
Programming Up-to-Congruence

Vilhelm Sjöberg and Stephanie Weirich

University of Pennsylvania

January 16, 2015

POPL 2015

Zombie

A functional programming language with a dependent type
system intended for “lightweight” verification

With:

Vilhelm Sjöberg Chris Casinghino
Yale University Draper Labs

plus Trellys team (Aaron Stump, Tim Sheard, Ki Yung Ahn,
Nathan Collins, Harley D. Eades III, Peng Fu, Garrin
Kimmell)

The Zombie programming language

Goal: FP++

Functional programming enhanced by reasoning in
constructive logic

Full-spectrum dependent types (for uniformity)

Erasable arguments (for e�cient compilation)

Simple semantics for indexed types and dependently-typed
pattern matching

Proof automation based on congruence closure

The Zombie programming language

Goal: FP++

Functional programming enhanced by reasoning in
constructive logic

Full-spectrum dependent types (for uniformity)

Erasable arguments (for e�cient compilation)

Simple semantics for indexed types and dependently-typed
pattern matching

Proof automation based on congruence closure

Zombie: A language, in two parts

1 Programmatic fragment: nontermination allowed (similar
to ML and Haskell)

prog div : Nat ! Nat ! Nat

rec div n m = if n < m then 0 else 1 + div (n - m) m

2 Logical fragment: all programs must terminate (similar to
Coq and Agda)

log add : Nat ! Nat ! Nat

ind add x y = case x [eq] of

Zero ! y -- eq : x = Zero

Suc x’ ! add x’ [ord eq] y -- eq : x = Suc x’, used for ind

Uniformity: Both fragments use the same syntax, have the
same (call-by-value) operational semantics.

Zombie: A language, in two parts

1 Programmatic fragment: nontermination allowed (similar
to ML and Haskell)

prog div : Nat ! Nat ! Nat

rec div n m = if n < m then 0 else 1 + div (n - m) m

2 Logical fragment: all programs must terminate (similar to
Coq and Agda)

log add : Nat ! Nat ! Nat

ind add x y = case x [eq] of

Zero ! y -- eq : x = Zero

Suc x’ ! add x’ [ord eq] y -- eq : x = Suc x’, used for ind

Uniformity: Both fragments use the same syntax, have the
same (call-by-value) operational semantics.

Zombie: A language, in two parts

1 Programmatic fragment: nontermination allowed (similar
to ML and Haskell)

prog div : Nat ! Nat ! Nat

rec div n m = if n < m then 0 else 1 + div (n - m) m

2 Logical fragment: all programs must terminate (similar to
Coq and Agda)

log add : Nat ! Nat ! Nat

ind add x y = case x [eq] of

Zero ! y -- eq : x = Zero

Suc x’ ! add x’ [ord eq] y -- eq : x = Suc x’, used for ind

Uniformity: Both fragments use the same syntax, have the
same (call-by-value) operational semantics.

Dependent types in Zombie

The logical fragment can reason about the programmatic
fragment.

log div62 : div 6 2 = 3

div62 = join

Here, join proves that two terms are equal because they reduce
to the same value.

Type checking join is undecidable, so includes an overridable
timeout—the programmer is in control.

Dependent types in Zombie

The logical fragment can reason about the programmatic
fragment.

log div62 : div 6 2 = 3

div62 = join

Here, join proves that two terms are equal because they reduce
to the same value.

Type checking join is undecidable, so includes an overridable
timeout—the programmer is in control.

Restricted �-equality

The type checker reduces terms only when directed by the
programmer (e.g. while type checking join).

Zombie does not include �-convertibility in definitional equality!

In a context with

f : Vec Bool 3 ! Nat

x : Vec Bool (div 6 2)

the expression f x does not type check because div 6 2 is not
automatically equal to 3.

In other words, �-conversion is only available for propositional
equality.

f (x |> [Vec Bool ~div62])

Restricted �-equality

The type checker reduces terms only when directed by the
programmer (e.g. while type checking join).

