
Combining Proofs and Programs in Trellys

Stephanie Weirich

University of Pennsylvania

May 26, 2011

MFPS 27

The Trellys project

The Trellys project

Stephanie Weirich Aaron Stump Tim Sheard

Chris Casinghino Harley Eades Ki Yung Ahn

Vilhelm Sjöberg Peng (Frank) Fu Nathan Collins

Garrin Kimmell

A collaborative project to design a statically-typed functional
programming language based on dependent type theory.

Work-in-progress

The Trellys project

Stephanie Weirich Aaron Stump Tim Sheard

Chris Casinghino Harley Eades Ki Yung Ahn

Vilhelm Sjöberg Peng (Frank) Fu Nathan Collins

Garrin Kimmell

A collaborative project to design a statically-typed functional
programming language based on dependent type theory.

Work-in-progress

Why Dependent Types?

Lightweight verification: Dependent types express
application-specific program invariants that are beyond the
scope of existing type systems. Example: Trees that satisfy
the binary-search tree invariant

Expressiveness: Dependent types enable flexible interfaces,
allowing more programs to be statically checked. Examples:
metaprogramming, variable arity-polymorphism,
type-directed programming.
Uniformity: Full-spectrum dependent types provide the
same syntax and semantics for program computations,
type-level computations, and proofs.

Why Dependent Types?

Lightweight verification: Dependent types express
application-specific program invariants that are beyond the
scope of existing type systems. Example: Trees that satisfy
the binary-search tree invariant
Expressiveness: Dependent types enable flexible interfaces,
allowing more programs to be statically checked. Examples:
metaprogramming, variable arity-polymorphism,
type-directed programming.

Uniformity: Full-spectrum dependent types provide the
same syntax and semantics for program computations,
type-level computations, and proofs.

Why Dependent Types?

Lightweight verification: Dependent types express
application-specific program invariants that are beyond the
scope of existing type systems. Example: Trees that satisfy
the binary-search tree invariant
Expressiveness: Dependent types enable flexible interfaces,
allowing more programs to be statically checked. Examples:
metaprogramming, variable arity-polymorphism,
type-directed programming.
Uniformity: Full-spectrum dependent types provide the
same syntax and semantics for program computations,
type-level computations, and proofs.

An incremental approach

Start with a general purpose, call-by-value, functional
programming language and strengthen its type system.

Want to reuse existing ideas from FP languages
Want to draw programmers from FP communities
Want existing code to work with minor modification

Want to support incremental verification... only provide
the strongest guarantees about the most critical code.

An incremental approach

Start with a general purpose, call-by-value, functional
programming language and strengthen its type system.

Want to reuse existing ideas from FP languages
Want to draw programmers from FP communities
Want existing code to work with minor modification
Want to support incremental verification... only provide
the strongest guarantees about the most critical code.

On the shoulders of giants

Not the first to propose programming with dependent types
Agda, Epigram, Coq, Lego, Nuprl

Not the first functional language to incorporate ideas from
Type Theory

GHC, Ur, Sage, ATS, Ωmega, DML
Not the first to propose a full-spectrum functional programming
language based on dependent types

Guru, Cayenne, Cardelli “A Polymorphic λ-calculus with
Type:Type”

On the shoulders of giants

Not the first to propose programming with dependent types
Agda, Epigram, Coq, Lego, Nuprl

Not the first functional language to incorporate ideas from
Type Theory

GHC, Ur, Sage, ATS, Ωmega, DML

Not the first to propose a full-spectrum functional programming
language based on dependent types

Guru, Cayenne, Cardelli “A Polymorphic λ-calculus with
Type:Type”

On the shoulders of giants

Not the first to propose programming with dependent types
Agda, Epigram, Coq, Lego, Nuprl

Not the first functional language to incorporate ideas from
Type Theory

GHC, Ur, Sage, ATS, Ωmega, DML
Not the first to propose a full-spectrum functional programming
language based on dependent types

Guru, Cayenne, Cardelli “A Polymorphic λ-calculus with
Type:Type”

Why call-by-value?

