
Higher-Order Intensional
Type Analysis

Stephanie Weirich
Cornell University

8/24/062

Reflection

 A style of programming that supports the
run-time discovery of program information.
– “What does this code do?”
– “How is this data structured?”

 Running program provides information
about itself.
– self-descriptive computation.
– self-descriptive data.

8/24/063

Applications of reflection

 Runtime systems: garbage collection,
serialization, structural equality, cloning, hashing,
checkpointing, dynamic loading

 Code monitoring tools: debuggers, profilers
 Component frameworks: software composition

tools, code browsers
 Adaptation: stub generators, proxies
 Algorithms: iterators, visitor patterns, pattern

matching, unification

8/24/064

What is reflection?

 Run-time examination of type
or class.

 Not dynamic dispatch in OO languages.
– Have to declare an instance for every new class

declared. Easy but tedious.
– Simple apps hard-wired in Java.

 Not instanceof operator in OO languages.
– It requires a closed world.

 Need to know the name of the class a priori.
 Need to know what that name means.

8/24/065

Structural Reflection

 Need to know about the structure of the
data to implement these operations once
and for all.

 Intensional Type Analysis
– Examines the structure of types at run time.
– A term called tcase implements case analysis of

types.

8/24/066

Serialization

serialize[α] (x:α) =
tcase α of

int) int2string(x)
string) “\“” + x + “\””
β ′ γ) “(” + serialize[β](x.1) + “,”

 + serialize[γ](x.2) + “)”
β γ) “<function>”

8/24/067

State of the art

 No system for defining type-indexed
functionality extends to both type
constructors and quantified types.

8/24/068

Type constructors

 Types indexed by other types.
 Useful to describe parameterized data

structures.
– head :8α. list α α
– tail :8α. list α list α
– add :8α. (α ′ list α) list α

 Don’t have to cast the type of elements
removed from data structures.

8/24/069

Type functions

 Type constructors are functions from types
to types.

 Expressed like lambda-calculus functions.
τ ::= … | λα .τ | τ1 τ2 | α

 Example:
Quad = λα. (α ′ α) ′ (α ′ α)

 Static language for reasoning about the
relationship between types.

8/24/0610

Types with binding structure

 Parametric polymorphism hides the types of
inputs to functions.

8α. α string
 Other examples:

– Existential types (∃α . τ) hide the actual type of
stored data.

– Recursive types (µα. τ) describe data structures
that may refer to themselves (such as lists).

– Self quantifiers (self α. τ) encode objects.

8/24/0611

Problems with these types

 tcase is based on the fact that the closed,
simple types are inductive.
τ ::= int | string | τ1 τ2 | τ1 ′ τ2

 Analysis is an iteration over the type
structure.

 With quantified types, the structure is not so
simple.
τ ::= …| 8α. τ | α

8/24/0612

Example

tcase α of
int) …
string) …
β γ) …
β ′ γ) …
8α.??) … Can’t abstract the

body of the type here,
because of free

occurrences of α.

Here β and γ are
bound to the

subcomponents of the
type, so they may be

analyzed.

8/24/0613

Higher-order abstract syntax

 Type constructors for polymorphic types.
8α . α α vs. 8(λ α . α α)

 8 branch abstracts that constructor.
typecase 8(λ α . α α) of

int) e1
β γ) e2
8δ) e3

reduces to e3 with δ replaced by (λ α . α α)
 Have to apply δ to some type in order to analyze it.
[Trifonov et al.]

8/24/0614

Works for some applications

serialize[α] (x:α) =
tcase α of

int) int2string(x)
string) “\“” + x + “\””
β ′ γ) “(” + serialize[β](x.1) + “,”

 + serialize[γ](x.2) + “)”
β γ) “<function>”
8δ) “<polymorphic function>”
∃δ) let <β, y> = unpack x in

serialize [δ(β)] y

8/24/0615

But not for all

serializeType[α] =
tcase α of

int) “int”
β ′ γ) “(” + serializeType[β] + “ * ”

+ serializeType[γ] + “)”
β γ) “(” + serializeType[β] + “ -> ”

+ serializeType[γ] + “)”
8δ) ???
∃β) ???

