## Logic and Languages

Robert Harper Programming Languages Mentoring Workshop Philadelphia, January 2012

## Traditional Logic

• There are only 2 propositions, 0 and 1.

• Entailment:  $A \le B$  iff A=1 implies B=1.

- A true iff  $I \leq A$  (i.e., A=I)
- A false iff  $A \le 0$  (i.e., A=0)
- Truth tables define the connectives.

#### • Conjunction defines the *meet*. (aka glb):

Disjunction defines the *join* (aka *lub*).
Complement: C ≤ ¬A iff C ∧ A ≤ 0

#### • Conjunction defines the *meet*. (aka glb):



# Conjunction defines the meet. (aka glb): C AAB AAB B Disjunction defines the join. (aka lub).

• Complement:  $C \leq \neg A$  iff  $C \land A \leq o$ 

# • Conjunction defines the *meet.* (aka glb): C $A \land B$ $A \land B$

• Disjunction defines the join (aka lub).

• Complement:  $C \leq \neg A$  iff  $C \land A \leq o$ 

# Logic As If People Matter

- Standard logic gives no account of how knowledge is obtained or communicated.
  - A true iff there is a proof of A.
  - A false iff there is a refutation of A.
- But what is a proof?
- When are two proofs the same?

#### Truth as Provability

• Connectives are defined by *proof* conditions:

- *Intro*: if A true and B true, then  $A \land B$  true.
- *Elim*: if  $A \land B$  true, then A true and B true.
- A false means A true is refutable.
- A is *open* iff neither A true nor A false (i.e., A has neither a proof nor a refutation).

#### Entailment

- A<sub>1</sub> true, ..., A<sub>n</sub> true ⊢ B true means there is a proof of B, given proofs of A<sub>1</sub>, ..., A<sub>n</sub>.
- Reflexivity / Identity:  $\Gamma$ , A true  $\vdash$  A true
- Transitivity / Composition:
  If Γ ⊢ A true and Γ, A true ⊢ B true, then
  Γ ⊢ B true.
- Irrelevance / Weakening: If  $\Gamma \vdash B$  true, then  $\Gamma$ , A true  $\vdash B$  true.

## Provability, Redux

• Rules may be expressed as entailments:

- $A \land B$  true  $\vdash A$  true
- $A \land B$  true  $\vdash B$  true
- if C true  $\vdash$  A true and C true  $\vdash$  B true, then C  $\vdash$  A \land B true

• Essentially a re-expression of meet conditions!

#### Structure of Proofs

- By instrumenting the provability rules we obtain a *grammar of proof*.
  - M : A means M is a proof of A
  - Structure of M determined by form of A.
- More generally, x<sub>1</sub>: A<sub>1</sub>, ..., x<sub>n</sub>: A<sub>n</sub> ⊢M : A expresses entailment.

## Variables: Algebra of Proof

- Assumption = Reflexivity:
   Γ, x:A ⊢ x : A.
- Substitution = Transitivity: if  $\Gamma$ , x:A  $\vdash$  M : B and  $\Gamma \vdash$ N : A, then  $\Gamma \vdash [N/x]M : B$
- Proliferation = Weakening:
   if Γ ⊢ N : B, then Γ, x:A ⊢ N : B.

#### Structure of Proofs

- Proof objects for connectives:
  - $\mathbf{x} : \mathbf{A} \land \mathbf{B} \vdash \mathbf{fst} \ \mathbf{x} : \mathbf{A}$
  - $\mathbf{x} : \mathbf{A} \land \mathbf{B} \vdash \mathbf{snd} \mathbf{x} : \mathbf{B}$
  - if  $\Gamma \vdash M : A$  and  $\Gamma \vdash N : B$ , then  $\Gamma \vdash \langle M, N \rangle : A \land B$ .
- And similarly for other connectives.

# **Proof Theory**

- Proof theory is the study of these proof objects.
  - Considered boring among logicians.
  - Of the essence for computer scientists!
- Key idea: proofs are mathematical objects.
  - Mechanizable.
  - Computational.

#### Brouwer's Dictum

Logic is part of mathematics, rather than mathematics being derived from logic.

- The concept of a *construction\_ (program!*) is the primitive notion.
- Proofs are particular constructions, which is to say programs.
- All mathematical objects are constructions.

# Type Theory

Types *classify* constructions (programs).
Specify a problem to be solved.
Categorize objects of study.
Types encompass proofs *and* data.
All objects are classified by types.

# Propositions as Types

|              | Proposition | Type          |          |
|--------------|-------------|---------------|----------|
| truth        | Т           | Ι             | unit     |
| falsity      | <u> </u>    | 0             | void     |
| conjunction_ | $\wedge$    | ×             | product  |
| disjunction  | $\vee$      | +             | SUM      |
| implication_ | $\supset$   | $\rightarrow$ | function |
|              |             | nat           | number   |

# Propositions as Types

|             | Proposition | Type       |              |
|-------------|-------------|------------|--------------|
| negation    | 7           | cont       | continuation |
| universal   | A           | Π          | product      |
| existential | Е           | Σ          | sum          |
| necessity   |             |            | mobility     |
| possibility | $\Diamond$  | $\Diamond$ | locality     |
| laxity      | OA          | {A}        | monad        |

## Logic and Languages

• First dictum: logic and languages coincide.

- Logical concepts suggest and inform language concepts, and *vice versa*.
- Long-term goal is a grand unification of logic and computation.
- Second dictum: languages are for people, not computers.

#### Proof Equivalence

• When are two proofs (programs) the same?

