
Work-in-progress:	
Verifying	the	Glasgow	Haskell	
Compiler	Core	language

Stephanie	Weirich

May	2018

Joachim	Breitner, Antal	Spector-Zabusky, Yao	Li,
Christine	Rizkallah, John	Wiegley

https://arxiv.org/search?searchtype=author&query=Breitner,+J
https://arxiv.org/search?searchtype=author&query=Spector-Zabusky,+A
https://arxiv.org/search?searchtype=author&query=Li,+Y
https://arxiv.org/search?searchtype=author&query=Rizkallah,+C
https://arxiv.org/search?searchtype=author&query=Wiegley,+J

Verified	compilers	and	security
• To	be	able	to	argue	about	the	security	of	a	
program,	we	need	a	specification of	the	
language	semantics

• We also need to know that a specific	
compiler	implements	that	that	semantics	
correctly	

• This talk: pragmatics	of	specifying	and	
verifying	a	typed,	higher-order	functional	
programming	language

2

Specified	and	Verified	Compilation
• Semantics	specified	using	trace-based	
co-inductive	relations	

• CompCert compiler	implemented	as	total	
functional	program	in	Gallina

• Other	examples:	CakeML,	Vellvm,	etc.

3

What	if	we	already have	a	compiler	
that	we	want	to	specify	and	verify?

Glasgow	Haskell	Compiler	(GHC)

5

GHC	is	a	bootstrapping	compiler
• Want	to	use	Coq	to	reason	about	
GHC
– Need	a	semantics	for	Haskell	in	Coq
– But	that is what we are trying to
build!

• "Easy"	approach:	shallow	
embedding
– Use	Gallina as	a	stand-in	
for	Haskell

– Translate	Haskell	functions	to	
Gallina functions,	use	that	as	
specification 6

GHC	
front	end

GHC	core	
language

GHC	
backend

Haskell

Core.v

Gallina

hs-to-coq
A	tool	for	translating	Haskell	code	to	equivalent	Gallina
definitions	via	shallow	embedding	[CPP'	18]

7

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr k z = go

where
go [] = z
go (y:ys) = y `k` go ys

Definition foldr {a} {b} : (a -> b -> b) -> b
-> list a -> b :=

fun k z =>
let fix go arg_0__

:= match arg_0__ with
| nil => z
| cons y ys => k y (go ys)
end in

go.

Questions	about	hs-to-coq	approach
1. Is	there	enough	Haskell	code	out	there	that	
we	can	translate	to	make	this	approach	
worthwhile?

2. Even	if	we	can	find	code	to	translate,	is	the	
result	suitable	for	verification?

3. Even	if	we	can	do	the	proofs,	do	they	mean	
anything	about	the	Haskell	source?

8

Case	study:	containers
• Popular	Haskell	libraries:	Data.Set and	
Data.IntSet

• Used	by	GHC		Core	language	implementation
• What	did	we	prove?
– Invariants in the source file	comments	(ensures	
the	balance	properties)

– Mathematical	specification	(both	our	own	and	
FSetInterface)

– Quickcheck properties	interpreted	as	theorems
– GHC	Rewrite	rules

9
Experience	Report:	Ready,	Set,	Verify!	Applying	hs-to-coq	to	real-world	Haskell	code
Joachim	Breitner, Antal	Spector-Zabusky, Yao	Li, Christine	Rizkallah, John	Wiegley, Stephanie	Weirich
ICFP		2018	(cond.	acc.)

https://arxiv.org/search?searchtype=author&query=Breitner%2C+J
https://arxiv.org/search?searchtype=author&query=Spector-Zabusky%2C+A
https://arxiv.org/search?searchtype=author&query=Li%2C+Y
https://arxiv.org/search?searchtype=author&query=Rizkallah%2C+C
https://arxiv.org/search?searchtype=author&query=Wiegley%2C+J
https://arxiv.org/search?searchtype=author&query=Weirich%2C+S

IntSet.hs Property-based
test suite

IntSet.v

hs-to-coq

ExtactedIntSet.hs Property-based
Test suite

Coq

Minimal	editsPropProofs.v

IntSetProperties.v
(tests as props)

hs-to-coq

IntSetProofs.v

Coq.FSets.
FSetInterface

Containers	case	study

What	did	we	learn?
1. We can translate	the	library*	
2. We can prove	what	we	want	to	prove**
3. Output	is	semantically	equivalent	(as	far	as	

we	can	tell	by	testing)
4. Haskell	code	is	functionally	correct	J

*Need	to address partiality
**We	"edit"	the	code	during	translation	in	
support of	proofs

11

Partiality:	Unsound

Axiom error : forall {a} , String -> a.

