
Machine Assistance for Programming
Language Research

Stephanie Weirich

2

Changes in PL Research

•  Increasing complexity of language features

being considered

–  E.g., module systems, dependently typed

programming, types ensuring resource bounds or
deadlock freedom, …

•  Increasing concern for scale and integration

•  Decreasing cycle time for tech transfer

–  Extensions to production languages

•  e.g., generics in Java/C#

–  Adoption of research languages

•  e.g. (OCaml, F#, Haskell, Scheme)

Big changes in the way
proofs are communicated…

3

The State of the Art

Chen and Tarditi,"
A Simple Typed Intermediate Language for Object-
Oriented Languages,"
Principles of Programming Languages (POPL),
2005

The State of the Art

4

5

We’ve Got a Problem Here

•  As a practical matter, a large fraction of

the proofs being done about
programming languages today are not
possible for humans to check.

!

6

Are Proof Checkers the Answer?

•  Proof checking (or “proof assistant”)

technology has made amazing strides
in recent years

– Several mature systems

• E.g., Coq, HOL, Isabelle, Twelf, MetaPRL, etc.,
etc.

– Some very impressive achievements in
several domains

7

A Marriage Made in Heaven

So we’ve got…

A.  A community with a burning need

B.  A community with a great technology

Can we put them together?

8

Lots of Work Already Underway

•  Leroy’s verified C compiler

•  Nipkow et al’s formalization of a large part of

Java

•  Appel et al’s Foundational Proof-Carrying

Code project

•  Crary et al’s machine-checked development

of a typed assembly language

•  Harper et al’s formalization of Standard ML

•  Sewell et al’s formalization of TCP/IP

•  Etc., etc.

9

But We’re Not There Yet!

Challenges:

–  Current achievements are mostly heroic efforts by
heroic individuals and small teams

–  Many different proof assistants and diverse
technical machinery

–  Lots of black magic; high cost of entry; little
sharing of knowledge across projects

–  Some significant unresolved technical issues

•  Lightweight methods for reasoning about variable binding

•  Scalability and modularity of proofs

What’s needed is some synergy…

10

Vision

A world where every PL paper is accompanied

by a machine-checked appendix

•  Plan:

–  Identify current best practices

–  Gather community consensus around them

–  Build additional tools and other infrastructure as
needed

–  Address technical challenges specific to
programming language research

First step…

11

The PoplMark Challenge

•  A set of benchmark problems to help

evaluate progress in the area

–  Based around metatheory of F<:, a typed lambda-

calculus with polymorphism and subtyping

–  Presented at TPHOLs 2005

•  Has generated tremendous interest in both
PL and theorem proving communities

–  many solutions submitted

–  6 different proof assistants

–  7 different treatments of binding

•  Much has been learned

–  JAR special issue CFP now open

12

Community Development

•  Wiki & Mailing list for POPLmark challenge

–  Gathering place for news/solutions/discussion/
advice

•  Workshop on Mechanizing Metatheory

–  4th Wksp, 4 Sep 2009, Edinburgh

•  Using Proof Assistants for Programming
Language Research !
or, How to write your next POPL paper in Coq

–  Tutorial for novices

–  POPL tutorial, January, 2008

–  Oregon Summer School, June 2008

Engineering Formal Metatheory

14

Resolving technical issues

•  Engineering Formal Metatheory

–  Brian Aydemir, Arthur Charguéraud, Benjamin
Pierce, Randy Pollack, and Stephanie Weirich

–  POPL 2008

•  Describes a lightweight first-order
methodology for representing binding and
specifying induction principles

•  Two essential components:

–  Locally nameless representation

–  Cofinite name quantification

What is so hard about binding?

•  Alpha-equivalence

–  Identify "λx.x" and "λy.y"

• Barendregt convention

– Assumption that bound variables are

"sufficiently fresh"

Inductive exp : Set := 	
 | var : atom -> exp	
 | abs : atom -> exp -> exp	
 | app : exp -> exp -> exp.

Alpha-equivalence

•  Important when we need to compare terms

with binding structure:

–  Type system of polymorphic language

–  Confluence for pure lambda calculus

•  Formalism simpler if alpha-equals is "="

Lemma preservation: forall G e t,	
 typing G e t -> red e e' -> 	
 exists t', alpha_eq t t' /\	
 typing G e' t'.	

Lemma preservation: forall G e t,	
 typing G e t -> red e e' -> typing G e' t.	

Barendregt Convention

Fixpoint subst (x:atom) (u:exp) (e:exp)
{struct e} :=	

match e with 	
 | var y => if x == y then u else e 	
 | app t1 t2 => app (subst x u t1) 	
 (subst x u t2)	
 | abs z t => abs z (subst x u t)	
end.	

•  What if z == x?

•  What if z in free variables of u?

