
8/24/06 1

Boxes Go Bananas:
Parametric Higher-Order

Abstract Syntax in System F
Stephanie Weirich

University of Pennsylvania

Joint work with Geoff Washburn

8/24/06 2

Catamorphisms

• Catamorphisms (bananas --) are “folds” over
datastructures.
– foldr on lists is the prototypical catamorphism.

• Many useful operations can be expressed as
catamorphisms (filter, map, flatten…).

• Using catamorphisms means that you can reason
about programs algebraically.

• Problem: how do we implement catamorphisms
over data structures that contain functions?

8/24/06 3

Overview of talk

• If the functions in the datatype are
parametric, then there is an easy way to
define the catamorphism.

• Previous work: use a special-purpose type
system to guarantee parametricity.

• Today: use Haskell + first-class
polymorphism for the same task.

• Nice connections with previous work.

8/24/06 4

Datatypes with Functions

• Untyped ¸-calculus in Haskell
data Exp = Var String
 | Lam String Exp
 | App Exp Exp

• With this datatype we need to write tricky
code for capture avoiding substitution.

• Alternative: Higher-Order Abstract Syntax
(HOAS).

8/24/06 5

Higher-Order Abstract Syntax

• Old idea – goes back to Church.
• Implement bindings in the object language using

meta-language bindings.
data Exp = Lam (Exp -> Exp)
 | App Exp Exp

• Examples:
– Lam(\x -> x)
– App (Lam (\x -> App x x))
 (Lam (\x -> App x x))

• Substitution is function application.

8/24/06 6

Bananas in Space

• Meijer and Hutton extended classic “Functional
Programming with Bananas, Lenses, Envelopes
and Barbed Wire” to support datatypes with
embedded functions, such as HOAS.

• Define catamorphism by simultaneously defining
its inverse, the anamorphism.

• Problem: many functions do not have obvious or
efficient inverses.
– Inverse of hash function?
– Inverse of pretty-print requires parsing.

8/24/06 7

Bananas in Space
data ExpF a = App a a | Lam (a -> a)
data Exp = Roll (ExpF Exp)

app :: Exp -> Exp -> Exp
app x y = Roll (App x y)
lam :: (Exp -> Exp) -> Exp
lam x = Roll (Lam x)

cata :: (ExpF a -> a) -> (a -> ExpF a)
 -> Exp -> a

Recursive type
is fixed point of

ExpF

Use ExpF in types
of args to cata.

8/24/06 8

Example: Evaluation
data Value = Fn (Value -> Value)

eval :: Exp -> Value
eval = cata f g where

f :: ExpF Value -> Value
f (App (Fn x) y) = x y
f (Lam x) = Fn x
g :: Value -> ExpF Value
g (Fn x) = Lam x

8/24/06 9

Bananas in Space
cata :: (ExpF a -> a) -> (a -> ExpF)
 -> Exp -> a

cata f g (app x y) =
 f (App (cata f g x) (cata f g y))

cata f g (lam x) =
 f (Lam ((cata f g) . x . (ana f g)))

ana :: (ExpF a -> a) -> (a -> ExpF)
 -> a -> Exp

x :: Exp -> Exp

8/24/06 10

Programs from Outer Space

• If the function is parametric, the inverse
only undoes work that will be redone later.

• Fegarus & Sheard: don’t do the work to
begin with.

• Introduce a placeholder:
data Exp a = Roll (ExpF (Exp a))
 | Place a

• Parameterize Exp with the result type of
catamorphism.

