Machine Assistance for Programming
Language Research

Stephanie Weirich

Changes in PL Research

¢ Increasing complexity of language features
being considered

— E.g., module systems, dependently typed
programming, types ensuring resource bounds or
deadlock freedom, ...

* |ncreasing concern for scale and integration

e Decreasing cycle time for tech transfer
— Extensions to production languages
® e.g., generics in Java/C#

— Adoption of research languages
e e.9. (OCaml, F#, Haskell, Scheme)

===y Big changes in the way

proofs are communicated. .. a'ia‘u

The State of the Art

Chen and Tarditi,
A Simple Typed Intermediate Language for Object-

Oriented Languages,
Principles of Programming Languages (POPL),

2005

We have proved the soundness of LILc, in the style of
134], and the decidability of type checking. Full proofs are
in the technical report.

THEOREM 1 (PRESERVATION). If ¥ + P : 7 and P
P’, then 3% such that X'+ P’ : 1.

THEOREM 2 (PROGRESS). If X F P : 1, then either the
main expression in P is a value, or 3P’ such that P — P’.

Proof skqfch: by standard induction over the typing rules.
1L
N

300 e YT b oo Wes{n. tn) — 7 flos =ap <€ uy, ..., Oy & Uy) and O F H X, then v is a label
and H(r) = fix ¢ _;{h'.a'}(i] P Pr i Th) 1 = € and tvs' = ay < u'l., gy UL
4. If0 e T F v Jo & vy, v, then v = pack 1y as o < 7l in [I" :1'). |
. - By induction hypothesis, O: A X:T'=¢, 17, . V0 <i<n-—1. Bysuband ®.AF 7, <7
5 If 0. e Xk v Tuy(r), then v = tag(C) for some €. eld) : []‘(J-))[A] and ©: N'[8):S[8:T[8) F egfd] : #[). [T.-W<i<m-1 By array. . AN T - E. T -
6. 1f 00X v: Tag(C), then v = tag(C). “I[J] l;[é] r—l f[é] 4] PR oAt Case asubscript F = ¢j[ea]. T = 7 with subderivations 0: A:X: T F ey arrav(r) and 6;
bl with subde n\.nllon e Ty and B A
7. 1f0:0:X:TF v : C, then v = C(v/) for some value v'. & Um0) =T, 0=Ml..... b fony.. ... O, anud - N) s = Ir) and ©: AT = ¢z int. By subscript.
2) ¢ ' o 2 o y e, (f)H'-H) v —l_/-a.1.1=
R - . . A'[8]: BI4]: . . Wl < i< ke kind envi) o
8 IfO:e:X:TF v:ant, then v is an integer. [tJJ[.-ﬂ’iIE] 1'|'r5']‘l g;-.?,.!fxl;’.;:tlﬂ.i:ﬂ)f“ZI‘-[-«(st]ii|:t.i[(r-’x]|[:j{4u-|:nln_-'1' o |perTee n(u:; (;2((1) let 7 = Ve & uf....am < F " with subderivations G: AN F ¢
n - 89 - Lo “ nadin 2 l'i:.__] Ty Xy @ Sle.... In : Sn < 3 ALY >
Proof: by inspection on expression typing rules, heap value rules and subtyping inversion Lemma 41. O By Lemma 15, 0: A'[8] - ,]8] < w|o|[6). By o < Tope. ..., ,.,,_}<;; Tope b 7 < 5. (2) |- T and ©; '%, . TFes 7 -
[o'] and call, (') A'[8): £[8): (8] - E[4] - T(4). i, Bie b, @ ullo]. By type substitution (7). OAET B e ot BLAET B
heorem 57 If freetes(E) =0, and O F H -2, and O:XF VT and Q. ;5. T = E . T, then cither E s |= 30 < ro. v" with subderivation 8: A XDk e #[rfa] 75 b e ya0 no free type variables, therefore, 74 RXT F ey 7. By assignA. 6. AN T'F
value, or E can evaluate one step, that s, 3H', V' and E' such that (H V. E)— (H'. V' E'). that type substitution preserves subtyping fthderivations G: A X:T'F ey - 7. ©:A -

Proof: by induction on expression typing rules.
Case int, Case label, Case tag: all the expressions are values already.
Case var: E =

Bye.X+V

=V and E' = V(x). By ev_var (H:V: E) — (H": V" E').
Case error: E = crvor[7|: by evoerror. E steps to itself,
Case object: E = C(¢) with subderivation G;e: 3: T+ ¢
By induction hypothesis. either e is a value or 3H. V' and ¢' such that (H:Vie) — (H.V".¢'). e s

alue,

[«7] T

I domam(l) = domain(V). From x € domain(I'). we know x € domain(V). Let H' = H,

cR(C).
A

,17-""']_|’5]' T[J] = 3oy <& 1..[(5].
= =(8][[d] fa]. By Lemma 15, 6: A'(4] = r[d] < ru[d]. by

r° with subderivations 9: A;
(A). a & free(r’)).

