xy.u→, xy.u×, x.uR) �→
typecase u′ (uint , xy.u→, xy.u×, x.uR)

B Analysis of Quantified Types

In an impredicative or recursive variant of λR it would
be desirable to analyze quantified types. This modifica-
tion can be done easily by limiting the analysis to the
outermost operator that is, a Typerec or typecase will
determine that a type is a ∀ or ∃ type, but will not pro-
vide any information about the body of the type. Ex-
perience from the TIL/ML compiler suggests that this
solution might be enough in practice. However, in this
section we briefly explore what would be required to
extend λR to support full analysis of quantified types.

Adding term-level representations for quantified types
is straightforward. The representation for ∀α:κ.c must
carry information expressing how to produce the ap-
propriate c given an appropriate α of kind κ. For ex-
ample, a member of R(∀α:Type.c) would be built by
a constructor R∀Type that takes a function with type
∀α:Type. R(α) → R(c). Representations of polymorphic
types at any other kind κ would be built by an analo-
gous constructor R∀κ or R∃κ. Note that this solution
requires an infinite collection of such constructors, two
for each kind.

Analysis of types is also straightforward if quantifi-
cation is restricted to Type, or to any finite set of
kinds. In that case, the appropriate branches can be
added to the Typerec and typecase operations, and
each branch would return the appropriate representa-
tion function discussed above. General quantification
could be handled, at the expense of additional com-
plexity, by adding kind variables, term representations
of kinds, and a Kindrec facility for analyzing such repre-
sentations. With such additions, the quantifier branches
would return a kind representation and the appropriate
representation function.

However, with such a mechanism in place, the amount
of useful analysis that can be performed is still quite lim-
ited. Type analyzing code may apply the representation
function to an argument and analyze its output, but it
could not analyze the function itself. This fact makes it
impossible, for example, to print quantified types. The
modal type theory of Despeyroux et al. [5] is intended
for precisely this sort of application; it provides mech-
anisms for primitive recursion on higher-order syntax
and should provide a solution to this problem.

Also, allowing any analysis of quantified types by
Typerec sacrifices strong normalization of type expres-
sions. (A correspondence between Type and Type →
Type can be built, permitting the encoding of the un-
typed lambda calculus.) A modal type discipline ap-
pears to solve this problem as well.

C Operational Semantics

(λx:c.e)v �→ e[v/x]

(Λα:κ.v)[c] �→ v[c/α]

π1〈v1, v2〉 �→ v1 π2〈v1, v2〉 �→ v2

(fix f :c.v)v′ �→ (v[fixf :c.v/f])v′

(fix f :c.v)[c′] �→ (v[fixf :c.v/f])[c′]

unpack 〈α,x〉 = (packv as∃β.c1 hiding c2)
in e2 �→ e2[c2, v/α,x]

typecase[δ.c]Rint (eint , βγxy.e→,
βγxy.e×, βx.eR) �→ eint

typecase[δ.c] (R→(v1, v2)) (eint , βγxy.e→,
βγxy.e×, βx.eR) �→ e→[D(v1),D(v2), v1, v2/β, γ, x, y]

typecase[δ.c] (R×(v1, v2)) (eint , βγxy.e→,
βγxy.e×, βx.eR) �→ e×[D(v2),D(v2), v1, v2/β, γ, x, y]

typecase[δ.c] (RR(v)) (eint , βγxy.e→,
βγxy.e×, βx.eR) �→ eR[D(v), v/β, x]

e1 �→ e′1
e1e2 �→ e′1e2

e �→ e′

ve �→ ve′
e �→ e′

e[c] �→ e′[c]

e �→ e′

πie �→ πie
′

e1 �→ e′1
〈e1, e2〉 �→ 〈e′1, e2〉

e �→ e′

〈v, e〉 �→ 〈v, e′〉
e �→ e′

pack e as∃β.c1 hiding c2 �→ pack e′ as∃β.c1 hiding c2

e �→ e′

unpack〈α, x〉 = e in e2 �→ unpack〈α,x〉 = e′ in e2

e �→ e′

typecase[δ.σ] e (eint , βγxy.e→, βγxy.e×, βx.eR) �→
typecase[δ.σ] e′ (eint , βγxy.e→, βγxy.e×, βx.eR)

e1 �→ e′1
R→(e1, e2) �→ R→(e′1, e2)

e �→ e′

R→(v, e) �→ R→(v, e′)

e1 �→ e′1
R×(e1, e2) �→ R×(e′1, e2)

e �→ e′

R×(v, e) �→ R×(v, e′)
e �→ e′

RR(e) �→ RR(e′)

D Static Semantics

D.1 Type formation

Γ � c : κ

Γ � int : Type Γ � α : κ
(Γ(α) = κ)

Γ � c1 : Type Γ � c2 : Type

Γ � c1 → c2 : Type

Γ � c1 : Type Γ � c2 : Type

Γ � c1 × c2 : Type

Γ, α:κ1 � c : κ2

Γ � λα:κ1.c : κ1 → κ2

Γ � c1 : κ1 → κ2 Γ � c2 : κ1

Γ � c1c2 : κ2
(α
∈ Dom(Γ))

Γ � c : Type

Γ � R(c) : Type

Γ � c : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ

Γ � Typerec c(cint , c→, c×, cR) : κ

Γ � σ
Γ � c : Type

Γ � c

Γ � σ1 Γ � σ2

Γ � σ1 × σ2

Γ � σ1 Γ � σ2

Γ � σ1 → σ2

Γ, α:κ � σ

Γ � ∀α:κ.σ
(α
∈ Dom(Γ))

