Generative type abstraction and

type-level computation
(Wrestling with System FC)

Stephanie Weirich, Steve Zdancewic

University of Pennsylvania

Dimitrios Vytiniotis, Simon Peyton Jones
Microsoft Research, Cambridge

POPL 2011, Austin TX, January 2011

Type generativity is useful

» Module implementor:

module MImpl (Tel, ..) Inside MImpl:
Tel ~ String

newtype Tel = MkTel String
We can also lift this equality:

List Tel ~ List String
Tel -> Int ~ String -> Int
etc.

» Module consumer:

module MCons
import MImpl Inside MCons:

- Tel = String
f :: Tel -> Tel

f X = “9030” ++ X

» Well-explored ideas found in various forms in modern languages [e.g. see
papers on ML modules by Harper, Dreyer, Rossberg, Russo, ...]

Type-level computation is useful

In the Glasgow Haskell Compiler, type-level computation involves

type classes and families:

module MImpl (Tel)

class LowlLevel a whggg/////
type R a =—
toLowLevel :: a -> R a

instance LowLevel String wh
type R String = ByteArray

toLowLevel x = strToByteArray x

instance LowLevel Tel where

R is a “type function”

€€ R String ~ ByteArray

type R Tel = Int64
toLowLevel x = ..

R Tel ~ Inte64

But there’s a problem!

module MImpl (Tel, ..)
newtype Tel = MkTel String

class LowLevel a where
type R a

instance LowLevel String where
type R String = ByteArray

instance LowLevel Tel where

type R Tel = Int64 —

—
—

—

—

///
—

In the rest of the module:
Tel ~ String
Hence by lifting
R Tel ~ R String
Hence ...
ByteArray ~ Int64

A

//

o

This paper

» Type generativity and type functions are both and simultaneously useful!
» But it’s easy to lose soundness [e.g. see GHC bug trac #1496]

» So, what’s some good solution that combines these features?

| This talk.The rest is in the paper

System FC2 |

A novel, sound, strongly-typed language with type-level equalities

|. Stages the use of the available equalities, to ensure soundness

2. Distinguishes between “codes” and “types” as in formulations of
Type Theory [e.g. see papers by Dybjer] and intensional type
analysis [e.g. see papers by Weirich, Crary]

3. Improves GHC’s core language [System FC, Sulzmann et al.]

4. Soundness proof w/o requiring strong normalization of types

4

Recap

newtype Tel = MkTel String -- Tel ~ String

type instance R String = ByteArray -- R String ~ ByteArray
type instance R Tel = Int64 -- R Tel ~ Int64

R String MUST NOT BE EQUATED TO R Tel

(List String) OKTO BE EQUATED TO (List Tel)

A non-solution
» So lifting is(?) the source of all evil:
' 1~0

''+Tt~To
» Possible solution: disallow lifting if T is a type function

» Seems arbitrary, and restrictive, and does not quite work

data TR a = MKTR (R a) » TR Tel ~ TR String

to :: ByteArray -> TR String JUST AS BAD, BECAUSE THEN:

to x = MKTR X
from.to :: ByteArray -> Int64

from :: TR Tel -> Int64

from (MKTR x) = X

Type Theory to the Rescue: Roles

» As is common in Type Theory, distinguish between a code (a
“name”) and a type (a “‘set

newtype Tel YOUR
» Newtype definitions introdt TAK EAWAY # |

A code (such as Tel) can imp 8.
(Ax: Tel. aees

[+ Tel ~ String : */TYPE
[+ Tel -~ String : */CODE

Code vs Type Equality

» If tand o are equal as codes then they are equal as
types:
' - T~0:%/CODE
' Ft~0:%/TYPE

» But two different codes may or may not be equal as types

newtype Tel = MkTel String
newtype Address = MkAddr String

[+ Tel ~ Address : */TYPE v
[+ Tel ~ Address : */CODE

Using the FC2 kind system to track roles

» Key idea:
Type-level computations dispatch on codes, not types

» Use the kind system of FC2 to track codes

Fw: FC2:

K ::= * | kK > K n::=*| k—-n
K ::= <n/TYPE> | <n/CODE>

type family R a

type instance R String = ByteArray

type instance R Tel = Int64 <
/

£
R : (<*/CODE> — *)/CODE FC2
R String ~ ByteArray : */CODE tﬁfﬁfﬁ)/
R Tel ~ Int64 : */CODE

9

Look ma, no special lifting!