Have to choose something. Want to include nontermination
so the order of evaluation makes a difference

Good cost model. Programmers can better predict the
running time and space usage of their programs
Distinction between values and computations built into the
language. Variables stand for values, not computations

Why call-by-value?

Have to choose something. Want to include nontermination
so the order of evaluation makes a difference
Good cost model. Programmers can better predict the
running time and space usage of their programs

Distinction between values and computations built into the
language. Variables stand for values, not computations

Why call-by-value?

Have to choose something. Want to include nontermination
so the order of evaluation makes a difference
Good cost model. Programmers can better predict the
running time and space usage of their programs
Distinction between values and computations built into the
language. Variables stand for values, not computations

A programming language, not a logic

Can’t use Curry-Howard Isomorphism to interpret this
language as a logic.

All types are inhabited.

A seeming contradiction

How can we have a full-spectrum, dependently-typed language
based on an inconsistent logic?

A programming language, not a logic

Can’t use Curry-Howard Isomorphism to interpret this
language as a logic.
All types are inhabited.

A seeming contradiction

How can we have a full-spectrum, dependently-typed language
based on an inconsistent logic?

A programming language, not a logic

Can’t use Curry-Howard Isomorphism to interpret this
language as a logic.
All types are inhabited.

A seeming contradiction

How can we have a full-spectrum, dependently-typed language
based on an inconsistent logic?

Syntactic type soundness

Main property of typed programming languages is proven by an
elementary syntactic argument and extends in a straightforward
manner to modern language features (such as references,
concurrency, exceptions, continuations, etc.)

Theorem (Syntactic type soundness)

If ` a : A then either a diverges, aborts, or a ∗
cbv v and

` v : A.

Type soundness gives us a form of partial correctness

Syntactic type soundness

Main property of typed programming languages is proven by an
elementary syntactic argument and extends in a straightforward
manner to modern language features (such as references,
concurrency, exceptions, continuations, etc.)

Theorem (Syntactic type soundness)

If ` a : A then either a diverges, aborts, or a ∗
cbv v and

` v : A.

Type soundness gives us a form of partial correctness

Syntactic type soundness

Main property of typed programming languages is proven by an
elementary syntactic argument and extends in a straightforward
manner to modern language features (such as references,
concurrency, exceptions, continuations, etc.)

Theorem (Syntactic type soundness)

If ` a : A then either a diverges, aborts, or a ∗
cbv v and

` v : A.

Type soundness gives us a form of partial correctness

Partial correctness

Can give a logical interpretation for values based on partial
correctness:

` a : Σx :Nat.even x = true

If a terminates, then it must produce a pair of a natural number
and a proof that the result is even.

But, implications may be bogus.

` a : Σx :Nat.(even x = true) → (x = 3)

Type soundness tells us that trying to use the implication in
some other proof could cause the program to diverge or abort,
but not “go wrong.”

Partial correctness

Can give a logical interpretation for values based on partial
correctness:

` a : Σx :Nat.even x = true

If a terminates, then it must produce a pair of a natural number
and a proof that the result is even.
But, implications may be bogus.

` a : Σx :Nat.(even x = true) → (x = 3)

Type soundness tells us that trying to use the implication in
some other proof could cause the program to diverge or abort,
but not “go wrong.”

Partial correctness

Can give a logical interpretation for values based on partial
correctness:

` a : Σx :Nat.even x = true

If a terminates, then it must produce a pair of a natural number
and a proof that the result is even.
But, implications may be bogus.

` a : Σx :Nat.(even x = true) → (x = 3)

Type soundness tells us that trying to use the implication in
some other proof could cause the program to diverge or abort,
but not “go wrong.”