Definition head {a}
(xs : list a) : a :=

match xs with
| (x::_) => x
| _ => error "head: empty list"
end.

12

head :: [a] -> a
head (x:_) = x
head [] = error "head: empty list"

Partiality:	Annoying

Inductive Partial (a:Type) :=
| return : a -> Partial a
| error : String -> Partial a
| …

Definition head {a} (xs : list a) : Partial a :=
match xs with
| (x::_) => return x
| _ => error "head: empty list"
end.

13

head :: [a] -> a
head (x:_) = x
head [] = error "head: empty list"

Partiality:	Pragmatic

Definition error : forall {a} `{Default a},
String -> a := default.

Definition head {a} `{Default a}
(xs : list a) : a :=

match xs with
| (x::_) => x
| _ => error "head: empty list"
end.

14

head :: [a] -> a
head (x:_) = x
head [] = error "head: empty list"

☞ "default"	is	an	opaque	definition	and	proofs	must	work	for	any	value	of	the				
appropriate	type.		This	is	almost	a	requirement	that	it	occurs	in	dead	code.

A	Formalization	Gap	is	a	good thing
• Machine integers are fixed width. Do we
want	to reason about	overflow?

• No!
– In	Data.Set,		Ints track	size	of	tree	for	balance
– GHC	uses	Data.IntSet to	generate	unique	names
– Both cases will run out of memory	before	
overflow

• Control	translation	with	hs-to-coq	rewrites
– type	GHC.Num.Int = Coq.ZArith.BinNum.Z
– Formalization	gap	is	explicit	&	recorded

16

A	Formalization	Gap	is	a	good thing
• Machine integers store	positive	and	negative	
numbers.	Do we want	that?

• No!
– In	Data.Set,		Ints track	size	of	tree	for	balance
– GHC	uses	Data.IntSet to	generate	unique	names
– Both cases never	need	to	store	negative	
numbers	

• Control	translation	with	hs-to-coq	rewrites
– type	GHC.Num.Int =	Coq.NArith.BinNat.N
– Formalization	gap	is	explicit	&	recorded

17

What	about	GHC?	

Questions	about	GHC
1. Is	there	enough	code	in	GHC that	we	can	
translate	to	make	this	approach	
worthwhile?

2. Even	if	we	can	find	code	to	translate,	is	the	
result	suitable	for	verification?

3. Even	if	we	can	do	the	proofs,	do	they	mean	
anything	about	the	GHC	implementation?
(Note:	Core	plug-in	option	available)

19

GHC:	Current	status
• Base	libraries		(9k	loc)
– 45	separate	modules
– Some	written	by-hand:	GHC.Prim,	GHC.Num,	GHC.Tuple
– Most	translated:	GHC.Base,		Data.List,			Data.Foldable,		
Control.Monad,	etc.

• Containers		(6k	loc)
– Translated	&	(mostly)	verified:		4	modules
– (Data.Set,	Data.Map,	Data.IntSet,	Data.IntMap)

• GHC,	version	8.4.1	(19k	loc)
– 55	modules	so	far	(327	modules	total	in	GHC,	but	we	
won't	need	them	all)

– hs-to-coq	edits	(2k	LOC)
• First verification	goal:	Exitify compiler	pass

20

21

Core	AST
data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type

[Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion
deriving Data

data Bind b =
NonRec b (Expr b)

| Rec [(b, (Expr b))]
deriving Data

Inductive Expr b : Type
:= Mk_Var : Id -> Expr b
| Lit : Literal -> Expr b
| App :

