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Why Dependent Types?

Lightweight verification: Dependent types express
application-specific program invariants that are beyond the
scope of existing type systems.

Expressiveness: Dependent types enable flexible interfaces,
allowing more programs to be statically checked.

Uniformity: Full-spectrum dependent types provide the
same syntax and semantics for program computations,
type-level computations, and proofs.



A programming language, not a logic

Start with a general purpose, call-by-value, functional
programming language and strengthen its type system.

Draw programmers from Haskell and ML

Existing code should work with minor modification

Ease of programming more important than completeness of
verification

Incremental verification... only provide the strongest
guarantees about the most critical code



On the shoulders of giants

Not the first to propose programming with dependent types

Agda, Epigram, Coq, Lego, Nuprl

Not the first functional language to incorporate ideas from
Type Theory

GHC, Ur, Sage, ATS, Ωmega, DML

Not the first to propose a full-spectrum functional programming
language based on dependent types

Guru, Cayenne, Cardelli “A Polymorphic λ-calculus with
Type:Type”
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Why call-by-value?

Have to choose something. Want to include nontermination
so the order of evaluation makes a difference

Good cost model. Programmers can better predict the
running time and space usage of their programs

Distinction between values and computations built into the
language. Variables stand for values, not computations
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A programming language, not a logic

Can’t use Curry-Howard Isomorphism to interpret this
language as a logic.

A seeming contradiction

How can we have a full-spectrum, dependently-typed language
based on an inconsistent logic?



Syntactic type soundness

Theorem (Syntactic type soundness)

If ` a : A then either a diverges or a  ∗cbv v and ` v : A.

Proven by an elementary syntactic argument and extends in a
straightforward manner to many language features (such as
references, concurrency, exceptions, continuations, etc.)

Theorem gives us a form of partial correctness



Partial correctness

Can give a logical interpretation for values

` a : Σx :Nat.even x = true

If a terminates, then it must produce a pair of a natural number
and a proof that the result is even.

But, not all proofs are informative:

` a : Σx :Nat.(even x = true)→ (x = 3)
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Total correctness

Partial correctness is not enough

Can’t compile this language efficiently (have to run proofs)

Users are willing to work harder for stronger guarantees



From partial correctness to total correctness

Plan for the rest of the talk:

Part I: present a full-spectrum CBV language that satisfies
type soundness only

Part II: identify a “logical” sublanguage and discuss the
interactions between the two parts

Not covered by this talk:

How to make type checking decidable by adding
annotations to the syntax

How to make program development feasible by inferring
annotations
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Part I : A call-by-value
programming language with

dependent types



Uniform language

Types, terms, kinds defined using the same syntax

Syntax

terms a, b, A,B ::= ? | Nat | (x :A)→ B
| 0 | S a | case a of {0⇒ a1;S x ⇒ a2}
| x | rec f x .a | a b

values v, u ::= ? | Nat | (x :A)→ B
| 0 | S v
| x | rec f x .a

Use standard abbreviations:

λx .a for rec f x .a when f is not free in a

A→ B for (x :A)→ B when x is not free in B



Call-by-value operational semantics

a  cbv b

(rec f x .a) v  cbv [v/x ][rec f x .a/f ]a

case 0 of {0⇒ a1;S x ⇒ a2} cbv a1

case (S v) of {0⇒ a1; S x ⇒ a2} cbv [v/x ]a2



Example

Polymorphic application

app : (x :?)→ (f :x → x )→ (z :x )→ x
app = λx .λf .λz .f z

app Nat (λx .x ) 0 ≡ 0



Expressive example

zeroApp : Nat→ Nat→ Nat

zeroApp = λg .λz .g

oneApp : (Nat→ Nat)→ Nat→ Nat

oneApp = λg .λz .g z

twoApp : (Nat→ Nat→ Nat)→ Nat→ Nat

twoApp = λg .λz .g z z

N : Nat→ ∗
N = rec f n. case n of

{ 0 ⇒ Nat ;
S m ⇒ Nat→ f m}

nApp : (n :Nat)→ (N n)→ Nat→ Nat

nApp = rec f n. case n of
{ 0 ⇒ λg .λz .g ;
S m ⇒ λg .λz .f m (g z ) z}
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Typing relation

Γ ` a : A

General recursion

Γ, y : A, f : (y :A)→ B ` a : B

Γ ` rec f y .a : (y :A)→ B

Type is a type

` ? : ?



Conversion

Because types depend on programs, we want to identify types
that contain equivalent programs.

Vec Nat (1 + 2) ≡ Vec Nat 3

Expressions can be assigned any equivalent type

Conversion

Γ ` a : A A ≡ B Γ ` B : ?

Γ ` a : B

But what does it mean for types to be equal?
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Definitional Equality

Based on operational semantics (hence undecidable)

Ideally: identify all terms that are contextually equivalent
to each other

For now: close step relation under reflexivity, symmetry,
transitivity and substitutivity

Strictly computational, properties shown via rewriting

a ≡ b

a1  cbv a2

a1 ≡ a2 a ≡ a

a1 ≡ a2

a2 ≡ a1

a1 ≡ a2 a2 ≡ a3

a1 ≡ a3

a1 ≡ a2

[a1/x ]A ≡ [a2/x ]A



Internalizing equality

Internalize definitional equality as a proposition, with a trivial
proof

a, b, A,B ::= . . . | a = b | join

a ≡ b Γ ` a = b : ?

Γ ` join : a = b

Γ ` a : A Γ ` b : B

Γ ` a = b : ?



Conversion and propositional equality

Extend conversion rule to propositional equality

Γ ` a : A Γ ` v : A = B

Γ ` a : B

Subsumes previous conversion rule (using join as the value)

Conversion is implicit. Terms that differ only in convertible
types are trivially equal

Proof must be a value

Don’t care which value it is



Why can we do this?