Total correctness

Partial correctness is not enough
Can’t compile this language efficiently (have to run proofs)
Users are willing to work harder for stronger guarantees for
critical code

From partial correctness to total correctness

Plan for the rest of the talk:
Part I: present a full-spectrum CBV language that satisfies
type soundness only
Part II: identify a “logical” sublanguage and discuss the
interactions between the two parts

Not covered by this talk:
How to make type checking decidable by adding
annotations to the syntax
How to make program development feasible by inferring
annotations

From partial correctness to total correctness

Plan for the rest of the talk:
Part I: present a full-spectrum CBV language that satisfies
type soundness only
Part II: identify a “logical” sublanguage and discuss the
interactions between the two parts

Not covered by this talk:
How to make type checking decidable by adding
annotations to the syntax
How to make program development feasible by inferring
annotations

Part I : A call-by-value
programming language with

dependent types

Uniform language

Types, terms, kinds defined using the same syntax

Syntax

a, b, A,B ::= ? | Nat | (x :A) → B
| 0 | S a | case a of {0 ⇒ a1; S x ⇒ a2}
| x | rec f x .a | a b
| abort

v, u ::= ? | Nat | (x :A) → B
| 0 | S v
| x | rec f x .a

Call-by-value operational semantics

a cbv b

(rec f x .a) v cbv [v/x][rec f x .a/f]a

case 0 of {0 ⇒ a1; S x ⇒ a2} cbv a1

case (S v) of {0 ⇒ a1; S x ⇒ a2} cbv [v/x]a2

E [abort] cbv abort

Example

Polymorphic application

app : (x :?) → (f :x → x) → (z :x) → x
app = λx .λf .λz .f z

app Nat (λx .x) 0 ≡ 0

Use standard abbreviations:
λx .a for rec f x .a when f is not free in a
A → B for (x :A) → B when x is not free in B

Expressive example

zeroApp : Nat → Nat → Nat

zeroApp = λg .λz .g

oneApp : (Nat → Nat) → Nat → Nat

oneApp = λg .λz .g z

twoApp : (Nat → Nat → Nat) → Nat → Nat

twoApp = λg .λz .g z z

N : Nat → ∗
N = rec f n. case n of

{ 0 ⇒ Nat ;
S m ⇒ Nat → f m}

nApp : (n :Nat) → (N n) → Nat → Nat

nApp = rec f n. case n of
{ 0 ⇒ λg .λz .g ;

S m ⇒ λg .λz .f m (g z) z}

Expressive example

zeroApp : Nat → Nat → Nat
zeroApp = λg .λz .g
oneApp : (Nat → Nat) → Nat → Nat
oneApp = λg .λz .g z
twoApp : (Nat → Nat → Nat) → Nat → Nat
twoApp = λg .λz .g z z

N : Nat → ∗
N = rec f n. case n of

{ 0 ⇒ Nat ;
S m ⇒ Nat → f m}

nApp : (n :Nat) → (N n) → Nat → Nat

nApp = rec f n. case n of
{ 0 ⇒ λg .λz .g ;

S m ⇒ λg .λz .f m (g z) z}

Expressive example

zeroApp : Nat → Nat → Nat
zeroApp = λg .λz .g
oneApp : (Nat → Nat) → Nat → Nat
oneApp = λg .λz .g z
twoApp : (Nat → Nat → Nat) → Nat → Nat
twoApp = λg .λz .g z z

N : Nat → ∗
N = rec f n. case n of

{ 0 ⇒ Nat ;
S m ⇒ Nat → f m}

nApp : (n :Nat) → (N n) → Nat → Nat
nApp = rec f n. case n of

{ 0 ⇒ λg .λz .g ;
S m ⇒ λg .λz .f m (g z) z}

Expressive example

zeroApp : Nat → Nat → Nat
zeroApp = λg .λz .g
oneApp : (Nat → Nat) → Nat → Nat
oneApp = λg .λz .g z
twoApp : (Nat → Nat → Nat) → Nat → Nat
twoApp = λg .λz .g z z

N : Nat → ∗
N = rec f n. case n of

{ 0 ⇒ Nat ;
S m ⇒ Nat → f m}

nApp : (n :Nat) → (N n) → Nat → Nat
nApp = rec f n. case n of

{ 0 ⇒ λg .λz .g ;
S m ⇒ λg .λz .f m (g z) z}

Typing relation

Γ ` a : A

General recursion

Γ, y : A, f : (y :A) → B ` a : B
Γ ` rec f y .a : (y :A) → B

Explicit failure

Γ ` A : ?