Γ, α:κ � σ

Γ � ∃α:κ.σ
(α
∈ Dom(Γ))

D.2 Type Equivalence (selected rules)

Γ � c1 = c2 : κ

Γ, α:κ′ � c1 : κ Γ � c2 : κ′

Γ � (λα:κ′.c1)c2 = c1[c2/α] : κ
(α
∈ Dom(Γ))

Γ � c : κ1 → κ2

Γ � λα:κ1.c α = c : κ1 → κ2
(α
∈ Dom(Γ))

Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ

Γ � Typerec(int) (cint , c→, c×, cR) = cint : κ

Γ � c1 : Type Γ � c2 : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ

Γ � Typerec(c1 → c2) (cint , c→, c×, cR) =
c→ c1 c2(Typerecc1 (cint , c→, c×, cR))

(Typerecc2 (cint , c→, c×, cR)) : κ
Γ � Typerec(c1 × c2) (cint , c→, c×, cR) =

c× c1 c2(Typerecc1 (cint , c→, c×, cR))
(Typerecc2 (cint , c→, c×, cR)) : κ

Γ � c : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ

Γ � Typerec(R(c)) (cint , c→, c×, cR) =
cR c (Typerec c (cint , c→, c×, cR)) : κ

Γ � σ1 = σ2

Γ � σ1 = σ2 : κ

Γ � σ1 = σ2

D.3 Term Formation

Γ � e : σ

Γ � i : int Γ � x : σ
(Γ(x) = σ)

Γ � e1 : σ1 Γ � e2 : σ2

Γ � 〈e1, e2〉 : σ1 × σ2

Γ � e : σ1 × σ2

Γ � π1e : σ1

Γ � e : σ1 × σ2

Γ � π2e : σ2

Γ � e1 : σ2 → σ1 Γ � e2 : σ2

Γ � e1e2 : σ1

Term Formation (continued)

Γ � e : ∀α:κ.σ Γ � c : κ
Γ � e[c] : σ[c/α]

Γ, x:σ2 � e : σ1 Γ � σ2

Γ � λx:σ2.e : σ2 → σ1
(x
∈ Dom(Γ))

Γ, α:κ � e : σ

Γ � Λα:κ.e : ∀α:κ.σ
(x
∈ Dom(Γ))

Γ, α:κ � σ1 : Type Γ � σ2 : κ Γ � e : σ1[σ2/α]

Γ � pack e as∃α:κ.σ hidingσ2 : ∃α:κ.σ1
(α
∈ Dom(Γ))

Γ � e1 : ∃α:κ.σ2 Γ, α:κ, x:σ2 � e2 : σ1

Γ � unpack〈α, x〉 = e1 in e2 : σ1
(α, x
∈ Dom(Γ))

Γ, f :σ � e : σ Γ � σ

Γ � fix f :σ. e : σ
(f
∈ Dom(Γ), σ = ∀α1:κ1 · · ·αn:κn.σ1 → σ2, n ≥ 0)

Γ � Rint : R(int)

Γ � e1 : R(c1) Γ � e2 : R(c2)

Γ � R→(e1, e2) : R(c1 → c2)

Γ � e1 : R(c1) Γ � e2 : R(c2)

Γ � R×(e1, e2) : R(c1 × c2)

Γ � e : R(c)

Γ � RR(e) : R(R(c))

Γ � e : σ2 Γ � σ1 = σ2

Γ � e : σ1

Γ � e : R(int) Γ � eint : σ[int/δ]

Γ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e×, βx.eR) : σ[int/δ]

Γ � e : R(c1 → c2) Γ, x:R(c1), y:R(c2) � e→[c1, c2/β, γ] : σ[c1 → c2/δ]

Γ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e×, βx.eR) : σ[c1 → c2/δ]

Γ � e : R(c1 × c2) Γ, x:R(c1), y:R(c2) � e×[c1, c2/β, γ] : σ[c1 × c2/δ]

Γ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e×, βx.eR) : σ[c1 × c2/δ]

Γ � e : R(R(c)) Γ, x:R(c) � eR[c/β] : σ[R(c)/δ]

Γ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e×, βx.eR) : σ[R(c)/δ]

Γ, α:Type, Γ′ � e : R(α) Γ(Γ′[int/α]) � eint [int/α] : σ[int, int/α, δ]
Γ, β:Type, γ:Type, (Γ′[β → γ/α]), x:R(β), y:R(γ) � e→[β → γ/α] : σ[β → γ, β → γ/α, δ]

Γ, β:Type, γ:Type, (Γ′[β × γ/α]), x:R(β), y:R(γ) � e×[β × γ/α] : σ[β × γ, β × γ/α, δ]
Γ, β:Type, (Γ′[R(β)/α]), x:R(β) � eR[R(β)/α] : σ[R(β), R(β)/α, δ]

Γ, α:Type, Γ′ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e×, βx.eR) : σ[α/δ]
(α,β, γ
∈ Dom(Γ,Γ′))

Γ � e : R(c) Γ � eint : σ[int/δ]
Γ, β:Type, γ:Type, x:R(β), y:R(γ) � e→ : σ[β → γ/δ]
Γ, β:Type, γ:Type, x:R(β), y:R(γ) � e× : σ[β × γ/δ]

Γ, β:Type, x:R(β) � eR : σ[R(β)/δ]

Γ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e×, βx.eR) : σ[c/δ]
(β, γ
∈ Dom(Γ, Γ′))