Existing approaches

• No completely satisfactory mechanism

for binding

‒  Name representation: must explicitly

rename terms, define alpha-equivalence
– de Bruijn indices: difficult to work with as

must shift indices

– Nominal logic: only available in Isabelle/

HOL

– HOAS: exotic terms, specialized logic

18

Names for free variables

de Bruijn indices for bound variables

Example: Untyped lambda calculus terms

t ::= bvar i | fvar x | app t1 t2 | abs t

 λx. λy. (x y) z and λw. λv. (w v) z
represented as

 abs (abs (app (app (bvar 1) (bvar 0)) (fvar "z")

19

Locally nameless representation

Inductive exp : Set := 	
 | bvar : nat -> exp	
 | fvar : atom -> exp	
 | abs : exp -> exp	
 | app : exp -> exp -> exp.

20

Basic operations

•  Variable opening

tu replace bound index 0 with exp u

•  Free variable calculation

FV t finite set of free atoms in t

•  Substitution

[x ↦ u]t replace free variable x with u

•  All operations have simple definitions.

Variable opening

Fixpoint open_rec (k : nat) (f : exp) 	
 (e : exp) {struct e} : exp :=	
 match e with	
 | bvar i => if k === i then f else e	
 | fvar x => fvar x	
 | abs e1 => 	
 abs (open_rec (1 + k) f e1)	
 | app e1 e2 => app (open_rec k f e1)	
 (open_rec k f e2)	
end.	

Notation "e ^ u" := (open_rec 0 u e).	

Free variable substitution

Fixpoint subst (z : atom) (u : exp) 	
 (e : exp) {struct e} : exp :=	
 match e with	
 | bvar i => bvar i	
 | fvar x => if x == z then u else e	
 | abs T e1 => abs T (subst z u e1)	
 | app e1 e2 => app  
 (subst z u e1) (subst z u e2)	

end.

Free variable calculation

Fixpoint fv (e : exp)	
 {struct e} : atoms :=	
 match e with	
 | bvar i => {}	
 | fvar x => singleton x	
 | abs e1 => (fv e1)	
 | e1 e2 => (fv e1) 	
 `union` (fv e2)

24

Local closure

•  Not all members of type term are lambda

calculus terms

–  abs (bvar 3)?

•  Predicate lc picks out members datatype that
are locally-closed

•  Definitions respect local closure

–  If lc u and lc t, then lc ([x ↦ u]t)
–  If t  t' then lc t and lc t'

25

Managing local closure

•  Many theorems need not refer to local closure

–  If t  t' and t  t'', then t' = t''

•  Some theorems require it, tactics discharge

assumptions

–  If x ≠ y and lc u, then

[x ↦ u](t y) = ([x ↦ u]t)y

Induction principles

Definition of typing rules generates an induction

principle for typing derivations

ok E (x:T) ∈ E
E ⊢ fvar x : T

E ⊢ t1 : S → T E ⊢ t2 : S
E ⊢ app t1 t2 : T

x ∉ FV t ∪ dom(E) E,x:S ⊢ tx : T
E ⊢ abs t : S → T

Exists vs. Cofinite Quantification

Induction hypothesis holds for some particular,
unknown x

Induction hypothesis holds for all but some finite
set of variables.

x ∉ FV t ∪ dom(E) E,x:S ⊢ tx : T
E ⊢ abs t : S → T

∀x ∉ L E,x:S ⊢ tx : T
E ⊢ abs t : S → T

Weakening Lemma

If E, G ⊢ t : T and ok (E , F , G) "

then E, F, G ⊢ t : T

28

x ∉ FV t ∪ dom(E,G) E,G,x:S ⊢ tx : T
E,G ⊢ abs t : S → T

Proof (?):

 by induction on E,G ⊢ t : T
 Abstraction case:

 WTP E,F,G ⊢ abs t : S → T
 By typing rule, holds if E,F,G,x:S ⊢ tx :T

 and x ∉ FV t ∪ dom(E,F,G)

Weakening Lemma

If E, G ⊢ t : T and ok (E , F , G) "

then E, F, G ⊢ t : T
Proof: by induction on E,G ⊢ t : T
 abstraction case:

29

∀x ∉ L E,G,x:S ⊢ tx : T
E,G ⊢ abs t : S → T

 WTP: E,F,G ⊢ abs t : S → T
 By rule, holds if exists a set L', such that "
 ∀x ∉ L', E,F,G,x:S ⊢ tx :T
 IH: ∀x ∉ L, ok (E,F,G, x:S) => E,F,G,x:S ⊢ tx : T

 Choose L' = dom (E,F,G) ∪ L

 By definition, ∀x∉ L', ok (E,F,G,x:S)

30

Renaming lemma

•  Similar reasoning proves substitution lemma

If E, x:S, F ⊢ t : T and E ⊢ u : S
then E,F ⊢ [z ↦ u]t : T

•  Important corollary of substitution and
weakening"

Renaming:

If x ∉ FV t ∪ dom E and E, x:S ⊢ tx : T

 then for all y ∉ FV t ∪ dom E, E, y:S ⊢ ty:T

Corollaries of renaming

• Renaming lemma gives strongest intro

form:

 If exists x, s.t. x ∉ FV t ∪ dom E and "
 E, x:S ⊢ tx : T then E ⊢ abs t : S → T

•  And strongest inversion principle:

 If E ⊢ abs t: S → T then

 for all x ∉ FV t ∪ dom E, E, x : S ⊢ tx : T

31

Equivalence of systems

• Renaming lemma also shows

equivalence of two systems:

 E ⊢ t : T with exists-fresh rule for abs "
if and only if

 E ⊢ t : T with cofinite rule for abs

• We are proving properties about the
language we actually care about!

