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Growing a new language

Trellys Design strategy: Start with general purpose,
call-by-value, functional programming language and strengthen
its type system.
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Why call-by-value?

o Have to choose something. With nontermination, the order
of evaluation makes a difference

@ Good cost model. Programmers can predict the running
time and space usage of their programs

o Distinction between values and computations built into the
language. Variables stand for values, not computations
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Theorem (Syntactic type soundness)
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Programming language vs. logic

Even in the presence of nontermination, a call-by-value
dependently-typed programming language provides partial
correctness.

Theorem (Syntactic type soundness)
If P a: A then either a diverges or a ~* v and F° v : A. }

A dependently-typed logic provides total correctness.

Theorem (Termination)
If Fla:Athena~*vand F-v: A. J




Partial correctness

Type soundness alone gives a logical interpretation for values.
FP @ : Yx:Nat.even z = true

If a terminates, then it must produce a pair of a natural number
and a proof that the result is even.

Canonical forms says the result must be (i, join), where

even i ~* true by inversion.



Partial correctness

Type soundness alone gives a logical interpretation for values.
FP @ : Yx:Nat.even z = true

If a terminates, then it must produce a pair of a natural number
and a proof that the result is even.

Canonical forms says the result must be (i, join), where

even i ~* true by inversion.

But, implication is bogus.

FP @ : Sz :Nat.(even & = true) — (z = 3)



Total correctness

Partial correctness is not enough.
o Implication is useful

e Can’t compile this language efficiently (have to run
“proofs”)

@ “Proof” irrelevance is fishy

o Users are willing to work harder for stronger guarantees
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A logical language

o But, some programs do terminate. There is a terminating,
logically-consistent logic hiding in a dependently-typed
programming language.

o How do we identify it?
o We use the type system!

New typing judgement form:

Hla:A where 6:=L|P
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Subsumption

Many rules are shared.

FT z:%Ael 'Y b: Nat
'Hox: A I'%S b: Nat

Programmatic language allows features (general recursion,
type-in-type, abort etc.) that do not type check in the logical
language.

THFP x: %

Logical language is a sublanguage of the programmatic
language.

I'Hra: A

'Pa:A



Mixing proofs and programs

These two languages are not independent.

@ Should be able to allow programs to manipulate proofs,
and proofs to talk about programs.

e Data structures (in both languages) should have both
logical and programmatic components.
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The @ Modality

New type form AQ6 internalizes the judgement
FHv: A

Introduction form embeds values from one language into the
other.
'Hfov: A
I' H? boxv : AQf

Elimination form derived from modal type systems.

P a:4@0 T,2:% A,ztboxz=atb:B TH' B:s

I' % unbox, 2 =ain b: B



Datastructructures

Components of a pair are from the same language by default.
I'%a:A TH b:[a/2]B
I'Fo[a/z]B:s TH S2:AB:s
' (a,b):Yz:A.B

Programs can embed proofs about data.

P (0, box v) : ¥z :Nat.((y: Nat) — (z < y))@L

Data structures are parametric in their logicality. The same
datatype can store a list of proofs as well as a list of program
values.



Abstraction

Standard abstraction rule conflicts with subsumption.

T A0 a:B TH (2:A) = B:s
't Az.a:(z:A) —» B




Solution

Require every argument type to be an AQf type, so
subsumption has no effect.
Doz:" AFb:B TH (2" A) - B:s
F'HoX\z.b: (z:% A) — B

Application implicitly boxes.

TH a:(z:A) - B T boxb: A@0 T F [b/z]B:s

'Hlab:[b/x]B



Logical preconditions

Programmatic functions can have logical parameters:

TP div: (n d:¥ Nat) — (p:L' d #0) — Nat

Such arguments are “proofs” that the preconditions of the
function are satisfied.
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Freedom of Speech

Logical functions can have programmatic parameters:

IHYds: (nd:P Nat) = (p:L'd #0) = (2:Nat.z = div n d)

ds is a proof that div terminates for nonzero arguments, even if
div was originally defined with general recursion.
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Shared values

o Some values are shared between the two languages.

o For example, all natural numbers are values in the logical
language as well as in the programmatic language.
@ This means that it is sound to treat a variable of type Nat

as logical, no matter what it is assumed to be in the

context.
I'FP v Nat

['FL v : Nat



Uniform equality

o Equality proofs are also shared.

I'-Pv:A=B
Ftv:A=0B
o This supports incremental verification. We can have a

partial function return an equality proof and then use its
result to satisfy logical preconditions.




Uniform equality

o Equality proofs are also shared.

I'-Pv:A=B
Ntv:A=08
o This supports incremental verification. We can have a
partial function return an equality proof and then use its
result to satisfy logical preconditions.

o However, we currently only know how to add this rule to
logical languages with predicative polymorphism. Girard’s
trick interferes.



Uniform box

Challenge: the internalized type.

I'P o AQs

[FLv: AGH
This allows proofs embedded in programs to be used when
reasoning about those programs (not just as preconditions to
other programs).
Promising initial results via step-indexed semantics, limitations
necessary.




Related work

Bar types in Nuprl - no admisibility required
Partiality Monad

o F-star kinds

e ML5, distributed ML
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Future work

o What can we add to the logical language? Large
Eliminations?

o Interaction with classical reasoning: allow proofs to branch
on whether a program halts or diverges

e Elaboration to an annotated language



Summary

e Can have full-spectrum dependently-typed language with
nontermination, effects, etc.

o Call-by-value semantics permits “partial correctness”

o Logical and programmatic languages can interact

o All proofs are programs

Logic can talk about programs

Programs can contain proofs

Some values can be transferred from programs to logic
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