8/24/06 11

Catamorphisms with Place

• Catamorphism
cata :: (ExpF a -> a) -> Exp a -> a
cata f (app x y) =
 f (App (cata f x) (cata f y))
cata f (lam x) =
 f (Lam (cata f) . x . Place)
cata f (Place x) = x

8/24/06 12

An Example

countvar :: Exp Int -> Int
countvar = cata f

f :: ExpF Int -> Int

f (App x y) = x + y
f (Lam f) = f 1

x,y :: Int

f :: Int -> Int

8/24/06 13

Evaluation of countvar
countvar (lam (\x -> app x x))
= cata f (lam (\x -> app x x))
= f (Lam ((cata f) .
 (\x -> app x x) . Place))
= ((\x -> cata f (app (Place x)(Place x))
 1)
= cata f (app (Place 1)(Place 1))
= f (App (cata f (Place 1))
 (cata f (Place 1)))
= (cata f (Place 1)) + (cata f (Place 1))
= 1 + 1
= 2

8/24/06 14

Only for parametric datatypes
• Infinite Lists (in an eager language).

data IListF a = Cons Int a
 | Mu (a -> a)
cons x y = Roll (Cons x y)
mu x = Roll (Mu x)

• List of ones
ones = mu (\x -> cons 1 x)

• Alternating 1’s and 0’s
onezero = mu (\x -> cons 1 (cons 0 x))

8/24/06 15

Using Infinite Lists

• Catamorphism
cata :: (IListF a -> a) -> IList a -> a
cata f (cons i l) = f (Cons i (cata f l)))
cata f (mu x) = f (Mu (cata c . x . Place))
cata f (Place x) = x

• Map
map :: (Int -> Int) -> IList a -> IList a
map f = cata (\x -> case x of
 Cons i tl -> cons (f i) tl
 Mu y -> Mu y)

8/24/06 16

Infinite List Example
• Define the natural numbers as

nat = Mu(\x -> Cons(1, map (\y -> y + 1) x))

• Define even numbers by mapping again?
map (\z -> 2*z)

 (Mu(\x -> Cons(1, map (\y -> y + 1) x))) Ã
Mu(\x ->
 Cons(2, map (\z -> 2*z)

 (map (\y -> y + 1) (Place x)))) Ã
Mu(\x -> Cons(2, map (\z -> 2*z) x))

• This isn’t the list of evens, it is the powers of two!

This function is not
parametric in x.

Place from outer
map consumed by

inner map

8/24/06 17

What happened?

• When outer catamorphism introduced a
Place, it was incorrectly consumed by the
inner catamorphism.

• The problem is that Mu’s function isn’t
parametric in its argument.

• Using Place as an inverse can produce
incorrect results when the embedded
functions are not parametric.

8/24/06 18

Catamorphisms over
non-parametric data

• Is this a problem?
– Algebraic reasoning only holds for parametric data

structures.
– Can’t tell whether a data structure is well formed from

its type.
• Fegarus and Sheard’s solution:

– Make cata primitive—the user cannot use Place.
– Tag the type of datastructures that are not parametric.
– Can’t use cata for those datatypes.

8/24/06 19

Using Parametricity to Enforce
Parametricity

• Our solution: “Tag” parametric datatypes
with first-class polymorphism.

• Doesn’t require a special type system -- can
be implemented in off-the-shelf languages.
– Implemented in Haskell.
– Also possible in OCaml.

• Allows algebraic reasoning.

8/24/06 20

Intuition

• An expression of type forall a. Exp a cannot
contain Place as that would constrain a.

lam :: (Exp a -> Exp a) -> Exp a
app :: Exp a -> Exp a -> Exp a

lam (\x -> app (Place int) x) :: Exp Int

8/24/06 21

Iteration over HOAS

• Restrict argument of iteration operator to
parametric datatypes
iter :: (ExpF b -> b) ->
 (forall a. Exp a) -> b

• In an expression (lam (\x -> …)) can’t
iterate over x because it doesn’t have the
right type.
lam :: (Exp a -> Exp a) -> Exp a

8/24/06 22

Non-parametric Example

• What if we wanted a non-parametric datatype?
cata :: (ExpF a -> a) -> Exp a -> a
countvar :: Exp Int -> Int

• Lack of parametricity shows up in its type.
badexp :: Exp Int
badexp =
lam (\x ->
 if (countvar x) == 1
 then app x x else x)

8/24/06 23

Open Terms

• We have only discussed representing closed ¸-
terms. How do we represent open terms?