32

33

General Form of Development

•  Def. of language syntax

•  Def. of variable opening and local closure
•  Def. of free variable substitution
•  Def. of free variable function

•  Interaction lemmas

•  Def. of semantic relations using cofinite

quantification for binders

•  Show semantic relations respect local closure

•  Substitution and weakening lemmas for each relation

w/ binding

•  Preservation and Progress

•  Derive renaming lemmas

34

Code Distribution

• Reference examples & supporting

experience

– multiple calculi (STLC, F<:, CoC)

– multiple theorems (type soundness,

confluence)

•  A library that supports this
methodology

–  atoms, finite sets

–  reasoning about freshness

–  representing environments

Let's look closer at POPLmark…

Fsub_Definitions.v

Fsub_Infrastructure.v

Fsub_Lemmas.v

Fsub_Soundness.v

syntax of types and
terms, defn. of typing

relation…

facts about

syntax, substitution…

facts about well-
formedness,

environments…

Substitution lemma,
preservation, progress…

"The TCB"

"The overhead"

"Things we should have proved
on paper but didn't"

"The meat"

syntax

open

local
closure

typing &

subtyping

operational"
semantics

automation hints

environments

Fsub_Definitions.v

Fsub_Infrastructure.v

Basic operations"
 (fv and subst)

Tactic to choose

fresh atoms

Properties of open,

 fv and subst

Properties of subst

and local closure

Fsub_Lemmas.v

hints about local

closure

type "
well-formedness

environment "
well-formedness

substitution in

environments

regularity of"
relations

Fsub_Soundness.v

1

2

3
 10

5

6

7

8

11

13

20

14

16

Proofs of lemmas from the Appendix of
POPLmark paper

progress

preservation

Comparison POPLmark 1A

Author
 Binding
 Lemmas
 Proof steps

Vouillon
 de Bruijn
 30
 402

Leroy
 Locally nameless
 49
 495

Stump
 Levels/names
 56
 938

Hirschowitz &
Maggesi

de Bruijn (nested
datatype)

49
 1574

Chlipala
 Locally nameless
 23
 75

This work
 Locally nameless
 22
 101

40

McKinna & Pollack Rule

Exists-fresh: IH holds for some fresh x

Cofinite: IH holds for all but some unknown set

x ∉ FV t ∪ dom(E) E,x:S ⊢ tx : T
E ⊢ abs t : S → T

∀x ∉ L E,x:S ⊢ tx : T
E ⊢ abs t : S → T

∀x ∉ FV t ∪ dom(E) E,x:S ⊢ tx : T
E ⊢ abs t : S → T

Forall-fresh: IH holds for all fresh variables

Forall vs. Cofinite

Define system with
forall-fresh rules

Define swapping and
show relations are
stable under swapping

Prove weakening and
substitution

Show exists-fresh intro

Prove type soundness

Define system with
cofinite rules

Prove weakening and
substitution

Show exists-fresh intro

Prove type soundness

43

Conclusions

•  Can use Coq's standard mechanisms for

reasoning (inductive defs, tactics, etc.)

•  Swapping does not appear to be essential.

•  Seldom need to rename during proofs. IH
applies to an infinite # of suitably fresh
variables.

•  Specialized tactics help

–  local closure obligations

–  fresh variable introduction

44

Thanks to

Brian Aydemir

Arthur Charguéraud (INRIA)

Randy Pollack (Edinburgh)

Peter Sewell (Cambridge)

Aaron Bohannon
Matthew Fairbairn (Cambridge)
J. Nathan Foster
Benjamin Pierce
Jeffrey Vaughan
Dimitrios Vytiniotis
Geoffrey Washburn
Steve Zdancewic

Vouillon / de Bruijn indices

Fixpoint subst (t : term) (x : nat) (t' : term)

{struct t} : term :=	
 match t with	
 | var y =>	
 match lt_eq_lt_dec y x with	
 | inleft (left _) => var y	
 | inleft (right _) => t'	
 | inright _ => var (y - 1)	
 end	
 | abs T1 t2 => 	
 abs T1 (subst t2 (1 + x) (shift 0 t'))	
 | app t1 t2 => app (subst t1 x t')	
 (subst t2 x t')	
 | tabs T1 t2 => tabs T1 	
 (subst t2 x (shift_typ 0 t'))	
 | tapp t1 T2 => tapp (subst t1 x t') T2	
 end.

