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Traditional Logic

• There are only 2 propositions, 0 and 1.

• Entailment: A ≤ B iff A=1 implies B=1.

• A true iff  1 ≤ A (i.e., A=1)

• A false iff A ≤ 0 (i.e., A=0)

• Truth tables define the connectives.
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Boolean Algebra

• Conjunction defines the meet (aka glb):

• Disjunction defines the join (aka lub).

• Complement: C ≤ ¬A iff C ⋀ A ≤ 0
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Logic As If People Matter

• Standard logic gives no account of how 
knowledge is obtained or communicated.

• A true iff there is a proof of A.

• A false iff there is a refutation of A.

• But what is a proof? 

• When are two proofs the same?
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Truth as Provability

• Connectives are defined by proof conditions:

• Intro: if A true and B true, then A⋀B true.

• Elim: if A⋀B true, then A true and B true.

• A false means A true is refutable.

• A is open iff neither A true nor A false (i.e., A 
has neither a proof nor a refutation).
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Entailment

• A1 true, ..., An true ⊢ B true means there is a 
proof of B, given proofs of A1, ..., An.

• Reflexivity / Identity: Γ, A true ⊢ A true

• Transitivity / Composition:
If Γ ⊢ A true and Γ, A true ⊢ B true, then 
Γ ⊢ B true.

• Irrelevance / Weakening:
If Γ ⊢ B true, then Γ, A true ⊢ B true.
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Provability, Redux

• Rules may be expressed as entailments:

• A⋀B true ⊢ A true

• A⋀B true ⊢ B true

• if C true ⊢ A true and C true ⊢ B true,
then C ⊢ A⋀B true

• Essentially a re-expression of meet conditions!
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Structure of Proofs

• By instrumenting the provability rules we 
obtain a grammar of proof.

• M : A means M is a proof of A

• Structure of M determined by form of A.

• More generally, x1 : A1, ..., xn : An ⊢M : A 
expresses entailment.
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Variables: Algebra of Proof

• Assumption = Reflexivity:
Γ, x:A ⊢ x : A.

• Substitution = Transitivity:
if Γ, x:A ⊢ M : B and Γ ⊢N : A, then 
Γ ⊢[N/x]M : B

• Proliferation = Weakening:
if Γ ⊢ N : B, then Γ, x:A ⊢ N : B.
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Structure of Proofs

• Proof objects for connectives:

• x : A⋀B ⊢ fst x : A

• x : A⋀B ⊢ snd x : B

• if Γ ⊢ M : A and Γ ⊢ N : B, then
Γ |- ⟨M, N⟩ : A⋀B.

• And similarly for other connectives.
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Proof Theory

• Proof theory is the study of these proof objects.

• Considered boring among logicians.

• Of the essence for computer scientists!

• Key idea: proofs are mathematical objects.

• Mechanizable.

• Computational.
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Brouwer’s Dictum

Logic is part of mathematics, rather than mathematics 
being derived %om logic.

• The concept of a construction (program!) is 
the primitive notion.

• Proofs are particular constructions, which is 
to say programs.

• All mathematical objects are constructions.
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Type Theory

• Types classify constructions (programs).

• Specify a problem to be solved.

• Categorize objects of study.

• Types encompass proofs and data.

• All objects are classified by types.
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Propositions as Types

Proposition Type
truth ⊤ 1 unit

falsity ⊥ 0 void

conjunction ⋀ × product

disjunction ⋁ + sum

implication ⊃ → function

nat number
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Propositions as Types

Proposition Type
negation ¬ cont continuation

universal ∀ ∏ product

existential ∃ ∑ sum

necessity ☐ ☐ mobility

possibility ♢ ♢ locality

laxity OA {A} monad
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Logic and Languages

• First dictum: logic and languages coincide.

• Logical concepts suggest and inform 
language concepts, and vice versa.

• Long-term goal is a grand unification of logic 
and computation.