• Abstraction is used to encode variable binding in
the object language.

• Use the same mechanism for free variables. Term
with a free variable is a function.
(forall a. Exp a -> Exp a)

• We can represent ¸-terms with an arbitrary number
of free variables using a list.
(forall a. [Exp a] -> Exp a)

8/24/06 24

Iteration for arbitrary type
constructors

• Problem: iter0 only operates on closed terms of
the ¸-calculus.

• iter1 operates on expressions with one free
variable.
iter1 ::
 (ExpF b -> b) ->
 (forall a. Exp a -> Exp a) ->
 (b -> b)

8/24/06 25

An Example with Open Terms

freevarused ::
 (forall a. Exp a -> Exp a) -> Bool
freevarused e =
 (iter1 (\x ->
 case x of
 (App x y) -> x || y
 (Lam f) -> f False))
 e
 True

8/24/06 26

Generalizing Iteration Further

• Why not iterate over a list of expressions too?
 iterList ::(ExpF b -> b) ->
 (forall a. [Exp a]) -> [b]

• There are an infinite number of iteration functions
we might want.

• Define a single function by abstracting over the
type constructor g.
iter ::(ExpF b -> b) ->
 (forall a. g (Exp a)) -> g b

• No analogue in Fegarus and Sheard’s system.

8/24/06 27

Implementation of iter

• Can implement all datatypes and iteration
operators and in System F
– Variant of Church encoding.
– Don’t need explicit recursive type.
– This implementation has several nice

properties.

8/24/06 28

Properties of Iteration

• Iteration is strongly normalizing.
– Arg to iter must also be expressible in System F.

• Fusion Law, follows from free theorem:
– If f, f’ are strict functions such that
 f . f’ = id
 and
 f . g = h . bimap(f,f’)
– Then
 f . iter0 g = iter0 h.

Map for datatypes
with embedded

functions

8/24/06 29

Connection with Previous Work

• How does this solution to the calculus of
Schürmann, Despeyroux, and Pfenning ?

• The SDP calculus:
– Enforces parametricity using modal types.
– Was developed for use in logical frameworks.
– Was the inspiration for our generalized iteration

operator.

8/24/06 30

Modal Types

• Boxed types (□¿) correspond to modal
necessity in logic via the Curry-Howard
Isomorphism.
– Propositions are necessarily true if they are true

in all possible worlds.
• Used in typed languages to:

– Describe terms that contain no free variables.
– Express staging properties of expressions.
– Enforce parametricity of functions.

8/24/06 31

Modal Types

• Two contexts, ¢ and ¡, for assumptions that
are available in all worlds and those in the
present world.

• Introduction

• Elimination

¢ ; ` M : ¿
¢;¡ ` box M : □¿

¢;¡ ` M1 : □¿1

¢;¡ ` let box x = e1 in e2 : ¿2

¢, x: ¿1;¡ ` M2 : ¿2

8/24/06 32

Modal Parametricity

• SDP enforces parametricity by distinguishing
between “pure” and “impure types”.

• Pure types are those that do not contain boxed
types.
– Exp is a type constant like int (and therefore pure).
– Term constants for data constructors
 app : Exp ′ Exp → Exp, lam : (Exp → Exp) → Exp

• Only allow iteration over terms of boxed pure
type. □Exp, □(Exp → Exp), etc.

8/24/06 33

Enforcing Parametricity

• ¸-abstractions have the form:
lam (¸x:Exp.
 ….
)

• Because x does not have a boxed type, it
cannot be analyzed.

• Cannot convert x to a boxed type because it
will not be in scope inside of a box
expression.

8/24/06 34

Example in SDP

countvar = ¸x:□Exp.
 iter[int][app)
 ¸x:int£int. (fst x) + (snd x),
 lam)
 ¸f:int ! int. f 1] x

8/24/06 35

Connection with Our Work

• We can encode the SDP calculus into System F
using our iteration operator.
– Very close connection: SDP iter translates to our

generalized iter.
• Intuition:

– Uses universal quantification to explain modality, as in
Kripke semantics.

