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Growing a new language

Trellys Design strategy: Start with general purpose,
call-by-value, functional programming language and strengthen
its type system.



Why call-by-value?

Have to choose something. With nontermination, the order
of evaluation makes a difference

Good cost model. Programmers can predict the running
time and space usage of their programs

Distinction between values and computations built into the
language. Variables stand for values, not computations
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Programming language vs. logic

Even in the presence of nontermination, a call-by-value
dependently-typed programming language provides partial
correctness.

Theorem (Syntactic type soundness)

If `P a : A then either a diverges or a ;∗ v and `P v : A.

A dependently-typed logic provides total correctness.

Theorem (Termination)

If `L a : A then a ;∗ v and `L v : A.
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Partial correctness

Type soundness alone gives a logical interpretation for values.

`P a : Σx :Nat.even x = true

If a terminates, then it must produce a pair of a natural number
and a proof that the result is even.
Canonical forms says the result must be (i, join), where
even i ;∗ true by inversion.

But, implication is bogus.

`P a : Σx :Nat.(even x = true)→ (x = 3)
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Total correctness

Partial correctness is not enough.

Implication is useful

Can’t compile this language efficiently (have to run
“proofs”)

“Proof” irrelevance is fishy

Users are willing to work harder for stronger guarantees



A logical language

But, some programs do terminate. There is a terminating,
logically-consistent logic hiding in a dependently-typed
programming language.

How do we identify it?

We use the type system!

New typing judgement form:

Γ `θ a : A where θ ::= L | P
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Subsumption

Many rules are shared.

` Γ x :θ A ∈ Γ

Γ `θ x : A

Γ `θ b : Nat

Γ `θ S b : Nat

Programmatic language allows features (general recursion,
type-in-type, abort etc.) that do not type check in the logical
language.

Γ `P ? : ?

Logical language is a sublanguage of the programmatic
language.

Γ `L a : A

Γ `P a : A
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Mixing proofs and programs

These two languages are not independent.

Should be able to allow programs to manipulate proofs,
and proofs to talk about programs.

Data structures (in both languages) should have both
logical and programmatic components.



The @ Modality

New type form A@θ internalizes the judgement

Γ `θ v : A

Introduction form embeds values from one language into the
other.

Γ `θ v : A

Γ `θ′ box v : A@θ

Elimination form derived from modal type systems.

Γ `θ a : A@θ′ Γ, x :θ
′
A, z :L box x = a `θ b : B Γ `θ B : s

Γ `θ unboxz x = a in b : B
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Datastructructures

Components of a pair are from the same language by default.

Γ `θ a : A Γ `θ b : [a/x ]B
Γ `θ [a/x ]B : s Γ `θ Σx :A.B : s

Γ `θ (a, b) : Σx :A.B

Programs can embed proofs about data.

`P (0, box v) : Σx :Nat.((y :Nat)→ (x ≤ y))@L

Data structures are parametric in their logicality. The same
datatype can store a list of proofs as well as a list of program
values.



Abstraction

Standard abstraction rule conflicts with subsumption.

Γ, x :θ A `θ a : B Γ `θ (x :A)→ B : s

Γ `θ λx .a : (x :A)→ B



Solution

Require every argument type to be an A@θ type, so
subsumption has no effect.

Γ, x :θ
′
A `θ b : B Γ `θ (x :θ

′
A)→ B : s

Γ `θ λx .b : (x :θ′ A)→ B

Application implicitly boxes.

Γ `θ a : (x :θ
′
A)→ B Γ `θ box b : A@θ′ Γ `θ [b/x ]B : s

Γ `θ a b : [b/x ]B



Logical preconditions

Programmatic functions can have logical parameters:

Γ `P div : (n d :P Nat)→ (p :L d 6= 0)→ Nat

Such arguments are “proofs” that the preconditions of the
function are satisfied.



Freedom of Speech

Logical functions can have programmatic parameters:

Γ `L ds : (n d :P Nat)→ (p :L d 6= 0)→ (Σz :Nat.z = div n d)

ds is a proof that div terminates for nonzero arguments, even if
div was originally defined with general recursion.
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Shared values

Some values are shared between the two languages.

For example, all natural numbers are values in the logical
language as well as in the programmatic language.

This means that it is sound to treat a variable of type Nat
as logical, no matter what it is assumed to be in the
context.

Γ `P v : Nat

Γ `L v : Nat
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Uniform equality

Equality proofs are also shared.

Γ `P v : A = B

Γ `L v : A = B

This supports incremental verification. We can have a
partial function return an equality proof and then use its
result to satisfy logical preconditions.

However, we currently only know how to add this rule to
logical languages with predicative polymorphism. Girard’s
trick interferes.
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Uniform box

Challenge: the internalized type.

Γ `P v : A@θ

Γ `L v : A@θ

This allows proofs embedded in programs to be used when
reasoning about those programs (not just as preconditions to
other programs).
Promising initial results via step-indexed semantics, limitations
necessary.



Related work

Bar types in Nuprl - no admisibility required

Partiality Monad

F-star kinds

ML5, distributed ML



Future work

What can we add to the logical language? Large
Eliminations?

Interaction with classical reasoning: allow proofs to branch
on whether a program halts or diverges

Elaboration to an annotated language
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Summary

Can have full-spectrum dependently-typed language with
nontermination, effects, etc.

Call-by-value semantics permits “partial correctness”

Logical and programmatic languages can interact

All proofs are programs
Logic can talk about programs
Programs can contain proofs
Some values can be transferred from programs to logic
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