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Reflection

 A style of programming that supports the
run-time discovery of program information.
– “What does this code do?”
– “How is this data structured?”

 Running program provides information
about itself.
– self-descriptive computation.
– self-descriptive data.
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Applications of reflection

 Runtime systems: garbage collection,
serialization, structural equality, cloning, hashing,
checkpointing, dynamic loading

 Code monitoring tools: debuggers, profilers
 Component frameworks: software composition

tools, code browsers
 Adaptation: stub generators, proxies
 Algorithms: iterators, visitor patterns, pattern

matching, unification
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What is reflection?

 Run-time examination of type
or class.

 Not dynamic dispatch in OO languages.
– Have to declare an instance for every new class

declared. Easy but tedious.
– Simple apps hard-wired in Java.

 Not instanceof operator in OO languages.
– It requires a closed world.

 Need to know the name of the class a priori.
 Need to know what that name means.
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Structural Reflection

 Need to know about the structure of the
data to implement these operations once
and for all.

 Intensional Type Analysis
– Examines the structure of types at run time.
– A term called tcase implements case analysis of

types.
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Serialization

serialize[α] (x:α) =
tcase α of

int ) int2string(x) 
string)  “\“” + x + “\””
β ′ γ ) “(” + serialize[β](x.1) + “,”

  + serialize[γ](x.2)  + “)”
β  γ )  “<function>”
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State of the art

 No system for defining type-indexed
functionality extends to both type
constructors and quantified types.
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Type constructors

 Types indexed by other types.
 Useful to describe parameterized data

structures.
– head :8α. list α  α
– tail :8α. list α  list α
– add :8α. (α ′ list α)  list α

 Don’t have to cast the type of elements
removed from data structures.
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Type functions

 Type constructors are functions from types
to types.

 Expressed like lambda-calculus functions.
τ ::=  … | λα .τ  | τ1 τ2 | α

 Example:
Quad = λα.  ( α ′ α ) ′ ( α ′ α )

 Static language for reasoning about the
relationship between types.
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Types with binding structure

 Parametric polymorphism hides the types of
inputs to functions.

8α. α  string
 Other examples:

– Existential types (∃α . τ) hide the actual type of
stored data.

– Recursive types (µα. τ) describe data structures
that may refer to themselves (such as lists).

– Self quantifiers (self α. τ) encode objects.
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Problems with these types

 tcase is based on the fact that the closed,
simple types are inductive.
τ ::= int | string | τ1  τ2 | τ1 ′ τ2

 Analysis is an iteration over the type
structure.

 With quantified types, the structure is not so
simple.
τ ::= …| 8α. τ  | α
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Example

tcase α  of
int ) …
string ) …
β  γ )  …
β ′ γ ) …
8α.?? ) … Can’t abstract the

body of the type here,
because of free

occurrences of α.

Here β and γ are
bound to the

subcomponents of the
type, so they may be

analyzed.
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Higher-order abstract syntax

 Type constructors for polymorphic types.
8α . α   α   vs. 8(λ α . α  α )

 8 branch abstracts that constructor.
typecase  8(λ α . α  α ) of

int )  e1
β  γ  )  e2
8δ )  e3

reduces to  e3 with δ  replaced by (λ α . α  α )
 Have to apply δ to some type in order to analyze it.
[Trifonov et al.]
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Works for some applications

serialize[α] (x:α) =
tcase α of

int ) int2string(x) 
string )  “\“” + x + “\””
β ′ γ ) “(” + serialize[β](x.1) + “,”

           + serialize[γ](x.2)  + “)”
β  γ )  “<function>”
8δ ) “<polymorphic function>”
∃δ ) let <β, y> = unpack x in

serialize [δ(β)] y
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But not for all

serializeType[α] =
tcase α of

int ) “int”
β ′ γ )  “(” + serializeType[β] + “ * ”

+ serializeType[γ] + “)”
β  γ ) “(” + serializeType[β] + “ -> ”

+ serializeType[γ] + “)”
8δ ) ???
∃β ) ???
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Two solutions with one stone

If we can analyze
type constructors

in a principled way,

 then we can analyze
quantified types

in a principled way.
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Type equivalence

 For type checking, we must be able to
determine when two types are semantically
equal.
– to call a function the argument must have an

equivalent type.
 Reference algorithm: fully apply all type

functions inside the two types and compare
the results.