– Term translation parameterized by the “current world”.
– Terms in Δ are polymorphic over all worlds. Must be

instantiated with current world when used.
– i.e. encode □Exp as (forall a. Exp a)

8/24/06 36

Properties of the Encoding

• Static correctness
– If a term is well-typed in the SDP calculus, its

encoding into System F is also well-typed.
• Dynamic correctness

– If M evaluates to V in SDP and M translates to
e and V translates to e’, then e is ¯´-equivalent
to e’.

8/24/06 37

Future Work -- Case Analysis

• There are some functions over datatypes
that cannot be written using catamorphisms.
– Testing that an expression is a ¯-redex.

• SDP introduces a distinct case operator.
– Theory is complicated.
– Not obvious whether it can be encoded as we

did for iteration.
• Fegarus and Sheard also have a limited

form of case.

8/24/06 38

Future Work -- coiter
• Consider the dual to iteration that produces terms

with diamond type (modal possibility).
data Dia a = Roll (ExpF (Dia a), a)
coiter0 :: (a -> f a)
 -> a -> (exists a. Dia a)

– Existentials correspond to diamonds (exists a world).
• Is coiteration analogous to anamorphism as iteration

is to catamorphism?
• Not obvious how to use coiter

– Elimination form for possibility only allows use in another
term with a diamond type.

– If we could use iteration on the result it would allow for
general recursion.

8/24/06 39

Conclusions

• Datatypes with embedded functions are
useful.
– Killer app: HOAS

• Easier to iterate over parametric datatypes.
• Do not need tagging or modal necessity for

to enforce parametricity -- first-class
polymorphism is sufficient.

• Can be implemented entirely in System F.
• Provides an interpretation of modal types.

8/24/06 40

8/24/06 41

Implementation in Haskell

• Encode datatypes using a variation on
standard trick for covariant datatypes in
System F. Encode as an elimination form.
type Exp a = (ExpF a -> a) -> a

• Generalize our interface from ExpF to
arbitrary type constructors f.
type Rec f a = (f a -> a) -> a
type Exp a = Rec ExpF a

8/24/06 42

Implementation in Haskell

• Encoding datatypes as as elimination forms.
• Implement roll so that given an

elimination function, it invokes iteration.
roll :: f (Rec f a) -> Rec f a
roll x = \y -> y (openiter y x)

• Here openiter maps iteration over x.
openiter :: (f a -> a)
 -> g (Rec f a) -> g a

• How do we implement openiter?

8/24/06 43

Implementation in Haskell
• Because we defined datatypes as their elimination form,

basic iteration is just function application.
openiter0 :: (f a -> a) -> Rec f a -> a
openiter0 x y = y x

• The most general type assigned by Haskell doesn’t enforce
parametricity, so annotation is needed.
iter0 ::
 (f a -> a) -> (forall b. Rec f b) -> a
iter0 = openiter0

• Still need to generalize to arbitrary datatypes.

8/24/06 44

Implementation in Haskell
• To implement the most general form of iter, we

need a mechanism to map over datatypes.
• We can define this function using a polytypic

programming. In Generic Haskell:
 xmap{| f :: * -> * |} ::
 (a -> b, b -> a) ->
 (f a -> f b, f b -> f a)

• xmap generalizes map to datatypes with positive
and negative occurrences of the recursive variable.

• Just syntactic sugar, we could implement this
directly in Haskell.