• Second dictum: languages are for people, not 
computers.
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Proof Equivalence

• When are two proofs (programs) the same?

• M = N : A means M and N are the same 
proof of A / program of type A

• Reflexive, symmetric, and transitive, and a 
congruence.

• What are the principles of proof equivalence?

Tuesday, January 24, 12



Gentzen’s Principle

• Introduction and elimination are inverses.

• fst ⟨M,N⟩ = M : A

• snd ⟨M,N⟩ = N : A

• N = ⟨fst M, snd N⟩ : A⋀B

• Local soundness gives rise to an equational 
dynamics of proofs (execution as programs).

“local soundness”

“local completeness”
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Proofs as Maps

• Proofs can be thought of as mappings.

• Γ ⊢ M : A  as map M : Γ ➝ A (given by 
substitution)

• Reflexivity:  id : A ➝ A 

• Transitivity: N ◦ M : A ➝ C 
if M : A ➝ B and N : B ➝ C

• Generalizes pre-orders to categories.
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Lawvere’s Principle

• Maximality generalizes to universality:

• ⟨M,N⟩ : Γ ➝ A⋀B is “universal” among 
M : Γ ➝ A and N : Γ ➝ B

• Pictorially:
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Lawvere’s Principle

• Universality expresses Gentzen equivalences:

• fst ◦ ⟨M, N⟩ = M : A⋀B ➝ A

• snd ◦ ⟨M, N⟩ = N : A⋀B ➝ B

• M = ⟨fst ◦ M, snd ◦ N⟩ : Γ ➝ A⋀B

• Yields an algebra of proofs (and data).

Tuesday, January 24, 12



Equivalence as Structure

• Equivalences are symmetric preorders on maps.

• Maps can be equivalent for different reasons!

• α :: M = N : A means α is evidence for 
equivalence of M and N in A.

• “faces” or “2-cells”: maps between maps.

  α
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Equivalence as Structure

• 2-cells form a groupoid:

• Reflexive: id : M = M : A

• Transitive: β◦α : M = P : A if α : N = P : A 
and β : M = N : A

• Symmetric: α-1 : N = M : A if α : M = N : A

• Groupoid is an “equivalence relation with 
evidence”.
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Equivalences of Equivalences

• Need equivalences between equivalences!

• identity as unit of composition

• associativity of composition

• inverses compose to identity

• 3-cells witness equivalences of 2-cells, and so on 
through all dimensions.

• “(weak) ∞-groupoid”
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Topology of Proofs

• Consider a proposition to be a space of proofs.

• M, N are “points” in the space.

• Equivalences are paths in the space.

• α : M ↝ N : A  deforms M into N

• Higher equivalences are homotopies of paths.

• deformations of deformations
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Functoriality
• Functionality: maps respect equality.

• F M = F N : B   if  M = N : A

• Functoriality: maps act on equivalences:

• resp[α](F) : F M = F N : B   if  α : M = N : A

• action determined by α, a map between M 
and N in A

• automatically respects composition, inverses
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Higher Inductive Types

• Higher inductive definitions:

• I type;  0, 1 : I;  seg : 0 ↝ 1 : I

• S1 type; b : S1;  loop : b ↝ b : S1

• Program by pattern-matching:

• p : I→A given by p 0 = a, p 1 = b, and 
p seg = α : a ↝ b : A

• c : S1→A given by c b = a, c loop = α : b ↝ b : A
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Higher Inductive Types

A

seg : 0 ↝ 1 a ↝ b

loop : b ↝ b : S1
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Logic, Types, Maps, Spaces

• Third dictum: logics and languages may be 
structured as higher categories, a natural setting 
for studying equivalences.

• Fourth dictum: you never know where logic will 
turn up next!

• Personally, I was shocked by the natural 
connection to homotopy theory (though it’s 
quite obvious once you see it).
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The Holy Trinity of PL 
Research
Proof Theory

Type TheoryCategory Theory
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