[8] : (38 < =,. 7)[4]) and O: A'[d]. ¢ <& #,,[6)- X[4]: D[d]. x :
[6] = 35 < r,]8]. 7[8] and r|a/3][§] =

ineyp else e, T =
Elkep:r

7'[8] and by permuta-

') contains no

). By c2re

Ylke 30, vand

o< C).
=T since the
7[1’5][(|[ﬁ]_,"3] =

5):1[3] F e« 5. rrror

s/al. By sub,
" with subderivations 9 A X' e L . QAN ke C

' AT e2e(e) : RC)
[6]: X[3): T3]

AN I=Y

expression e, either is a value or can evaluate one step. If
Late one

Mherwise. Je, such that ¢, can evaluat
crule, E can evaluate one step.
ations Bre. XM ey carrav(y) and 9. e X'

lue or e can evaluate one step. So does e

: Step.

S

"1 form Lemma 56, ¢ is a label and H{v) = [,

then E is a value. Otherwise, It E' = (*(f'] By the congeuence rule, (H: V2 E) — (H': V' E).] - Tag(r)[d). ©: A[3]. @ = r[3]: 2[8]: (3], 2 : Tag(a)|d] -
Case c2r_c: E = c2r(e) with subderivation ©;e:E:TF ¢ : C. #(r)(d] = Tag(r[3]) and Tag(a)[d] = Tag(a) because ais |1z - 7) an
By induction hypothesis, either ¢ ks a value or _H'. " and ¢ such that (H:V.e) — (H: V" ¢'). Ife lfll.: f‘l'“]f,Tll‘];_ with subderivations ©: A: T F en - SEenlh L) er s = 15
a value, then by Lemma 56 ¢ = C(v). Let E' = v. By evee2r (H: V. E) — (H V" E"). ()tln awise let | 1 7.-((‘1 ;(‘)] » o T e e 5 = (16
= ¢2e(¢’). By the congruence rule (H; V. E) — (H"; V". E'). o [8] : Tag(C)(a]. ©; A'(8): S[8): T(8] - ewafs) : Tan(C2)[8] |y aps s
Case c2r_tv: not applicable because by Lemma 17, the subderivation ©:e: X T'F ¢ @ o is invalid. b| = Tag(Ci). Tag(C2)|d] = Tag(C2). By ifTag_eq 'HSI Tja).
Case record: E = newlr[{l; = e . Iy = en} with subderivations ©:e; X: l‘ Fei:n¥l<i<n

By induction hypothesis, each subexpression ¢, either is a value or can evaluate one more step.

If all ¢, are values, then let H' = H £~ Iy = e, ...,
cevrecord (H:V.E)— (H V. E").

If 3e¢ such that ¢, ...
‘W[T]{h =ep,...

If ¢ is a value,

 else ea,
- e

Vand E' =

In = en} (£ 18 a fresh label). V'

T = 7 with subdervations 6:A;
27 (O # C2).

LT F eq : ... 4,.,.[5]]

AT Fen:

ST oy

bocheck guarantees that the index ez 18 within
ne step.
fongruence rule E can evaluate one step.

th subderivations G e: X" = ¢y« arrav(r). B.e

lue or @) can evaluate one step. So do ez and e
cal form Lemma 56, ¢y is a label and H(v)

-1 are values and 3H' V' el such that (H:Vie)) — (H V')

If 41 or ez can evaluate one step, then by the congruence rule E can evaluate

one step.

