Simple Unification-based Type Inference for GADTs

Stephanie Weirich University of Pennsylvania

joint work with Dimitrios Vytiniotis, Simon Peyton Jones and Geoffrey Washburn

Overview

- Goal: Add GADTs to Haskell
- Problem: GADT type inference is hard
- Requirements:
 - Simple, declarative specification
 - Easy to implement in GHC
- Solution: Type annotations
- Non-goal: type as many programs as possible

A typical evaluator

```
data Term = Lit Int
| Succ Term
| IsZero Term
| If Term Term Term
```

```
data Value = VInt Int | VBool Bool
```

```
eval :: Term -> Value
eval (Lit i) = VInt i
eval (Succ t) = case eval t of { VInt i -> VInt (i+1) }
eval (IsZero t) = case eval t of { VInt i -> VBool (i==0) }
eval (If b t1 t2) = case eval b of
VBool True -> eval t1
VBool False -> eval t2
```

Richer data types

- In a case alternative, we learn more about `a'; we call this type refinement
- Can't construct ill-typed terms: (If (Lit 3) ...)
- Evaluator is simpler and more efficient

Algebraic Data Types

Normal Haskell or ML data types:

data Ta = T1 | T2 Bool | T3 a a

gives rise to constructors with types

T1 :: **T a** T2 :: Bool -> **T a** T3 :: a -> a -> **T a**

Return type is always (T a)

Generalized Algebraic Data Types

Allow arbitrary arguments to return type

data Term a where Lit :: Int -> **Term Int** Succ :: Term Int -> **Term Int** IsZero :: Term Int -> **Term Bool**

- If :: Term Bool -> Term a -> Term a -> **Term a**
- Programmer gives types of constructors explicitly
- Subsumes standard algebraic datatypes and datatypes with "existential components" [LO94]

GADTs have MANY applications

- Language description and implementation (Typed evaluators, Pugs)
- Domain-specific embedded languages (Darcs,Yampa)
- Generic programming (Hinze et al.,Weirich)
- "Dependent" types (Xi et al.,Sheard)

Adding GADTs to GHC

- Simple extension
 - No big changes to language semantics
 - No re-engineering compiler
- GADTs generalize algebraic datatypes
 - Uniform mechanism for ADTs, "existential components" and GADTs
 - All existing Haskell programs still work
- Complete specification of type inference
 - Predictability

Just a modest extension?

Yes....

- Construction is simple: constructors are just ordinary polymorphic functions
- All the constructors are still declared in one place
- Pattern matching is still strictly based on the value of the constructor; the dynamic semantics is type-erasing

Complete type inference is hard

- Many examples require polymorphic recursion
- Even for those that don't, problems remain

data T a where C :: Int -> T Int

f(Cx) = 3 + x

• What is type of f ?

Annotations solve the problem

- Naïve specification allows multiple types for f
 - T Int -> Int
 - $\forall a. Ta \rightarrow Int$
 - ∀ a. T a -> a
- Inference algorithm can assign just one
- Annotations remove this ambiguity *in the specification*

Basic idea

- Type system distinguishes between *inferred* types and those *known* from user annotations
- Typing context and judgment tracks when types are *wobbly* or *rigid*

 $\begin{array}{ll} \mbox{Modifiers} & m, n ::= w \mid r \\ \mbox{Environments} & \Gamma, \Delta ::= . \mid \Gamma, x :^m \sigma \\ \mbox{Judgment} & \Gamma \vdash t :^m \tau \end{array}$

- $\Gamma \vdash t :^{r} \tau$ means that term t has type τ when we know τ completely in advance.
- $\Gamma \vdash t : {}^{w}\tau$ checks without that assumption.