Zombie does not include �-convertibility in definitional equality!

In a context with

f : Vec Bool 3 ! Nat

x : Vec Bool (div 6 2)

the expression f x does not type check because div 6 2 is not
automatically equal to 3.

In other words, �-conversion is only available for propositional
equality.

f (x |> [Vec Bool ~div62])

Restricted �-equality

The type checker reduces terms only when directed by the
programmer (e.g. while type checking join).

Zombie does not include �-convertibility in definitional equality!

In a context with

f : Vec Bool 3 ! Nat

x : Vec Bool (div 6 2)

the expression f x does not type check because div 6 2 is not
automatically equal to 3.

In other words, �-conversion is only available for propositional
equality.

f (x |> [Vec Bool ~div62])

Isn’t type checking without � awful?

Yes. And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

|> [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

|> [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

|> [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Isn’t type checking without � awful?

Yes.

And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

|> [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

|> [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

|> [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Isn’t type checking without � awful?

Yes. And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

|> [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

|> [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

|> [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Isn’t type checking without � awful?

Yes. And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

|> [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

|> [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

|> [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Better

What if the type checker could determine those coercions
automatically?

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

-- coercion by eq inferred

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

-- coercion by eq and ih inferred

i.e. automatically coerce type 0 + 0 = 0 to type n + 0 = n in
contexts where eq: n = 0 is assumed.

Capture this idea with a relation:
eq: n = 0 ` (0 + 0 = 0) = (n + 0 = n)

Better

What if the type checker could determine those coercions
automatically?

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! (join : 0 + 0 = 0)

-- coercion by eq inferred

Suc m !
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

-- coercion by eq and ih inferred

i.e. automatically coerce type 0 + 0 = 0 to type n + 0 = n in
contexts where eq: n = 0 is assumed.

Capture this idea with a relation:
eq: n = 0 ` (0 + 0 = 0) = (n + 0 = n)

Opportunity: Congruence Closure

The relation that we need is the congruence closure of equations
in the context.

x : a = b 2 �

� ` a = b

� ` a = b

� ` {a/x} c = {b/x} c

� ` a = a

� ` a = b

� ` b = a

� ` a = b � ` b = c

� ` a = c

E�cient algorithms for deciding this relation exist [Nieuwenhuis
and Oliveras, 2007].
Note, extending this relation with �-conversion makes it
undecidable.

What we have done

Designed and implemented a concise surface language for
Zombie programmers

Specification via bidirectional type system

� ` a) A and � ` a (A

Type checking is up-to Congruence Closure

� ` a) A � ✏ A = B

� ` a) B

� ` a (A � ✏ A = B

� ` a (B

Elaborates to explicitly-typed core language, previously
proven sound
[POPL ’14][MSFP’12]

Zombie-style Congruence Closure

1 Only includes well-typed terms

2 Makes use of assumptions that are equivalent to equalities

x : A 2 � � ✏ A = (a = b)

� ✏ a = b

3 Supports injectivity of type (and data) constructors

� ✏ ((x :A
1

) ! B
1

) = ((x :A
2

) ! B
2

)

� ✏ A
1

= A
2

4 Works up-to-erasure

|a| = |b| � ` a : A � ` b : B

� ✏ a = b

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Only includes well-typed terms

2 Makes use of assumptions that are equivalent to equalities

x : A 2 � � ✏ A = (a = b)

� ✏ a = b

3 Supports injectivity of type (and data) constructors

� ✏ ((x :A
1

) ! B
1

) = ((x :A
2

) ! B
2

)

� ✏ A
1

= A
2

4 Works up-to-erasure

|a| = |b| � ` a : A � ` b : B

� ✏ a = b

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Only includes well-typed terms

2 Makes use of assumptions that are equivalent to equalities

x : A 2 � � ✏ A = (a = b)

� ✏ a = b

3 Supports injectivity of type (and data) constructors

� ✏ ((x :A
1

) ! B
1

) = ((x :A
2

) ! B
2

)