puarantecs that the index e, is within

li=e In = en }. By the congruence rule, (H:V: E) — (H': V', E") Case ifTag_tv: E = ifEqTag (eq1.¢2) then ¢ else ez with subderivation ©: e: X F e - Tag(4). Pp.
di=eg, ..., n= - B : : BN VLEN. - .
Case fleld: E = e.l; with subderivation ©:e: X:T'F & {!) Pl @ r}and1<i<n Not applicable becaus: the subderivation l% mvalid by Lemma 17, Ill'lll’!' rule £ can evaluate one step.
o Case sub: E = ¢ with subderivation ©:e; X:I'F e @ 7
By induction hypothesis, cither ¢ is a value or ¢ can evaluate one step. SICTRES M
by canonical form Lemma 56, e is a label and H(e) = {h = 1 - By induction hypothesis, cither e 1s a v :l\u- or e can cmln.m one step. That is. either E is a value or £ ? 1 :

"= H. V' =V and E' =,
H3H V' ¢ suchthat (H; Vie)— (H' V"¢

1V E).

In the rest cases, we state only which evaluation rule to apply. but omit the new B’ V*
Case assignR E = ¢, [,
}and O e: Xk ey -7,
By induction hypothesis, cither ¢y is a value or ¢ can evaluate one step. Similarly, vither
e can evaluate one step.

|
B_\' ev-field (H: 1 E) —t (H'; V'; EI) can evaluate one st P.

M) then let EY = o0, and by the congruence rule
P P

or

1.\! |

‘= e in ey with subderivations ©:e: X F ey - {7 ny . 1

Corollary 58 (progress) If X F P oo then eather the mamn expression i P ows o valee, or 3P such that

| Theorem 59 LiLe s Sound. Well-typed LILe programs do not get stuck.

Proof: by progress and preservation.

O fan evaluate one step. If @) 18 a value,

- rule, E ocan evaluate one step.
.0 X TF ey - Tx).

lan evaluate one step. By . XV . T
'y 18 @ value, by evoassign E ocan eva

If both ¢) and e; are values, then by canonical form Lemma 56 ¢ s a label and He)) = {I; == g
.)oand by evoassignR E can evaluate one step. '[‘YI 71[5]
If either ¢y or ey can evaluate one step, by the congruence lll]t E can evaluate one step. (6] %[d]:
Case array F = newleg. .. €17 with subderivations G:e: XDk e v W <1 <n—1 —_—
I e[a] - 7[o]
Tase record: = oW T (1] = €1.. 0o = enf. 1 =7 = Wl - 71--- - Tn - 7n)] Wil suldervalions

Qe X', i, ¥Vl <i<n.

(H':

A e LS
Bt!('.‘msl- type substitution preserves subtyping
r[é) - E[s) : T]d].

a

o, and W1 < § < m, O, - 1, <

If the congruence rule applies. then 3H'. V'
i) and B = {ey, ...

and ¢] such that ey.....e,; are all values. (H:V.e) —

eyl ey e b By induction hypothesis, X' and I such that Lpression in the conclusion.

TTIO S0 0T THE OXPIessIon 10 T CONCIOSION 5 afway s GirEeT TIha e suim or o
premises. Also the side conditions are decidable.

¢ subexpression sizes in the

Lemma 27 a

Theorem 48 Tipe checking of LiLe 1 decidable.

Proof: To decide whether ©: A:X:T F ¢ @ ¢ holds. we can first get the minimal type 7, of ¢ such that
AN T E e o7, then test whether 6:A F 7, < 7. Because both minimal typing and subtyping are
decidable, type checking is decidable. o

Proof: by iy
Case as)
BAFTL <
By indu
followed by

It is symta)

E Soundness

w1 eah.ablbesdl o

) with subderivations ©: A;X:T F e, o7 W0 <

ing and subtyping rules respectively.
P:A" = a < ala. By the second part of

T o
of Environments.

FeorA" <A ad A T <T, then A S TVEE T and A T < T

uu algorithmic typing rules.
=Tz).
voawvar, O: ANV E E ST And by the definition of ©: A" F I < T, we have
r. alabel and atag: trvial
= C(e). T = C with subderivation 9: A X TF e : R(C).
pesis, AN T = e o and 8. A F o' < R(C). By inversion of subtyping Lemma 41

O [tep.
lerivations ©:e:X:T = ¢« YWlos(r.. ..
... fon /TUS.

flue or ¢ can evaluate one step. So does eacl

fimonical form Lemima 56, ¢ 18 a label and H ()
evaluate one step.

the congruence rule £ can evaluate one step.
- 7} with subderivation G:e: X:T'F e #'[r /.
ue or e can evaluate one step. If e &5 a valoe, the
mence rule £ can evaluate one step.

with subderivation G e X: ' F ey : 33 < 7, 7.
ue or ey can evaluate one step. If ¢y 15 a value, the
- 1'). By ev_open E can evaluate one step, If
evaluate one step.