Γ ` abort : A

Type is a type

` ? : ?

Conversion

Because types depend on programs, we want to identify types
that contain equivalent programs.

Vec Nat (1 + 2) ≡ Vec Nat 3

Expressions can be assigned any equivalent type

Conversion

Γ ` a : A A ≡ B Γ ` B : ?

Γ ` a : B

But what does it mean for types to be equal?

Conversion

Because types depend on programs, we want to identify types
that contain equivalent programs.

Vec Nat (1 + 2) ≡ Vec Nat 3

Expressions can be assigned any equivalent type

Conversion

Γ ` a : A A ≡ B Γ ` B : ?

Γ ` a : B

But what does it mean for types to be equal?

Definitional Equality

Based on operational semantics (hence undecidable)
Ideally: identify all terms that are contextually equivalent
to each other
For now: close step relation under reflexivity, symmetry,
transitivity and substitutivity
Strictly computational

a ≡ b

a1 cbv a2

a1 ≡ a2 a ≡ a
a1 ≡ a2

a2 ≡ a1

a1 ≡ a2 a2 ≡ a3

a1 ≡ a3

a1 ≡ a2

[a1/x]A ≡ [a2/x]A

Internalizing equality

Internalize definitional equality as a proposition, with a trivial
proof

a, b, A,B ::= . . . | a = b | join

Trivial proof holds when terms are definitionally equal and the
proposition is well-formed

a ≡ b Γ ` a = b : ?

Γ ` join : a = b

Because definitional equality is untyped, propositional equality
is heterogeneous

Γ ` a : A Γ ` b : B
Γ ` a = b : ?

Internalizing equality

Internalize definitional equality as a proposition, with a trivial
proof

a, b, A,B ::= . . . | a = b | join

Trivial proof holds when terms are definitionally equal and the
proposition is well-formed

a ≡ b Γ ` a = b : ?

Γ ` join : a = b

Because definitional equality is untyped, propositional equality
is heterogeneous

Γ ` a : A Γ ` b : B
Γ ` a = b : ?

Internalizing equality

Internalize definitional equality as a proposition, with a trivial
proof

a, b, A,B ::= . . . | a = b | join

Trivial proof holds when terms are definitionally equal and the
proposition is well-formed

a ≡ b Γ ` a = b : ?

Γ ` join : a = b

Because definitional equality is untyped, propositional equality
is heterogeneous

Γ ` a : A Γ ` b : B
Γ ` a = b : ?

Conversion and propositional equality

Extend conversion rule to propositional equality

Γ ` a : A Γ ` v : A = B
Γ ` a : B

Subsumes previous conversion rule (using join as the value)
Conversion is implicit. Terms that differ only in convertible
types are trivially equal
Proof must be a value because of partial correctness
Don’t care which value it is

Conversion and propositional equality

Extend conversion rule to propositional equality

Γ ` a : A Γ ` v : A = B
Γ ` a : B

Subsumes previous conversion rule (using join as the value)

Conversion is implicit. Terms that differ only in convertible
types are trivially equal
Proof must be a value because of partial correctness
Don’t care which value it is

Conversion and propositional equality

Extend conversion rule to propositional equality

Γ ` a : A Γ ` v : A = B
Γ ` a : B

Subsumes previous conversion rule (using join as the value)
Conversion is implicit. Terms that differ only in convertible
types are trivially equal

Proof must be a value because of partial correctness
Don’t care which value it is

Conversion and propositional equality

Extend conversion rule to propositional equality

Γ ` a : A Γ ` v : A = B
Γ ` a : B

Subsumes previous conversion rule (using join as the value)
Conversion is implicit. Terms that differ only in convertible
types are trivially equal
Proof must be a value because of partial correctness

Don’t care which value it is

Conversion and propositional equality

Extend conversion rule to propositional equality

Γ ` a : A Γ ` v : A = B
Γ ` a : B

Subsumes previous conversion rule (using join as the value)
Conversion is implicit. Terms that differ only in convertible
types are trivially equal
Proof must be a value because of partial correctness
Don’t care which value it is

Why can we do this?

