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Changes in PL Research

•  Increasing complexity of language features 

being considered

–  E.g., module systems, dependently typed 

programming, types ensuring resource bounds or 
deadlock freedom, …


•  Increasing concern for scale and integration

•  Decreasing cycle time for tech transfer


–  Extensions to production languages

•  e.g., generics in Java/C#


–  Adoption of research languages 

•  e.g. (OCaml, F#, Haskell, Scheme)


Big changes in the way 
proofs are communicated…  
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The State of the Art


Chen and Tarditi,"
A Simple Typed Intermediate Language for Object-
Oriented Languages,"
Principles of Programming Languages (POPL), 
2005




The State of the Art


4 



5 

We’ve Got a Problem Here

•  As a practical matter, a large fraction of 

the proofs being done about 
programming languages today are not 
possible for humans to check.


! 
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Are Proof Checkers the Answer?

•  Proof checking (or “proof assistant”) 

technology has made amazing strides 
in recent years

– Several mature systems  


• E.g., Coq, HOL, Isabelle, Twelf, MetaPRL, etc., 
etc.


– Some very impressive achievements in 
several domains
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A Marriage Made in Heaven

So we’ve got…


A.  A community with a burning need


B.  A community with a great technology


Can we put them together?
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Lots of Work Already Underway

•  Leroy’s verified C compiler

•  Nipkow et al’s formalization of a large part of 

Java

•  Appel et al’s Foundational Proof-Carrying 

Code project

•  Crary et al’s machine-checked development 

of a typed assembly language

•  Harper et al’s formalization of Standard ML


•  Sewell et al’s formalization of TCP/IP

•  Etc., etc.
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But We’re Not There Yet!

Challenges:


–  Current achievements are mostly heroic efforts by 
heroic individuals and small teams


–  Many different proof assistants and diverse 
technical machinery


–  Lots of black magic; high cost of entry; little 
sharing of knowledge across projects


–  Some significant unresolved technical issues

•  Lightweight methods for reasoning about variable binding

•  Scalability and modularity of proofs


What’s needed is some synergy…  
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Vision

A world where every PL paper is accompanied 

by a machine-checked appendix


•  Plan:

–  Identify current best practices

–  Gather community consensus around them


–  Build additional tools and other infrastructure as 
needed


–  Address technical challenges specific to 
programming language research


First step… 
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The PoplMark Challenge

•  A set of benchmark problems to help 

evaluate progress in the area

–  Based around metatheory of F<:, a typed lambda-

calculus with polymorphism and subtyping

–  Presented at TPHOLs 2005


•  Has generated tremendous interest in both 
PL and theorem proving communities

–  many solutions submitted

–  6 different proof assistants

–  7 different treatments of binding


•  Much has been learned

–  JAR special issue CFP now open
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Community Development

•  Wiki & Mailing list for POPLmark challenge


–  Gathering place for news/solutions/discussion/
advice


•  Workshop on Mechanizing Metatheory

–  4th Wksp, 4 Sep 2009, Edinburgh


•  Using Proof Assistants for Programming 
Language Research !
or, How to write your next POPL paper in Coq

–  Tutorial for novices


–  POPL tutorial, January, 2008

–  Oregon Summer School, June 2008




Engineering Formal Metatheory
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Resolving technical issues

•  Engineering Formal Metatheory


–  Brian Aydemir, Arthur Charguéraud, Benjamin 
Pierce, Randy Pollack, and Stephanie Weirich


–  POPL 2008


•  Describes a lightweight first-order 
methodology for representing binding and 
specifying induction principles


•  Two essential components:

–  Locally nameless representation


–  Cofinite name quantification




What is so hard about binding?

•  Alpha-equivalence


–  Identify "λx.x" and "λy.y"


• Barendregt convention

– Assumption that bound variables are 

"sufficiently fresh"


Inductive exp : Set := 	
 | var : atom -> exp	
 | abs : atom -> exp -> exp	
 | app : exp -> exp -> exp. 



Alpha-equivalence

•  Important when we need to compare terms 

with binding structure:

–  Type system of polymorphic language


–  Confluence for pure lambda calculus


•  Formalism simpler if alpha-equals is "="

Lemma preservation: forall G e t,	
  typing G e t -> red e e' -> 	
    exists t', alpha_eq t t' /\	
    typing G e' t'.	

Lemma preservation: forall G e t,	
   typing G e t -> red e e' -> typing G e' t.	



Barendregt Convention

Fixpoint subst (x:atom) (u:exp) (e:exp) 
{struct e} :=	

match e with 	
 | var y     => if x == y then u else e 	
 | app t1 t2 => app (subst x u t1) 	
                    (subst x u t2)	
 | abs z t   => abs z (subst x u t)	
end.	

•  What if z == x?

•  What if z in free variables of u?