. By reflexivity of .\Illﬂ)’pill); BA =T < T. By aobject 0. N S [V E £ T

wl fex.) in e else s with subderivation ©:-e: Y-

We’ve Got a Problem Here

e As a practical matter, a large fraction of
the proofs being done about

programming languages today are not
possible forto check.

O
@)

Are Proof Checkers the Answer?

e Proof checking (or “proof assistant”)
technology has made amazing strides
INn recent years

— Several mature systems

e E£.9., Coq, HOL, Isabelle, Twelf, MetaPRL, etc.,

etc.

— Some very impressive achievements in
several domains

A Marriage Made in Heaven

So we’ve got...
A. A community with a burning need
B. A community with a great technology

Can we put them together?

Lots of Work Already Underway

e | eroy’s verified C compiler

e Nipkow et al’s formalization of a large part of
Java

e Appel et al’s Foundational Proof-Carrying
Code project

e Crary et al’s machine-checked development
of a typed assembly language

e Harper et al’s formalization of Standard ML
e Sewell et al’s formalization of TCP/IP
e Ftc., etc.

But We’re Not There Yet!

Challenges:

— Current achievements are mostly heroic efforts by
heroic individuals and small teams

— Many different proof assistants and diverse
technical machinery

— Lots of black magic; high cost of entry; little
sharing of knowledge across projects

— Some significant unresolved technical issues

e Lightweight methods for reasoning about variable binding
e Scalability and modularity of proofs

What's needed is some synergy... s

Vision

A world where every PL paper is accompanied
by a machine-checked appendix

e Plan:
— ldentify current best practices
— Gather community consensus around them

— Build additional tools and other infrastructure as
needed

— Address technical challenges specific to
programming language research

First step...

The PoplMark Ghallenge

e A set of benchmark problems to help
evaluate progress in the area

— Based around metatheory of F<:, a typed lambda-
calculus with polymorphism and subtyping

— Presented at TPHOLs 2005
e Has generated tremendous interest in both
PL and theorem proving communities
— many solutions submitted
— 6 different proof assistants
— 7 different treatments of binding
e Much has been learned
— JAR special issue CFP now open

Community Development

e Wiki & Mailing list for POPLmark challenge

— Gathering place for news/solutions/discussion/
advice

e \Workshop on Mechanizing Metatheory
— 41 \Wksp, 4 Sep 2009, Edinburgh

e Using Proof Assistants for Programming
Language Research
or, How to write your next POPL paper in Coq
— Tutorial for novices
— POPL tutorial, January, 2008
— Oregon Summer School, June 2008

Engineering Formal Metatheory

Resolving technical issues

® Engineering Formal Metatheory

— Brian Aydemir, Arthur Charguéraud, Benjamin
Pierce, Randy Pollack, and Stephanie Weirich

— POPL 2008

e Describes a lightweight first-order
methodology for representing binding and
specifying induction principles

e Two essential components:

— Locally nameless representation
— Cofinite name gquantification

What is so hard about binding?

e Alpha-equivalence
— Identify "Ax.x" and "Ay.y"

e Barendregt convention

— Assumption that bound variables are
"sufficiently fresh”

Inductive exp : Set :=

var . atom -> exp

abs : atom -> exp -> exp
app : exp -> exp -> exp.

Alpha-equivalence

¢ Important when we need to compare terms
with binding structure:
— Type system of polymorphic language
— Confluence for pure lambda calculus

e Formalism simpler if alpha-equals is "="
Lemma preservation: forall G e t,
typing G e t -> red e e' ->
exists t', alpha_eg t t' /\

typing G e' t'.

Lemma preservation: forall G e t,

typing G e t -> red e e' -> typing G e' t.

Barendregt Convention

Fixpoint subst (x:atom) (u:exp) (e:exp)
{struct e} :=

match e with
| var y => 1f X == y then u else e
| app t1 t2 => app (subst x u tl1)
(subst x u t2)
| abs z t => abs z (subst x u t)
end.

e What if z == x?
e \What if z in free variables of u?