(λ α. α ′ α) (int) =? (λ β. β ′int) (int)
int′ int =? int ′ int
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Constraint on type analysis

 When we analyze this type language we
must respect type equivalence.

tcase [(λα. α ′ int) int]…
must produce the same result as

tcase [ int ′ int ]…

 Type functions, applications, and variables
must be “transparant” to analysis.
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Generic/Polytypic programming

 Generates operations over parameterized
data-structures. [Moggi&Jay][Jansson&Juering][Hinze]

– Example: gmap<list> applies a function f to all of
the α’s in list α.

 Compile-time specialization. No type
information is analyzed at run-time.
– Can’t handle polymorphic or existential types.
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Idea

 A polytypic definition must also respect type
equality.
– foo < (λα. α ′ int) int >  = foo < int ′ int >

 Produce equivalent terms for equivalent
types.
– foo < ((λα. α ′ int) int > = (λ x. x + 1) 1
– foo < int ′ int > = 1 + 1
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Idea

 Create an interpretation of the type language
with the term language.
– Map type functions to term functions.
– Map type variables to term variables.
– Map type applications to term

applications.
– Map type constants to (almost) anything.

 We can use this idea at run-time to analyze
type constructors and quantified types.
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Type Language

t ::= α
| λα. τ
| τ1 τ2
| int | string
|  | ′ | 8

 variable
 function
 application
 constants

• The type int ′ int is the constant ′ applied to
int twice.

• The type 8α . α α  is the constant 8 applied
to the type constructor (λα . α α ).
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Interpreter

Instead of tcase, define analysis term:
tinterp[η] τ

 To interpret this language we need an
environment to keep track of the variables.

 This environment will also have mappings
for all of the constants.
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Operational semantics of tinterp

 Type constants are retrieved from the environment
tinterp[η]  int  η(int)
tinterp[η]  string  η(string)
tinterp[η]    η()
tinterp[η]  ′  η(′)
tinterp[η]  8  η(8)

 Type variables are retrieved from the environment
tinterp[η] α  η(α)
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Type functions

 Type functions are mapped to term
functions.

 When we reach a type function, we add a
new mapping to the environment.

tinterp[η] (λα.τ)  
     λ x.  tinterp[ η+{α)x}] ( τ )

Execution extends 
environment, mapping α to x.
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Application

 Type application is interpreted as term
application

tinterp[η] (τ1 τ2)
  (tinterp[η] τ1) (tinterp[η] τ2)

The
interpretation of
τ1 is a function
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Example

serializeType = tinterp [η]
where η =  {

int  ) “int”
string ) “string”
′   )  λ x:string. λ y:string.

“(” + x + “*” + y + “)”
   )  λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8  )  λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}
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Example execution

serializeType[int′int]
  (tinterp[η] ′) (tinterp[η] int) (tinterp[η] int)
  (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

(tinterp[η] int) (tinterp[η] int)
  (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

“int” “int”
  “(” + “int” + “*” + “int” + “)”
  “(int*int)”
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Example

serializeType = tinterp [η]
where η =  {

int  ) “int”
string ) “string”
′   )  λ x:string. λ y:string.

“(” + x + “*” + y + “)”
   )  λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8  )  λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}
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Not the whole story

 More complicated examples require a
generalization of this framework.
– Must allow the type of each mapping in the

environment to depend on the analyzed type.
– Requires maintenance of additional type

substitutions to do so in a type-safe way.
– This language is type sound.

 Details appear in paper.
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Conclusion

 Reflection is analyzing the structure of
abstract types.

 Branching on type structure doesn’t scale
well to sophisticated and expressive type
systems.

 A better solution is to interpret the compile-
time language at run-time.