» Lifting equalities must simply be kind respecting:

(T:<x/p>=%)€T
' - T~0:%/p
' - Tt~To:*/TYPE

» Actual rule is more general but the above simplification
conveys the intentions!

Why does that fix the problem?

4

*/p>=%) €T
YOUR = T~0:%/p

TAKEAWAY #2 ¢ % :x/TYPE

Impossible to derive
~~ R Str‘lng ~ R Tel : */TYPE N\
N . because R expects a CODE \/

‘ . equality! |
Tel ~ String : */TYPE //\f

Tel +String : */CODE

R : (<*/CODE> —» *) € T

Lifting over type constructors

4

(T:<x/p>=x)€el
[T~0:%/p /

[- Tt~To:*/TYPE/

Similarly:
TR : (<*/CODE> — *)

Hence:
TR Tel -~ TR String : */TYPE

/
/
,/

Tel ~ String : */TYPE
Tel +String : */CODE
R : (<*/CODE> » *) € T

data TR a = MKTR (R a)

data List a = Nil | Cons a (List a)

BUT:
List : (<*/TYPE> — *)

Hence:
List Tel ~ List String : */

TYPE

12

FC2: The formal setup

Source FC2 constants

declarations

and axioms

FC2 program

* Elaborated program contains explicit types
and proof terms

e Easy to typecheck

* By elaborating to a type safe language we
establish type soundness of the source and
soundness of type inference and soundness
of compiler transformations

Source program

Type and kind
(and role) inference

FC2 typing judgements

t All equalities have explicit proof witnesses. Three judgements:

Fe:t Role p ::= TYPE | CODE
rFi/p
T u=a|TT|Va:k.t T~0=>¢
—
" Coercion abstractions
r I—@ T~0: n/p

= idsymylc|Cly;y2l Tylnthiy

Coercions y: Equallty proof witnesses

» Typing rule that connects typing and coercions in FC2:

're:t TrFHy:T~0:%/TYPE
'(e>y):o

|4

Type-soundness via consistency

» Based on progress and subject reduction, using a semantics
that “pushes” coercions:

We know that:
V:(1—0)~ (- 0)
y1=nthly Yo=nthO0y Hence:
((Ax57-91)'>)’) € — (Ax:T.e1>Y1) (€2 symyp) yl:o~0a
Hence:
VO:17~T7T
Hence:
sym yO T ~T

» Progress is proven with the assumption of consistency:

A context ["is consistent iff whenever I' -y : T ~o: n/TYPE is
derived and T, o are value types, and T is a datatype application (T @)
then o is also the same datatype application (T ¢’)

15

Establishing consistency
» Step |

Define a role-sensitive type rewrite relation

[Novel idea: don’t require strong normalization of axioms, but
require instead more determinism]

» Step 2

Prove soundness and completeness of the type rewrite relation
wrt the coercibility relation

» Step 3:

Show that rewriting preserves head value constructors

See paper and extended version for the gory details

More interesting details in the paper

4

» I've talked about coercion lifting, but when is coercion
decomposition safe? And under which roles?

' -To~Ty :x/TYPE
'~y :?2227

» FC2 typing rules are not formulated with only two
universes (TYPE / CODE) but allow a semi-lattice of
universes — perhaps a nice way to incorporate safely
many notions of equality?

I[s this all Haskell specific?

No, though no other existing language demonstrates the
same problem today so Haskell is a good motivation

But:
Type generativity via some mechanism is useful
Type-level computation is independently useful

GHC happened to arrive at this situation early

Sooner or later, as soon as both these features are in your
type system you have to look for a solution

Lots of exciting future directions

» Present a semantics that justifies the proof theory of FC2

» Shed more light into coercion decomposition:
Injectivity of constructors admissible in Fw but not derivable (conij.)
Hence in need of semantic justification for the decomposition rules

Direction: Extend the kinds of Fw with roles and type functions, and
encode equalities as Leibniz equalities. Can this shed any more light?
What are the parametric properties of that language?

» Enrich the universe of codes with term constructors

» Investigate other interesting equalities (e.g. syntactic, 3)

Can roles help in security and information flow type systems where
different equalities may arise from different confidentiality levels?

» Develop source language technology to give programmers
control over the kinds of their declarations

Thank you for your attention

Questions!?

20