Existing approaches

e No completely satisfactory mechanism
for binding

— Name representation: must explicitly
rename terms, define alpha-equivalence

— de Bruijn indices: difficult to work with as
must shift indices

— Nominal logic: only available in Isabelle/
HOL

— HOAS: exotic terms, specialized logic

Locally nameless representation

Names for free variables

de Bruijn indices for bound variables

Example: Untyped lambda calculus terms
t :=bvari|fvarx|appt,t,|abs¢

A. Ay. (xy)z and Aw. Av. (W) z
represented as

abs (abs (app (app (bvar 1) (bvar 0)) (fvar "z")

Inductive exp : Set :=

bvar : nat -> exp

fvar : atom -> exp

abs : exp -> exp

app : exp -> exp -> exp.

Basic operations

e \/ariable opening
t“ replace bound index 0 with exp u

e Free variable calculation
FV ¢ finite set of free atoms in ¢

e Substitution
[x = u]t replace free variable x with u

e All operations have simple definitions.

Variable opening

Fixpoint open_rec (k : nat) (f : exp)
(e : exp) {struct e} : exp :=
match e with

bvar 1 => 1f k === 1 then f else e
fvar x => fvar x
abs el =>

abs (open_rec (1 + k) f el)
| app el e2 => app (open_rec k f el)
(open_rec k f e2)
end.

Notation "e A u" := (open_rec 0 u e).

Free variable substitution

Fixpoint subst (z : atom) (u : exp)

(e :

exp) {struct e} : exp :=
match e with
bvar 1 => bvar 1
fvar x => 1f X == z then u else e

end.

abs T el => abs T (subst z u el)

app el e2 => app
(subst z u el) (subst z u e2)

Free variable calculation

Fixpoint fv (e : exp)

{struct e} : atoms :=

match e with
bvar 1 = {}
fvar x => singleton Xx
abs el => (fv el)
el e2 => (fv el)

“union (fv e2)

Local closure

e Not all members of type term are lambda
calculus terms

— abs (bvar 3)?

e Predicate /c picks out members datatype that
are locally-closed

e Definitions respect local closure
—If lcu and Ic t, then Ic ([x ~ u]t)
—Ift = t'then Ictand Ic t'

Managing local closure

¢ Many theorems need not refer to local closure
—Ift—=>t'and ¢t =>t", then t' =t¢"

e Some theorems require it, tactics discharge
assumptions

—If x =y and Ic u, then

[x = ul(”) = (lx = ulty

Induction principles

Definition of typing rules generates an induction
principle for typing derivations

okE (x:IeFE
Ertvarx: T

Erappt t,: T

x¢eFVivudom(E) ExSr¢:T
Erabst:S—-T

Exists vs. Cofinite Quantification

Induction hypothesis holds for some particular,
unknown X

x¢eFVivudom(E) ExS+¢:T
Erabst:S-T

Induction hypothesis holds for all but some finite
set of variables.

Vxel ExSrr:T
Erabst:S-T

Weakening Lemma

tE, GFt: T and ok (E, F, G)
then E, F, Gvr¢t: T

Proof (?):

by inductionon E,GF¢: T

Abstraction case:
x¢ FVitudom(E,G) EGxS+¢:T

EGrabst:S-T
WIP EEFGFabst: S—T
By typing rule, holds if E,EGx:SFE#:T
and x € FV t U dom(E,F,G)

Weakening Lemma

ItE, Grt: T and ok (E, F, G)
thenE, F, G +¢t: T

Proof: by inductionon E,G+¢: T

abstraction case: _Vxe¢l EGx:S+¢:T
EGrabst: ST

WITP: EFEG rabst:S—T

By rule, holds if exists a set L', such that
Vx&L', EEGx:Sv-¢:T

IH: Vx & L, ok (E.EG, x:S)=>EFEGx:S+¢:T

Choose L' =dom (E,FG) U L
By definition, Vx& L', ok (E,F,G x.S)

Renaming lemma

e Similar reasoning proves substitution lemma

IfE x:S Frt:Tand Evu: S
then EFv-[zult: T

e Important corollary of substitution and
weakening

Renaming:
fxZEFVtUdomE and E x:Sr¢: T
thenforally EFVtUdom E, E, y:S+¢:T

Corollaries of renaming

¢ Renaming lemma gives strongest intro
form:

If exists x, s.t. x EFV tU dom E and
E x:St¢:T then Erabst: S— T

e And strongest inversion principle:

If £ +abs ¢ S — Tthen
forall x &€ FVtUdomE, E x:S+¢:T

Equivalence of systems

¢ Renaming lemma also shows
equivalence of two systems:

E+rt: T with exists-fresh rule for abs
if and only if

Evt: T with cofinite rule for abs

e \We are proving properties about the
language we actually care about!