8/24/06 45

Example Instantiation of xmap

• Expansion of xmap{|ExpF|} :
xmapExpF ::
 (a -> b, b -> a) ->
 (ExpF a -> ExpF b, ExpF b -> ExpF a)
xmapExpF (f,g) (App t1 t2) =
(App (f t1) (f t2), App (g t1) (g t2))
xmapExpF (f,g) (Lam t) =
(Lam (f . t . g), Lam (g . t . f))

8/24/06 46

Implementation in Haskell

• Lift openiter0 to all regular datatypes using
xmap:
 openiter{| g : * -> * |} ::
 (f a -> a) -> g (Rec f a) -> a
openiter{| g : * -> * |} x =
 fst (xmap{|g|} (openiter0 x, place))

• But we need an inverse to openiter0 for xmap.
Terms are parametric, so we can use the place
trick.
place :: a -> Rec f a
place x = \y -> x

8/24/06 47

Implementation in Haskell

• Finally, iter is just openiter with the
appropriate type annotation:

iter{| g : * -> * |} ::
 (f a -> a) ->
 (forall b. g (Rec f b))-> g a
iter{| g : * -> * |} = openiter{|g|}

8/24/06 48

Pretty-Printing with Place

• Pretty-printing expressions
 vars = [i ++ show j | i <- ["a" .. "z"] |
 j <- [1..]]
 showexp :: Exp String -> String
 showexp e =
 (cata
 (\x y -> \vars ->
 "(" ++ (x vars) ++ " " ++ (y vars) ++ ")")
 (\f -> \(v:v’) ->
 "(\ " ++ v ++ "." ++
 (f (\vars -> v) v’) ++ ")")
 e) vars

8/24/06 49

HOAS Interface in Haskell

• Concentrate on the interface for now.
data ExpF a = Lam (a -> a)
 | App a a
type Exp a
roll :: ExpF (Exp a) -> Exp a

• Exp is the fix-point of ExpF.
• Use roll to coerce into Exp.

8/24/06 50

HOAS in Haskell

• Provide helpers to hide roll.
lam :: (Exp a -> Exp a)-> Exp a
lam x = roll (Lam x)
app :: Exp a -> Exp a -> Exp a
app x y = roll (App x y)

• How do we iterate over an HOAS expression
implemented as Exp?

8/24/06 51

Broken Example Continued

• What happens if we try to use baditer0 on
badexp?
baditer0 countvar_aux badexp

• Get 2? Does this make sense? badexp
actually contains four variables.

• Can’t pretty-print badexp, would need type
Exp String.

8/24/06 52

Broken Example Continued

• Doesn’t actually correspond to a term in ¸-
calculus.

• badexp makes assumptions about its type
argument forcing it to be Exp Int instead
of Exp a.

• Problem doesn’t exist with iter0 because
it enforces parametricity.

• If we used iter0 the previous example
wouldn’t type check.

8/24/06 53

Overview of Encoding SDP

• Parameterize the encoding by a “world”,
implemented as a type.

• As for our Haskell implementation, encode
datatypes as their elimination form.
– b I¿ (§* ¿ ! ¿) ! ¿ encoding of the base type.
– §* encoding of a signature, ¿ the present world.

• Use type abstraction to enforce parametricity.
– If ¿1 I® ¿2 then □¿1 I¿ 8®.¿2
– Boxed terms can be viewed as functions from an

arbitrary world to a well-typed term.

8/24/06 54

Encoding SDP Terms

• Return to our running example.
 § = app : b £ b ! b, lam : (b ! b) ! b

• Signature encoded as variant type constructor:
§*= ¸®.happ : ® £ ®, lam : ® ! ®i

• Encoding the constructors:
– app B¿ ¸x: ((§* ¿ ! ¿) ! ¿)£((§* ¿ ! ¿) ! ¿).
 roll(injappx of §* ¿)
– lam B ¿ ¸x: ((§* ¿ ! ¿) ! ¿) !((§* ¿ ! ¿) ! ¿).
 roll(injlamx of §* ¿)

8/24/06 55

Encoding SDP Terms

• Encoding a use of iteration:
(countvar = ¸x:□b.
 iter[int][app)¸x:int£int. (fst x) + (snd x),
 lam)¸f:int ! int. f 1] x) B ¿
 (countvar = ¸x: 8®.((§* ® ! ®) ! ®).
 iter{|¸®. ®|}[int] (¸y:§* int. case y
 of injapp u) (¸x:int£int. (fst x) + (snd x)) u
 | injlam v) (¸f:int ! int. f 1) v) x)