Expr b -> Arg b -> Expr b
| Lam : b -> Expr b -> Expr b
| Let :

Bind b -> Expr b -> Expr b
| Case : Expr b -> b -> unit

-> list (Alt b) -> Expr b
| Cast :

Expr b -> unit -> Expr b
| Tick : Tickish Id

-> Expr b -> Expr b
| Type_ : unit -> Expr b
| Coercion : unit -> Expr b

with Bind b : Type
:= NonRec : b -> Expr b

-> Bind b
| Rec : list (b * (Expr b))

-> Bind b

Core Optimization	:	Exitify

23

-- | Given a recursive group of a joinrec, identifies
-- “exit paths” and binds them as
-- join-points outside the joinrec.

exitify :: InScopeSet -> [(Var,CoreExpr)] ->
(CoreExpr -> CoreExpr)

exitify in_scope pairs =
\body -> mkExitLets exits (mkLetRec pairs' body)

where
pairs' = … // updated recursive group
exits = … // exit paths

-- 215 LOC, incl comments

• Requires	moving	code	from	one	binding	scope	to	another
• First	proof:	show	that	well-scoped	terms	stay	well-scoped

Bug	found!
• Exitify does	not	always	produced	well-
scoped	code	
– Missed	by	GHC	test	suite
– Perhaps	not exploitable at source level

• Fixed	in	GHC	HEAD
– Proofs	updated	this	week

• What	is	the	general	workflow?	
– Always	work	on	HEAD?	Maintain	separate	
branch?

– Axiomatize	failing	lemma?
– Fix	code	via	hs-to-coq	edits?

25

Conclusion	&	More	questions
Let's	take	advantage	of	the	semantic	similarity	
of	Haskell	and	Gallina for	developing	verified	
compilers

• How	far	can	we	push	this	approach?
• Can	we	get	good	performance	of extracted
code?	(And	plug	back	into	GHC?)

• Can	we	say	anything	about	linking	with	
nonverified	code?

27

Back	up	slides…

28

Why	not	use	CoInductive?
• Another	formalization	gap
– Haskell	datatypes	are	co-inductive	by	default

• But	inductive	reasoning	is	useful	for	compilers	and	
languages
– Termination	of	functions	depends	on	decreasing	size	of	
data	structure

• This	is	an	example	of	an	invariant	about	the	core	
language	
– We	assume	it	never	needs	to	work	with	infinite	terms,	
and	prove	that	it	never	generates	infinite	terms

– Never	going	to	create	an	AST	term	with	an	"infinite"	
number	of	lambda	expressions

29

What's	in	GHC	Core?
• Additional	general	purpose	libraries
– Bag,	State,	Maybes,	Pair,	FiniteMap,	OrdList,	MonadUtils,	
BooleanFormula,	…

• Compiler-specific	utilities
– SrcLoc,	Module,	DynFlags,		Constants,	
– Unique,	UniqSupply,	UniqSet,	UniqFM,	…	

• Core	AST	representation
– IdInfo,	Var,	VarSet,	VarEnv,	Name,	Id,	Demand
– Class,	TyCon,	DataCon,	CoreSyn

• Core	operations	and	optimization
– CoreFVs, CoreSubst,	CallArity,	CoreArity,	
– Exitify

30

Exitify example
Example:		

let	t	=	foo	bar

joinrec

go	0					x	y	=	t	(x*x)

go	(n-1)	x	y	=	jump	go	(n-1)	(x+y)

in	…

Example	result:

let	t	=	foo	bar

join	exit	x	=	t	(x*x)

joinrec

go	0					x	y	=	jump	exit	x

go	(n-1)	x	y	=	jump	go	(n-1)	(x+y)

in	…

31

Now	`t`	is	no	longer	in	a	recursive	

function,	and	good	things	happen!

We’d	like	to	inline	`t`,	but	that	

does	not	happen:	Because	t	is	

a	thunk and	is	used	in	a	

recursive	function,	doing	so	

might	lose	sharing	in	general.	

In	this	case,	however,	`t`	is	on	

the	_exit	path_	of	`go`,	so	called	

at	most	once.