8/24/0616

Two solutions with one stone

If we can analyze
type constructors

in a principled way,

 then we can analyze
quantified types

in a principled way.

8/24/0617

Type equivalence

 For type checking, we must be able to
determine when two types are semantically
equal.
– to call a function the argument must have an

equivalent type.
 Reference algorithm: fully apply all type

functions inside the two types and compare
the results.

(λ α. α ′ α) (int) =? (λ β. β ′int) (int)
int′ int =? int ′ int

8/24/0618

Constraint on type analysis

 When we analyze this type language we
must respect type equivalence.

tcase [(λα. α ′ int) int]…
must produce the same result as

tcase [int ′ int]…

 Type functions, applications, and variables
must be “transparant” to analysis.

8/24/0619

Generic/Polytypic programming

 Generates operations over parameterized
data-structures. [Moggi&Jay][Jansson&Juering][Hinze]

– Example: gmap<list> applies a function f to all of
the α’s in list α.

 Compile-time specialization. No type
information is analyzed at run-time.
– Can’t handle polymorphic or existential types.

8/24/0620

Idea

 A polytypic definition must also respect type
equality.
– foo < (λα. α ′ int) int > = foo < int ′ int >

 Produce equivalent terms for equivalent
types.
– foo < ((λα. α ′ int) int > = (λ x. x + 1) 1
– foo < int ′ int > = 1 + 1

8/24/0621

Idea

 Create an interpretation of the type language
with the term language.
– Map type functions to term functions.
– Map type variables to term variables.
– Map type applications to term

applications.
– Map type constants to (almost) anything.

 We can use this idea at run-time to analyze
type constructors and quantified types.

8/24/0622

Type Language

t ::= α
| λα. τ
| τ1 τ2
| int | string
| | ′ | 8

 variable
 function
 application
 constants

• The type int ′ int is the constant ′ applied to
int twice.

• The type 8α . α α is the constant 8 applied
to the type constructor (λα . α α).

8/24/0623

Interpreter

Instead of tcase, define analysis term:
tinterp[η] τ

 To interpret this language we need an
environment to keep track of the variables.

 This environment will also have mappings
for all of the constants.

8/24/0624

Operational semantics of tinterp

 Type constants are retrieved from the environment
tinterp[η] int η(int)
tinterp[η] string η(string)
tinterp[η] η()
tinterp[η] ′ η(′)
tinterp[η] 8 η(8)

 Type variables are retrieved from the environment
tinterp[η] α η(α)

8/24/0625

Type functions

 Type functions are mapped to term
functions.

 When we reach a type function, we add a
new mapping to the environment.

tinterp[η] (λα.τ)
 λ x. tinterp[η+{α)x}] (τ)

Execution extends
environment, mapping α to x.

8/24/0626

Application

 Type application is interpreted as term
application

tinterp[η] (τ1 τ2)
 (tinterp[η] τ1) (tinterp[η] τ2)

The
interpretation of
τ1 is a function

8/24/0627

Example

serializeType = tinterp [η]
where η = {

int) “int”
string) “string”
′) λ x:string. λ y:string.

“(” + x + “*” + y + “)”
) λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8) λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}

8/24/0628

Example execution

serializeType[int′int]
 (tinterp[η] ′) (tinterp[η] int) (tinterp[η] int)
 (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

(tinterp[η] int) (tinterp[η] int)
 (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

“int” “int”
 “(” + “int” + “*” + “int” + “)”
 “(int*int)”

8/24/0629

Example

serializeType = tinterp [η]
where η = {

int) “int”
string) “string”
′) λ x:string. λ y:string.

“(” + x + “*” + y + “)”
) λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8) λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}

8/24/0630

Not the whole story

 More complicated examples require a
generalization of this framework.
– Must allow the type of each mapping in the

environment to depend on the analyzed type.
– Requires maintenance of additional type

substitutions to do so in a type-safe way.
– This language is type sound.

 Details appear in paper.

8/24/0631

Conclusion

 Reflection is analyzing the structure of
abstract types.

 Branching on type structure doesn’t scale
well to sophisticated and expressive type
systems.

 A better solution is to interpret the compile-
time language at run-time.