� ✏ A
1

= A
2

4 Works up-to-erasure

|a| = |b| � ` a : A � ` b : B

� ✏ a = b

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Only includes well-typed terms

2 Makes use of assumptions that are equivalent to equalities

x : A 2 � � ✏ A = (a = b)

� ✏ a = b

3 Supports injectivity of type (and data) constructors

� ✏ ((x :A
1

) ! B
1

) = ((x :A
2

) ! B
2

)

� ✏ A
1

= A
2

4 Works up-to-erasure

|a| = |b| � ` a : A � ` b : B

� ✏ a = b

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Only includes well-typed terms

2 Makes use of assumptions that are equivalent to equalities

x : A 2 � � ✏ A = (a = b)

� ✏ a = b

3 Supports injectivity of type (and data) constructors

� ✏ ((x :A
1

) ! B
1

) = ((x :A
2

) ! B
2

)

� ✏ A
1

= A
2

4 Works up-to-erasure

|a| = |b| � ` a : A � ` b : B

� ✏ a = b

5 and generates proof terms in the core language

Properties of Elaboration

Elaboration is sound

If elaboration succeeds, it produces a well-typed core
language term.

Elaboration is complete

If a term type checks according to the surface language
specification, then elaboration will succeed.

Elaboration doesn’t change the semantics

If elaboration succeeds, it produces a core language term
that di↵ers from the source term only in irrelevant
information (type annotations, type coercions, erasable
arguments).

Properties of Elaboration

Elaboration is sound

If elaboration succeeds, it produces a well-typed core
language term.

Elaboration is complete

If a term type checks according to the surface language
specification, then elaboration will succeed.

Elaboration doesn’t change the semantics

If elaboration succeeds, it produces a core language term
that di↵ers from the source term only in irrelevant
information (type annotations, type coercions, erasable
arguments).

Properties of Elaboration

Elaboration is sound

If elaboration succeeds, it produces a well-typed core
language term.

Elaboration is complete

If a term type checks according to the surface language
specification, then elaboration will succeed.

Elaboration doesn’t change the semantics

If elaboration succeeds, it produces a core language term
that di↵ers from the source term only in irrelevant
information (type annotations, type coercions, erasable
arguments).

Extensions

Proof inference

Congruence closure can also supply proofs of equality

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero !
let _ = (join : 0 + 0 = 0) in _

Suc m !
let _ = npluszero m [ord eq] in

let _ = (join : (Suc m) + 0 = Suc (m + 0)) in _

Extension: Unfold

Common to reduce terms as much as possible

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! unfold (0 + 0) in _

Suc m !
let _ = npluszero m [ord eq] in

unfold ((Suc m) + 0) in _

The expression unfold a in b expands to

let _ = (join : a = a1) in

let _ = (join : a1 = ...) in

...

let _ = (join : ... = an) in

b

when a a1 . . . an

Extension: Reduction Modulo

The type checker makes use of congruence closure when
reducing terms with unfold.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! unfold (n + 0) in _

Suc m !
let ih = npluszero m [ord eq] in

unfold (n + 0) in _

E.g., if we have h : n = 0 in the context, allow the step

n+ 0 cbv 0

Extension: Smartjoin

Use unfold (and reduction modulo) on both sides of an equality
when type checking join.

log npluszero : (n : Nat) ! (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero ! smartjoin

Suc m ! let ih = npluszero m [ord eq] in

smartjoin

Conclusions

Dependently-typed languages should allow nonterminating
programs, but compile-time reduction is tricky

Restricting �-reduction allows alternative forms of
automatic reasoning, specifically congruence closure

Congruence closure powers smart case, a simple
specification of dependently-typed pattern matching

Proof automation is an important part of the design of
dependently-typed languages, and should be backed up by
specifications

Implementation and examples available:

https://code.google.com/p/trellys/source/browse/

trunk/zombie-trellys/

or Google: zombie trellys

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Thanks!