Existing approaches

• No completely satisfactory mechanism 

for binding

‒   Name representation: must explicitly 

rename terms, define alpha-equivalence  
– de Bruijn indices: difficult to work with as 

must shift indices

– Nominal logic: only available in Isabelle/

HOL

– HOAS: exotic terms, specialized logic
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Names for free variables

de Bruijn indices for bound variables

Example: Untyped lambda calculus terms


t ::= bvar i | fvar x | app t1 t2 | abs t 

   λx. λy. (x y) z    and    λw. λv. (w v) z  
represented as  


    abs (abs (app (app (bvar 1) (bvar 0)) (fvar "z")  
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Locally nameless representation


Inductive exp : Set := 	
 | bvar : nat -> exp	
 | fvar : atom -> exp	
 | abs  : exp -> exp	
 | app  : exp -> exp -> exp. 
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Basic operations

•  Variable opening


tu      replace bound index 0 with exp u 

•  Free variable calculation

FV t        finite set of free atoms in t 

•  Substitution

[x  ↦ u]t   replace free variable x with u 

•  All operations have simple definitions.




Variable opening

Fixpoint open_rec (k : nat) (f : exp) 	
 (e : exp)  {struct e} : exp :=	
  match e with	
  | bvar i    => if k === i then f else e	
  | fvar x    => fvar x	
  | abs e1  => 	
     abs (open_rec (1 + k) f e1)	
  | app e1 e2 => app (open_rec k f e1)	
                     (open_rec k f e2)	
end.	

Notation "e ^ u" := (open_rec 0 u e).	



Free variable substitution

Fixpoint subst (z : atom) (u : exp) 	
  (e : exp) {struct e} : exp :=	
  match e with	
  | bvar i    => bvar i	
  | fvar x    => if x == z then u else e	
  | abs T e1  => abs T (subst z u e1)	
  | app e1 e2 => app  
    (subst z u e1) (subst z u e2)	

end.




Free variable calculation

Fixpoint fv (e : exp)	
 {struct e} : atoms :=	
  match e with	
  | bvar i  => {}	
  | fvar x  => singleton x	
  | abs e1  => (fv e1)	
  | e1 e2   => (fv e1) 	
                 `union` (fv e2)
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Local closure

•  Not all members of type term are lambda 

calculus terms

–  abs (bvar 3)?


•  Predicate lc picks out members datatype that 
are locally-closed


•  Definitions respect local closure


–  If lc u and lc t, then lc ([x ↦ u]t) 
–  If t  t' then lc t and lc t' 
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Managing local closure

•  Many theorems need not refer to local closure


–  If t  t' and t  t'', then t' = t''

•  Some theorems require it, tactics discharge 

assumptions 

–  If  x ≠ y  and lc u, then  

[x ↦ u](t y) = ([x ↦ u]t)y  



Induction principles

Definition of typing rules generates an induction 

principle for typing derivations


ok E     (x:T) ∈ E 
E ⊢ fvar x : T 

E ⊢ t1 : S → T     E ⊢ t2 : S  
E ⊢ app t1 t2 : T 

x ∉ FV t ∪ dom(E)    E,x:S ⊢ tx : T 
E ⊢ abs t : S → T 



Exists vs. Cofinite Quantification

Induction hypothesis holds for some particular, 
unknown x 


Induction hypothesis holds for all but some finite 
set of variables.


x ∉ FV t ∪ dom(E)    E,x:S ⊢ tx : T 
E ⊢ abs t : S → T 

∀x ∉ L    E,x:S ⊢ tx : T 
E ⊢ abs t : S → T 



Weakening Lemma

If E, G ⊢ t : T  and ok (E , F , G) "

then E, F, G ⊢ t : T  
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x ∉ FV t ∪ dom(E,G)    E,G,x:S ⊢ tx : T 
E,G ⊢ abs t : S → T 

Proof (?): 


   by induction on E,G ⊢ t : T 
   Abstraction case:


   WTP E,F,G ⊢ abs t : S → T 
   By typing rule, holds if  E,F,G,x:S ⊢ tx :T  

      and x ∉ FV t ∪ dom(E,F,G) 



Weakening Lemma

If E, G ⊢ t : T  and ok (E , F , G) "

then E, F, G  ⊢ t : T  
Proof: by induction on E,G ⊢ t : T 
   abstraction case:
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∀x ∉ L    E,G,x:S ⊢ tx : T 
E,G ⊢ abs t : S → T 

   WTP: E,F,G  ⊢ abs t : S → T 
   By rule, holds if exists a set L', such that "
        ∀x ∉ L',  E,F,G,x:S  ⊢ tx :T  
   IH: ∀x ∉ L, ok (E,F,G, x:S) => E,F,G,x:S  ⊢ tx : T  

   Choose L' = dom (E,F,G) ∪ L 

   By definition, ∀x∉ L',  ok (E,F,G,x:S)  
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Renaming lemma

•  Similar reasoning proves substitution lemma


If E, x:S, F ⊢ t : T and E ⊢ u : S  
then E,F ⊢ [z ↦ u]t : T 

•  Important corollary of substitution and 
weakening"