General Form of Development

Def. of language syntax

Def. of variable opening and local closure
Def. of free variable substitution

Def. of free variable function

Interaction lemmas

Def. of semantic relations using cofinite
quantification for binders

Show semantic relations respect local closure

Substitution and weakening lemmas for each relation
w/ binding

Preservation and Progress
Derive renaming lemmas

Code Distribution

¢ Reference examples & supporting
experience

— multiple calculi (STLC, F<:, CoQ)

— multiple theorems (type soundness,
confluence)

o A library that supports this
methodology
— atoms, finite sets
— reasoning about freshness
— representing environments

Let's look closer at POPLmark...

syntax of types and
terms, defn. of typing
' relation... -

"The TCB"

Fsub |Lemmas.v

facts about -

syntax, substitution...

"The overhead"

facts about well-
formedness,
- environments...

“Things we should have

proved

on paper but didn't"

Fsub_Soundness.v

Substitution lemma,
-~ preservation, progress...

“The meat”

Fsub Definitions.v

syntax
open

local
closure

nvironments

typing &
subtyping

operational
semantics

tomation hints

Fsub Infrastructure.v

Basic operations
(fv and subst)

Tactic to choose
fresh atoms

Properties of open,

fv and subst

Properties of subst
and local closure

Fsub Lemmas.v

type

well-formedness

environment
well-formedness

substitution in
environments

regularity of
relations

hints about local

closure

Fsub Soundness.v

Proofs of lemmas from the Appendix of
POPLmark paper

- A
9 3
6
3 10
7
13 =
preservation : 1 4
| progress
H 20 16

Comparison POPLmark 1A

Vouillon
Leroy
Stump

Hirschowitz &
Maggesi

Chlipala
This work

de Bruijn
Locally nameless
Levels/names

de Bruijn (nested
datatype)

Locally nameless
Locally nameless

30
49
56
49

23
22

402
495
938
1574

75
101

McKinna & Pollack Rule

Exists-fresh: IH holds for some fresh x

x¢FVitudom(E) ExSr¢:T
Erabst:S-T

Cofinite: IH holds for all but some unknown set

Vxel ExSvr:T
Erabst: ST

Forall-fresh: IH holds for all fresh variables

Vx ¢ FV tudom(E) ExSvrr:. T
Erabst: ST

7N
.‘.

Forall vs. Cofinite

Define system with
forall-fresh rules

Define swapping and
show relations are
stable under swapping

Show exists-fresh intro

Prove weakening and
substitution

Prove type soundness

Define system with
cofinite rules

Prove weakening and
substitution

Show exists-fresh intro

Prove type soundness

Conclusions

Can use Coq's standard mechanisms for
reasoning (inductive defs, tactics, etc.)

Swapping does not appear to be essential.

Seldom need to rename during proofs. IH
applies to an infinite # of suitably fresh
variables.

Specialized tactics help
— local closure obligations
— fresh variable introduction

Thanks to

Brian Aydemir

Arthur Charguéraud (INRIA)
Randy Pollack (Edinburgh)
Peter Sewell (Cambridge)
Aaron Bohannon

Matthew Fairbairn (Cambridge)
J. Nathan Foster

Benjamin Pierce

Jeffrey Vaughan

Dimitrios Vytiniotis
Geoffrey Washburn

Steve Zdancewic

Vouillon / de Bruijn indices

Fixpoint subst (t : term) (x : nat) (t' : term)
{struct t} : term :=
match t with
| var y =>
match lt_eq_lt_dec y x with
| inleft (left _) => var y
| inleft (right _) => t'
| inright _ => var (y - 1)
end
| abs T1 t2 =>
abs T1 (subst t2 (1 + x) (shift 0 t'))
| app t1 t2 => app (subst t1 x t')
(subst t2 x t')
| tabs T1 t2 => tabs T1
(subst t2 x (shift_typ 0 t'))
| tapp t1 T2 => tapp (subst t1 x t') T2
end.

