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The Zombie programming language

Goal: FP++

Functional programming enhanced by reasoning in
constructive logic

Full-spectrum dependent types (for uniformity)

Erasable arguments (for e�cient compilation)

Simple semantics for indexed types and dependently-typed
pattern matching

Proof automation based on congruence closure
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Zombie: A language, in two parts

1 Programmatic fragment: nontermination allowed (similar
to ML and Haskell)

prog div : Nat ! Nat ! Nat

rec div n m = if n < m then 0 else 1 + div (n - m) m

2 Logical fragment: all programs must terminate (similar to
Coq and Agda)

log add : Nat ! Nat ! Nat

ind add x y = case x [eq] of

Zero ! y -- eq : x = Zero

Suc x’ ! add x’ [ord eq] y -- eq : x = Suc x’, used for ind

Uniformity: Both fragments use the same syntax, have the
same (call-by-value) operational semantics.
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Dependent types in Zombie

The logical fragment can reason about the programmatic
fragment.

log div62 : div 6 2 = 3

div62 = join

Here, join proves that two terms are equal because they reduce
to the same value.

Type checking join is undecidable, so includes an overridable
timeout—the programmer is in control.
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Restricted �-equality

The type checker reduces terms only when directed by the
programmer (e.g. while type checking join).

Zombie does not include �-convertibility in definitional equality!

In a context with

f : Vec Bool 3 ! Nat

x : Vec Bool (div 6 2)

the expression f x does not type check because div 6 2 is not
automatically equal to 3.

In other words, �-conversion is only available for propositional
equality.

f (x |> [Vec Bool ~div62])
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Isn’t type checking without � awful?

Yes. And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

|> [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

|> [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

|> [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.
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Better

What if the type checker could determine those coercions
automatically?

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

-- coercion by eq inferred

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

-- coercion by eq and ih inferred

i.e. automatically coerce type 0 + 0 = 0 to type n + 0 = n in
contexts where eq: n = 0 is assumed.

Capture this idea with a relation:
eq: n = 0 ` (0 + 0 = 0) = (n + 0 = n)
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Opportunity: Congruence Closure

The relation that we need is the congruence closure of equations
in the context.

x : a = b 2 �

� ` a = b

� ` a = b

� ` {a/x} c = {b/x} c

� ` a = a

� ` a = b

� ` b = a

� ` a = b � ` b = c

� ` a = c

E�cient algorithms for deciding this relation exist [Nieuwenhuis
and Oliveras, 2007].
Note, extending this relation with �-conversion makes it
undecidable.



What we have done

Designed and implemented a concise surface language for
Zombie programmers

Specification via bidirectional type system

� ` a ) A and � ` a ( A

Type checking is up-to Congruence Closure

� ` a ) A � ✏ A = B

� ` a ) B

� ` a ( A � ✏ A = B

� ` a ( B

Elaborates to explicitly-typed core language, previously
proven sound
[POPL ’14][MSFP’12]



Zombie-style Congruence Closure

1 Only includes well-typed terms

2 Makes use of assumptions that are equivalent to equalities

x : A 2 � � ✏ A = (a = b)

� ✏ a = b

3 Supports injectivity of type (and data) constructors

� ✏ ((x :A
1

) ! B
1

) = ((x :A
2

) ! B
2

)

� ✏ A
1

= A
2

4 Works up-to-erasure

|a| = |b| � ` a : A � ` b : B

� ✏ a = b

5 and generates proof terms in the core language
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Properties of Elaboration

Elaboration is sound

If elaboration succeeds, it produces a well-typed core
language term.

Elaboration is complete

If a term type checks according to the surface language
specification, then elaboration will succeed.

Elaboration doesn’t change the semantics

If elaboration succeeds, it produces a core language term
that di↵ers from the source term only in irrelevant
information (type annotations, type coercions, erasable
arguments).
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Extensions



Proof inference

Congruence closure can also supply proofs of equality

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero !
let _ = (join : 0 + 0 = 0) in _

Suc m !
let _ = npluszero m [ord eq] in

let _ = (join : (Suc m) + 0 = Suc (m + 0)) in _



Extension: Unfold

Common to reduce terms as much as possible

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! unfold (0 + 0) in _

Suc m !
let _ = npluszero m [ord eq] in

unfold ((Suc m) + 0) in _

The expression unfold a in b expands to

let _ = (join : a = a1) in

let _ = (join : a1 = ...) in

...

let _ = (join : ... = an) in

b

when a  a1  . . . an



Extension: Reduction Modulo

The type checker makes use of congruence closure when
reducing terms with unfold.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! unfold (n + 0) in _

Suc m !
let ih = npluszero m [ord eq] in

unfold (n + 0) in _

E.g., if we have h : n = 0 in the context, allow the step

n+ 0 cbv 0



Extension: Smartjoin

Use unfold (and reduction modulo) on both sides of an equality
when type checking join.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! smartjoin

Suc m ! let ih = npluszero m [ord eq] in

smartjoin



Conclusions

Dependently-typed languages should allow nonterminating
programs, but compile-time reduction is tricky

Restricting �-reduction allows alternative forms of
automatic reasoning, specifically congruence closure

Congruence closure powers smart case, a simple
specification of dependently-typed pattern matching

Proof automation is an important part of the design of
dependently-typed languages, and should be backed up by
specifications



Implementation and examples available:

https://code.google.com/p/trellys/source/browse/

trunk/zombie-trellys/

or Google: zombie trellys
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Thanks!