Type soundness follows from the following property (which can
be proven syntactically):

Lemma (Soundness of propositional equality)

If ` v : A1 = A2 then A1 ≡ A2.



The cost of CBV

Call-by-value semantics adds extra hypothesis to application:

Γ ` a : (x :A)→ B Γ ` b : A Γ ` [b/x ]B : ?

Γ ` a b : [b/x ]B

If b is a non-value, the rule must make sure that x was never
treated as a value in B .
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Implicit arguments

Some values have no runtime effect.
Useful for:

Parametric polymorphism (x :?)→ x → x

Preconditions (x :Nat)→ ¬(x = 0)→ Nat

Want to elide them from the syntax of terms

app (λx .x ) 0 instead of app Nat (λx .x ) 0

cf. Implicit Calculus of Constructions (ICC)



Implicit arguments

Add implicit abstraction type

a, b, A,B ::= . . . | [x : A]→ B

but... can only generalize over values

Γ, x : A ` v : B x /∈ FVv

Γ ` v : [x : A]→ B

...can only instantiate with values

Γ ` a : [x : A]→ B Γ ` v : A

Γ ` a : [v/x ]B



Value restrictions are annoying

Suppose we write a program that “proves” the following fact
about natural numbers:

f : (x : Nat)→ (y : Nat)→ (x = S y)→ ¬(x = 0)

However, a use of this lemma “f x y z” is not a value and
cannot be erased.

Must first use an explicit argument to evaluate it to a value,
even though the value is irrelevant.



Taking stock

Make type checking decidable by adding annotations to the
syntax

Make program development feasible by inferring
annotations

...but, irrelevant computations remain at runtime

...slowing execution

...weakening equivalence

...and weakening static guarantees
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Part II : A logical sublanguage



A logical language

There is a logically-consistent sublanguage hiding in here.

How do we identify it?

We use the type system!

Annotate typing judgement to specify the logical language
or the programmatic language.

New typing judgement form:

Γ `θ a : A where θ ::= L | P
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Subsumption

Logical language is a sublanguage of the programmatic
language.

Γ `L a : A

Γ `P a : A

It guarantees stronger properties about its expressions.

Theorem (Syntactic type soundness)

If `P a : A then either a diverges or a  ∗cbv v and `P v : A.

Theorem (Semantic consistency)

If `L a : A then a  ∗cbv v and `L v : A



Some features must be programmatic

Some capabilities only available for the programmatic language

Type-In-Type

`P ? : ?

General recursion

Γ `P (x :θ A)→ B : ?
Γ, x :θ A, f :P (x :θ A)→ B `P b : B

Γ `P rec f x .b : (x :θ A)→ B



What does the logical language look like?

Logical functions should not be recursive...

Γ `L (x :θ A)→ B : ? Γ, x :θ A `L b : B

Γ `L rec f x .b : (x :θ A)→ B

...except for primitive recursion over natural numbers

Γ, x :L Nat `L B : ?
Γ, x :L Nat, f :L (y :L Nat)→ [z :L (S y) = x ]→ [y/x ]B `L b : B

Γ `L rec f x .b : (x :L Nat)→ B
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Mixing the sublanguages

Programmatic functions can have logical parameters:

Γ `P (x :L A)→ B : ?
Γ, x :L A, f :P (x :L A)→ B `P b : B

Γ `P rec f x .b : (x :L A)→ B

Such arguments are logical “proofs” that the preconditions of
the function are satisfied.

These arguments can be implicit, even if they are not values.
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Freedom of Speech

Logical functions can have programmatic parameters:

Γ `L (x :P A)→ B : ? Γ, x :P A `L b : B

Γ `L rec f x .b : (x :P A)→ B

Application restricted to terminating arguments.

Γ `L a : (x :P A)→ B
Γ `↓ b : A Γ `L [b/x ]B : ?

Γ `L a b : [b/x ]B

Total arguments are either logical or values.

Γ `L a : A

Γ `↓ a : A

Γ `P v : A

Γ `↓ v : A
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Conversion

Conversion available for both languages

Equality proof must be total

Γ `θ a : A Γ `↓ b : A = B

Γ `θ a : B



Shared values

Some values are shared between the two languages.

For example, all natural numbers are values in the logical
language as well as in the programmatic language.

`L Nat : ? `L 0 : Nat

Γ `θ n : Nat

Γ `θ S n : Nat

This means that it is sound to treat a variable of type Nat as
logical, no matter what it is assumed to be in the context.

Γ `P x : Nat

Γ `L x : Nat
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Uniform equality

Equality proofs are also shared.
All equality proofs and propositions are logical, no matter what
sort of terms they equate.

Γ `P a : A
Γ `P b : B

Γ `L a = b : ?

Γ `L a = b : ?
a ≡ b

Γ `L join : a = b

We can treat a programmatic variable as a logical equality
proof.

Γ `P x : A = B

Γ `L x : A = B

This supports incremental verification. We can have a partial
function return an equality proof and then use that to satisfy
the preconditions of any part of the code.
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Conclusion



Related work

Bar types in Nuprl

Partiality Monad

Monadic “possible worlds” semantics



Future work

What logical system should we use? Predicative?
Impredicative? Large Eliminations? Induction-Recursion?

Interaction with classical reasoning: allow proofs to branch
on whether a program halts or diverges

Strengthen definitional and propositional equality

Elaboration to an annotated language
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Summary

Can have full-spectrum dependently-typed language with
nontermination, effects, etc.

Call-by-value semantics permits “partial correctness”

Logical and programmatic languages can interact

All proofs are programs
Logic can talk about programs
Shared values can be passed from programs to the logic