Renaming:


If x ∉ FV t ∪ dom E  and E, x:S ⊢ tx : T  

    then for all y ∉ FV t ∪ dom E,   E, y:S ⊢ ty:T  



Corollaries of renaming

• Renaming lemma gives strongest intro 

form:


   If exists x, s.t. x ∉ FV t ∪ dom E  and "
   E, x:S ⊢ tx : T  then  E ⊢ abs t : S → T 

•  And strongest inversion principle:


   If E ⊢ abs t: S → T then 


   for all x ∉ FV t ∪ dom E,  E, x : S ⊢ tx : T 
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Equivalence of systems

• Renaming lemma also shows 

equivalence of two systems:


 E ⊢ t : T   with exists-fresh rule for abs "
if and only if

 E ⊢ t : T   with cofinite rule for abs


• We are proving properties about the 
language we actually care about! 
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General Form of Development

•  Def. of language syntax 

•  Def. of variable opening and local closure 
•  Def. of free variable substitution 
•  Def. of free variable function 

•  Interaction lemmas

•  Def. of semantic relations using cofinite 

quantification for binders

•  Show semantic relations respect local closure

•  Substitution and weakening lemmas for each relation 

w/ binding

•  Preservation and Progress

•  Derive renaming lemmas




34 

Code Distribution

• Reference examples & supporting 

experience

– multiple calculi (STLC, F<:, CoC) 

– multiple theorems (type soundness, 

confluence)


•  A library that supports this 
methodology

–  atoms, finite sets

–  reasoning about freshness

–  representing environments


Let's look closer at POPLmark…




Fsub_Definitions.v


Fsub_Infrastructure.v


Fsub_Lemmas.v


Fsub_Soundness.v


syntax of types and 
terms, defn. of typing 

relation…


facts about

syntax, substitution…


facts about well-
formedness,


environments…


Substitution lemma, 
preservation, progress…


"The TCB"


"The overhead"


"Things we should have proved 
on paper but didn't"


"The meat"




syntax


open


local 
closure


typing & 

subtyping


operational"
semantics


automation hints


environments


Fsub_Definitions.v




Fsub_Infrastructure.v


Basic operations"
 (fv and subst)


Tactic to choose 

fresh atoms


Properties of open,

 fv and subst


Properties of subst

and local closure




Fsub_Lemmas.v


hints about local

closure


type "
well-formedness


environment "
well-formedness


substitution in

environments


regularity of"
relations




Fsub_Soundness.v
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Proofs of lemmas  from the Appendix of 
POPLmark paper


progress

preservation




Comparison POPLmark 1A

Author
 Binding
 Lemmas
 Proof steps


Vouillon
 de Bruijn
 30
 402


Leroy
 Locally nameless
 49
 495


Stump
 Levels/names
 56
 938


Hirschowitz & 
Maggesi


de Bruijn (nested 
datatype)


49
 1574


Chlipala
 Locally nameless
 23
 75


This work
 Locally nameless
 22
 101
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McKinna & Pollack Rule

Exists-fresh: IH holds for some fresh x 


Cofinite: IH holds for all but some unknown set


x ∉ FV t ∪ dom(E)    E,x:S ⊢ tx : T 
E ⊢ abs t : S → T 

∀x ∉ L    E,x:S ⊢ tx : T 
E ⊢ abs t : S → T 

∀x ∉ FV t ∪ dom(E)        E,x:S ⊢ tx : T 
E ⊢ abs t : S → T 

Forall-fresh: IH holds for all fresh variables




Forall   vs.  Cofinite

Define system with 
forall-fresh rules 


Define swapping and 
show relations are 
stable under swapping 


Prove weakening and 
substitution 


Show exists-fresh intro


Prove type soundness


Define system with 
cofinite rules 


Prove weakening and 
substitution 


Show exists-fresh intro


Prove type soundness
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Conclusions

•  Can use Coq's standard mechanisms for 

reasoning (inductive defs, tactics, etc.)

•  Swapping does not appear to be essential.


•  Seldom need to rename during proofs. IH 
applies to an infinite # of suitably fresh 
variables.


•  Specialized tactics help

–  local closure obligations


–  fresh variable introduction
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Vouillon / de Bruijn indices

Fixpoint subst (t : term) (x : nat) (t' : term) 

{struct t} : term :=	
  match t with	
  | var y =>	
      match lt_eq_lt_dec y x with	
      | inleft (left _)  => var y	
      | inleft (right _) => t'	
      | inright _        => var (y - 1)	
      end	
  | abs T1 t2  => 	
     abs T1 (subst t2 (1 + x) (shift 0 t'))	
  | app t1 t2  => app (subst t1 x t')	
     (subst t2 x t')	
  | tabs T1 t2 => tabs T1 	
     (subst t2 x (shift_typ 0 t'))	
  | tapp t1 T2 => tapp (subst t1 x t') T2	
  end.