GADT refinement

- GADT refinement only involves rigid type information
 - Rigid scrutinee triggers refinement
 - Only rigid context types refined
 - Only rigid result types refined
- Example:

data T a where C :: Int -> T Int f :: forall a.T a -> a -> Int f (C x) y = x + y

-- inferred type: T Int -> Int -> Int g (C x) y = x + y

Type checking a case expression

$$\begin{array}{c} x:^{m}\tau_{p} \in \Gamma\\ \Gamma \vdash \overline{p \rightarrow t}: {}^{}\tau_{p} \rightarrow \tau_{t}\\ \hline \Gamma \vdash (\text{case x of } p \rightarrow t):^{n}\tau_{t} \end{array}$$

Type checking a wobbly branch

Type checking a rigid branch

Checking + inference is hard

- MGU is the standard way to solve constraints and produce a substitution
 - Used in Algorithm W
- We really thought this would work
- But, even with all these annotations
 - scrutinee of case
 - return type of case
 - all refined variables in context

MGU does not produce a complete specification of what programs typecheck.

Pathological example

Should this program type check?

data Eq a b where Refl :: Eq c c

f:: $\forall a b. Eq a b \rightarrow (a \rightarrow Int) \rightarrow b \rightarrow Int$ f x y z = (\w -> case x of Refl -> y w) z

Context: x:^r Eq a b, y:^r a->Int, z:^r b, w:^w b Compute $\theta = MGU(Eq c c = Eq a b)$ If $\theta = \{ a \Rightarrow b, c \Rightarrow b \}$ then yes If $\theta = \{ b \Rightarrow a, c \Rightarrow a \}$ then no If $\theta = \{ b \Rightarrow c, a \Rightarrow c \}$ then no

"Fresh" - mgu

- Problem
 - Choice of MGU makes refined type match type of wobbly variable
- A solution
 - Choose the right(?) MGU
- Our solution
 - Don't choose any MGU
 - In this situation, never let refined type match wobbly type
 - Choose a *fresh* variable **d** and use unifier

 $\theta = \{ a \Rightarrow d, b \Rightarrow d, c \Rightarrow d \}$

– Rejects pathological example

Other details

- Additional rules to locally propagate type annotations
 - Like shape inference pass (Pottier/Régis-Gianis)
- Lexically-scoped type variables
 - Must be able to annotate all sub-expressions
 - Bind both "universally" and "existentially" quantified type variables in program text
- Nested patterns
 - more complicated rules, but straightforward
- See paper for details

Non-monotonic annotations

- Sometimes adding an annotation can cause a working program to be rejected
- Hasn't been a problem in practice
- Pathological example:

data T a where C :: T Int

 $x:^{r} T a, y:^{w} a \vdash case x of C \rightarrow y:^{w} a$

– Making y rigid triggers refinement

 $x:^{r} T a, y:^{r} a \nvDash case x of C \rightarrow y:^{w} a$

Making return type rigid restores typability

 $x:^{r} T a, y:^{r} a \vdash case x of C \rightarrow y:^{r} a$

Formal Properties

- Type system is *sound*
 - Type-preserving translation to explicitly-typed language (System F + GADT)
 - Soundness proved for explicit language
- Type system is *expressive*
 - Any program in explicitly-typed language acceptable (with enough annotations)
- Type inference algorithm is *sound* and *complete*
- Type system is a *conservative extension* of Hindley-Milner system
- All details in companion technical report

Related work

- Pottier and Simonet
 - Use implication constraints for complete type inference
 - Solving such constraints can be intractable
- Our previous (unpublished) version
 - Implemented in a previous version of GHC
 - More complicated than this system: types may be partly wobbly
- Pottier and Régis-Gianis
 - Constraint-based
 - Shape inference pass to propagate local annotations
 - Second pass for explicit type system
- Sulzmann et al.
 - Constraint-based
 - Abandons complete type inference
 - Concentrates on error messages

Future work

- Resolve poor interaction between type classes and GADTs
- More general way to combine type inference and type checking
 - slightly different mechanism useful for higher-rank/impredicative polymorphism
- Towards dependently-typed programming languages

Conclusions

- GADTs implemented in GHC
- Can extend unification-based type inference with GADTs
- Simple specification of type system due to user annotations
- Complete specification of where type annotations are necessary is important