Type soundness follows the following property (which can be
proven syntactically):

Lemma (Soundness of propositional equality)

If ` v : A1 = A2 then A1 ≡ A2.

The cost of CBV

Call-by-value semantics adds extra hypothesis to application
rule:

Γ ` a : (x :A) → B Γ ` b : A Γ ` [b/x]B : ?

Γ ` a b : [b/x]B

If b is a non-value, the rule must make sure that x was never
treated as a value in B .

The cost of CBV

Call-by-value semantics adds extra hypothesis to application
rule:

Γ ` a : (x :A) → B Γ ` b : A Γ ` [b/x]B : ?

Γ ` a b : [b/x]B

If b is a non-value, the rule must make sure that x was never
treated as a value in B .

Implicit arguments

Some values have no runtime effect.
Useful for:

Parametric polymorphism (x :?) → x → x
Preconditions (x :Nat) → ¬(x = 0) → Nat

Want to elide them from the syntax of terms

app (λx .x) 0 instead of app Nat (λx .x) 0

Implicit arguments

Add implicit abstraction type

a, b, A,B ::= . . . | [x : A] → B

but... can only generalize over values

Γ, x : A ` v : B x /∈ FVv
Γ ` v : [x : A] → B

...can only instantiate with values

Γ ` a : [x : A] → B Γ ` v : A
Γ ` a : [v/x]B

Value restrictions are annoying

Suppose we write a program that proves the following fact
about natural numbers:

f : (x : Nat) → (y : Nat) → (x = S y) → ¬(x = 0)

However, a use of this lemma “f x y z” is not a value and
cannot be erased.

Must first use an explicit argument to evaluate it to a value,
even though the value is irrelevant.

Value restrictions are annoying

Suppose we write a program that proves the following fact
about natural numbers:

f : (x : Nat) → (y : Nat) → (x = S y) → ¬(x = 0)

However, a use of this lemma “f x y z” is not a value and
cannot be erased.
Must first use an explicit argument to evaluate it to a value,
even though the value is irrelevant.

Taking stock

Make type checking decidable by adding annotations to the
syntax
Make program development feasible by inferring
annotations

...but, irrelevant computations remain at runtime

...slowing execution

...weakening equivalence

...and weakening static guarantees

Taking stock

Make type checking decidable by adding annotations to the
syntax
Make program development feasible by inferring
annotations
...but, irrelevant computations remain at runtime

...slowing execution

...weakening equivalence

...and weakening static guarantees

Taking stock

Make type checking decidable by adding annotations to the
syntax
Make program development feasible by inferring
annotations
...but, irrelevant computations remain at runtime
...slowing execution

...weakening equivalence

...and weakening static guarantees

Taking stock

Make type checking decidable by adding annotations to the
syntax
Make program development feasible by inferring
annotations
...but, irrelevant computations remain at runtime
...slowing execution
...weakening equivalence

...and weakening static guarantees

Taking stock

Make type checking decidable by adding annotations to the
syntax
Make program development feasible by inferring
annotations
...but, irrelevant computations remain at runtime
...slowing execution
...weakening equivalence
...and weakening static guarantees

Part II : A logical sublanguage

A logical language

There is a logically-consistent sublanguage hiding in here.

How do we identify it?
We use the type system!
Annotate typing judgement to specify the logical language
or the programmatic language.

New typing judgement form:

Γ `θ a : A where θ ::= L | P

A logical language

There is a logically-consistent sublanguage hiding in here.
How do we identify it?