- M = N : A means M and N are the same proof of A / program of type A
- Reflexive, symmetric, and transitive, and a congruence.

• What are the principles of proof equivalence?

#### Gentzen's Principle

• Introduction and elimination are inverses.

• fst  $\langle M, N \rangle = M : A$ 

"local soundness"

• snd  $\langle M, N \rangle = N : A$ 

• N =  $\langle \text{fst } M, \text{snd } N \rangle$  : A \lapha B "local completeness"

• Local soundness gives rise to an equational dynamics of proofs (execution as programs).

#### Proofs as Maps

- Proofs can be thought of as mappings.
  - $\Gamma \vdash M : A$  as map  $M : \Gamma \rightarrow A$  (given by substitution)
  - Reflexivity:  $id : A \rightarrow A$
  - Transitivity:  $N \circ M : A \rightarrow C$ if  $M : A \rightarrow B$  and  $N : B \rightarrow C$
- Generalizes pre-orders to categories.

- Maximality generalizes to universality:
  - $\langle M, N \rangle : \Gamma \rightarrow A \land B$  is "universal" among  $M : \Gamma \rightarrow A$  and  $N : \Gamma \rightarrow B$
- Pictorially:

- Maximality generalizes to universality:
  - $\langle M, N \rangle : \Gamma \rightarrow A \land B$  is "universal" among  $M : \Gamma \rightarrow A$  and  $N : \Gamma \rightarrow B$
- Pictorially:



- Maximality generalizes to universality:
  - $\langle M, N \rangle : \Gamma \rightarrow A \land B$  is "universal" among  $M : \Gamma \rightarrow A$  and  $N : \Gamma \rightarrow B$



- Maximality generalizes to universality:
  - $\langle M, N \rangle : \Gamma \to A \land B$  is "universal" among  $M : \Gamma \to A$  and  $N : \Gamma \to B$



• Universality expresses Gentzen equivalences:

- fst  $\circ \langle M, N \rangle = M : A \land B \rightarrow A$
- snd  $\circ \langle M, N \rangle = N : A \land B \rightarrow B$
- M =  $\langle \text{fst} \circ M, \text{snd} \circ N \rangle : \Gamma \rightarrow A \land B$
- Yields an algebra of proofs (and data).

• Equivalences are symmetric preorders on maps.



Ĵα

- α :: M = N : A means α is evidence for equivalence of M and N in A.
- "faces" or "2-cells": maps between maps.

• Equivalences are symmetric preorders on maps.



α

- α :: M = N : A means α is evidence for equivalence of M and N in A.
- "faces" or "2-cells": maps between maps.

• Equivalences are symmetric preorders on maps.



- Maps can be equivalent for different reasons!
  - α :: M = N : A means α is evidence for equivalence of M and N in A.
  - "faces" or "2-cells": maps between maps.

• Equivalences are symmetric preorders on maps.



- Maps can be equivalent for different reasons!
  - α :: M = N : A means α is evidence for equivalence of M and N in A.
  - "faces" or "2-cells": maps between maps.

• Equivalences are symmetric preorders on maps.



- Maps can be equivalent for different reasons!
  - α :: M = N : A means α is evidence for equivalence of M and N in A.
  - "faces" or "2-cells": maps between maps.

- 2-cells form a groupoid:
  - Reflexive: id : M = M : A
  - Transitive:  $\beta \circ \alpha : M = P : A \text{ if } \alpha : N = P : A$ and  $\beta : M = N : A$
  - Symmetric:  $\alpha^{-1}$ : N = M : A if  $\alpha$  : M = N : A
- Groupoid is an "equivalence relation with evidence".

#### Equivalences of Equivalences

- Need equivalences between equivalences!
  - identity as unit of composition
  - associativity of composition
  - inverses compose to identity
- 3-cells witness equivalences of 2-cells, and so on through all dimensions.
  - "(weak) ∞-groupoid"

# **Topology of Proofs**

- Consider a proposition to be a space of proofs.
  - M, N are "points" in the space.
- Equivalences are *paths* in the space.
  - $\alpha : M \rightarrow N : A$  deforms M into N
- Higher equivalences are *homotopies of paths*.
  - deformations of deformations

#### Functoriality

- Functionality: maps respect equality.
  - FM = FN : B if M = N : A
- Functoriality: maps act on equivalences:
  - resp[ $\alpha$ ](F) : F M = F N : B if  $\alpha$  : M = N : A
  - action determined by α, a map between M and N in A
  - automatically respects composition, inverses

# Higher Inductive Types

- Higher inductive definitions:
  - I type; 0, 1: I; seg :  $0 \rightarrow 1: I$
  - $S^{I}$  type;  $b : S^{I}$ ; loop :  $b \rightarrow b : S^{I}$
- Program by pattern-matching:
  - $p: I \rightarrow A$  given by  $p \circ = a, p I = b$ , and  $p seg = \alpha : a \rightarrow b : A$
  - $c: S^{I} \rightarrow A$  given by  $c b = a, c loop = \alpha : b \rightarrow b : A$

# Higher Inductive Types

 $a \rightarrow b$ 

 $loop: b \rightarrow b: S^{I}$ 

seg:  $0 \rightarrow I$ 

Tuesday, January 24, 12

# Logic, Types, Maps, Spaces

- *Third dictum:* logics and languages may be structured as *higher categories*, a natural setting for studying equivalences.
- *Fourth dictum:* you never know where logic will turn up next!
  - Personally, I was shocked by the natural connection to homotopy theory (though it's quite obvious once you see it).

# The Holy Trinity of PL Research

Proof Theory



Type Theory

Tuesday, January 24, 12