We use the type system!
Annotate typing judgement to specify the logical language
or the programmatic language.

New typing judgement form:

Γ `θ a : A where θ ::= L | P

A logical language

There is a logically-consistent sublanguage hiding in here.
How do we identify it?
We use the type system!

Annotate typing judgement to specify the logical language
or the programmatic language.

New typing judgement form:

Γ `θ a : A where θ ::= L | P

A logical language

There is a logically-consistent sublanguage hiding in here.
How do we identify it?
We use the type system!
Annotate typing judgement to specify the logical language
or the programmatic language.

New typing judgement form:

Γ `θ a : A where θ ::= L | P

A logical language

There is a logically-consistent sublanguage hiding in here.
How do we identify it?
We use the type system!
Annotate typing judgement to specify the logical language
or the programmatic language.

New typing judgement form:

Γ `θ a : A where θ ::= L | P

Subsumption

Logical language is a sublanguage of the programmatic
language.

Γ `L a : A
Γ `P a : A

It guarantees stronger properties about its expressions.

Theorem (Syntactic type soundness)

If `P a : A then either a diverges, aborts, or a ∗
cbv v and

`P v : A.

Theorem (Semantic consistency)

If `L a : A then a ∗
cbv v and `L v : A

Expressive features must be programmatic

Some capabilities only available for the programmatic language

Type-In-Type

`P ? : ?

Failure

Γ `P A : ?

Γ `P abort : A

General recursion

Γ `P (x :θ A) → B : ?
Γ, x :θ A, f :P (x :θ A) → B `P b : B

Γ `P rec f x .b : (x :θ A) → B

What does the logical language look like?

Logical functions should not be recursive...

Γ `L (x :θ A) → B : ? Γ, x :θ A `L b : B
Γ `L rec f x .b : (x :θ A) → B

...except for primitive recursion over natural numbers

Γ, x :L Nat `L B : ?
Γ, x :L Nat, f :L (y :L Nat) → [z :L (S y) = x] → [y/x]B `L b : B

Γ `L rec f x .b : (x :L Nat) → B

What does the logical language look like?

Logical functions should not be recursive...

Γ `L (x :θ A) → B : ? Γ, x :θ A `L b : B
Γ `L rec f x .b : (x :θ A) → B

...except for primitive recursion over natural numbers

Γ, x :L Nat `L B : ?
Γ, x :L Nat, f :L (y :L Nat) → [z :L (S y) = x] → [y/x]B `L b : B

Γ `L rec f x .b : (x :L Nat) → B

Mixing the sublanguages

Programmatic functions can have logical parameters:

Γ `P (x :L A) → B : ?
Γ, x :L A, f :P (x :L A) → B `P b : B

Γ `P rec f x .b : (x :L A) → B

Such arguments are logical “proofs” that the preconditions of
the function are satisfied.

These arguments can be implicit, even if they are not values.

Mixing the sublanguages

Programmatic functions can have logical parameters:

Γ `P (x :L A) → B : ?
Γ, x :L A, f :P (x :L A) → B `P b : B

Γ `P rec f x .b : (x :L A) → B

Such arguments are logical “proofs” that the preconditions of
the function are satisfied.
These arguments can be implicit, even if they are not values.

Freedom of Speech

Logical functions can have programmatic parameters:

Γ `L (x :P A) → B : ? Γ, x :P A `L b : B
Γ `L rec f x .b : (x :P A) → B

Application restricted to terminating arguments.

Γ `L a : (x :P A) → B
Γ `↓ b : A Γ `L [b/x]B : ?

Γ `L a b : [b/x]B

Total arguments are either logical or values.

Γ `L a : A
Γ `↓ a : A

Γ `P v : A
Γ `↓ v : A

Freedom of Speech

Logical functions can have programmatic parameters:

Γ `L (x :P A) → B : ? Γ, x :P A `L b : B
Γ `L rec f x .b : (x :P A) → B

Application restricted to terminating arguments.

Γ `L a : (x :P A) → B
Γ `↓ b : A Γ `L [b/x]B : ?

Γ `L a b : [b/x]B

Total arguments are either logical or values.

Γ `L a : A
Γ `↓ a : A

Γ `P v : A
Γ `↓ v : A

Conversion

Conversion available for both languages
Equality proof must be total

Γ `θ a : A Γ `↓ b : A = B
Γ `θ a : B

Shared values

Some values are shared between the two languages.

For example, all natural numbers are values in the logical
language as well as in the programmatic language.

`L Nat : ? `L 0 : Nat

Γ `θ n : Nat

Γ `θ S n : Nat

This means that it is sound to treat a variable of type Nat as
logical, no matter what it is assumed to be in the context.

Γ `P x : Nat

Γ `L x : Nat

Shared values

Some values are shared between the two languages.
For example, all natural numbers are values in the logical
language as well as in the programmatic language.

`L Nat : ? `L 0 : Nat

Γ `θ n : Nat

Γ `θ S n : Nat

This means that it is sound to treat a variable of type Nat as
logical, no matter what it is assumed to be in the context.

Γ `P x : Nat

Γ `L x : Nat

Shared values

Some values are shared between the two languages.
For example, all natural numbers are values in the logical
language as well as in the programmatic language.

`L Nat : ? `L 0 : Nat

Γ `θ n : Nat

Γ `θ S n : Nat

This means that it is sound to treat a variable of type Nat as
logical, no matter what it is assumed to be in the context.

Γ `P x : Nat

Γ `L x : Nat

Uniform equality

Equality proofs are also shared.
All equality proofs and propositions are logical, no matter what
sort of terms they equate.

Γ `P a : A
Γ `P b : B

Γ `L a = b : ?

Γ `L a = b : ?
a ≡ b

Γ `L join : a = b

We can treat a programmatic variable as a logical equality
proof.

Γ `P x : A = B
Γ `L x : A = B

This supports incremental verification. We can have a partial
function return an equality proof, and then use that to satisfy
the preconditions of any part of the code.

Uniform equality

Equality proofs are also shared.
All equality proofs and propositions are logical, no matter what
sort of terms they equate.

Γ `P a : A
Γ `P b : B

Γ `L a = b : ?

Γ `L a = b : ?
a ≡ b

Γ `L join : a = b

We can treat a programmatic variable as a logical equality
proof.

Γ `P x : A = B
Γ `L x : A = B

This supports incremental verification. We can have a partial
function return an equality proof, and then use that to satisfy
the preconditions of any part of the code.

Conclusion

Future work

What logical system should we use? Predicative?
Impredicative? Large Eliminations? Induction-Recursion?

Interaction with classical reasoning: allow proofs to branch
on whether a program halts, aborts or diverges
Strengthen definitional and propositional equality
Elaboration to an annotated language

Future work

What logical system should we use? Predicative?
Impredicative? Large Eliminations? Induction-Recursion?
Interaction with classical reasoning: allow proofs to branch
on whether a program halts, aborts or diverges

Strengthen definitional and propositional equality
Elaboration to an annotated language

Future work

What logical system should we use? Predicative?
Impredicative? Large Eliminations? Induction-Recursion?
Interaction with classical reasoning: allow proofs to branch
on whether a program halts, aborts or diverges
Strengthen definitional and propositional equality

Elaboration to an annotated language

Future work

What logical system should we use? Predicative?
Impredicative? Large Eliminations? Induction-Recursion?
Interaction with classical reasoning: allow proofs to branch
on whether a program halts, aborts or diverges
Strengthen definitional and propositional equality
Elaboration to an annotated language

Summary

Can have full-spectrum dependently-typed language with
nontermination, effects, etc.
Call-by-value semantics permits “partial correctness”
Logical and programmatic languages can interact

All proofs are programs
Logic can talk about programs
Shared values can be passed from programs to the logic

	The Trellys project
	Part I : A call-by-value programming language with dependent types
	Part II : A logical sublanguage
	Conclusion

