Strongly-typed

System [
In GHC

Motivation

Symbolic execution of g a l O _I S

imperative programs

LLVM

SAW-script \ l -
MIR

4

Strongly-typed AST

l intermediate language

System F types

data Ty =
Basely
VarTy Nat -- de Bruijn index
FnTy Ty Ty -- single argument function types
PolyTy Nat Ty -- multiple binding polymorphic types

data Exp :: [Ty] -> Ty -> Type where
BaseE :: Exp g BaseTy
AppE ::Expg(FnTytlt2) --function
> Exp gtl -- argument
-> Exp g t2

Strongly-typed System F in Haskell

ICFP 2008

A Type-Preserving Compiler in Haskell

Louis-Julien Guillemette

Stefan Monnier

Université de Montréal
{guillelj,monnier}@iro.umontreal.ca

Abstract

There has been a lot of interest of late for programming languages
that incorporate features from dependent type systems and proof
assistants, in order to capture important invariants of the program
in the types. This allows type-based program verification and is
a promising compromise between plain old types and full blown
Hoare logic proofs. The introduction of GADTs in GHC (and more
recently type families) made such dependent typing available in an
industry-quality implementation, making it possible to consider its
use in large scale programs.

We have undertaken the construction of a complete compiler
for System F', whose main property is that the GHC type checker
verifies mechanically that each phase of the compiler properly pre-
serves types. Our particular focus is on “types rather than proofs”:

wanannnhla farr annatatiane that Aa nat Aavamchalmna tha antinal Anda

similar guaranties for a functional language. Both are developed as
Coq proofs from which a working compiler is obtained by means
of program extraction.

With the introduction of generalized algebraic data types
(GADTs) in the Glasgow Haskell Compiler (GHC), and more re-
cently type families (Schrijvers et al. 2007), a useful (if limited)
form of dependent typing is finally available in an industry-quality
implementation of a general-purpose programming language. Thus
arises the possibility of establishing compiler correctness through
type annotations in Haskell code, without the need to encode elab-
orate proofs as separate artifacts. In this work, we use types to
enforce type preservation: our typed intermediate representation
lets GHC’s type checker manipulate and check our object types.

Other than the CPS conversion over System F' of Chlipala
(2008) developed in parallel and presented elsewhere in these

Strongly-typed System F in Coq

J Autom Reasoning manuscript No.
(will be inserted by the editor)

Strongly Typed Term Representations in Coq

Nick Benton - Chung-Kil Hur -
Andrew Kennedy - Conor McBride

JAR August 2012, Volume 49, Issue 2, pp 141-159

Autosubst: Reasoning with de Bruijn
Terms and Parallel Substitution

Steven Schéafer Tobias Tebbi Gert Smolka

Saarland University
June 10, 2015

To appear in Proc. of ITP 2015, Nanjing, China, Springer LNAI

Reasoning about syntax with binders plays an essential role in the formal-
ization of the metatheory of programming languages. While the intricacies of
binders can be ignored in paper proofs, formalizations involving binders tend
to be heavyweight. We present a discipline for syntax with binders based on
de Bruijn terms and parallel substitutions, with a decision procedure covering
all assumption-free equational substitution lemmas. The approach is imple-
mented in the Coq library AUTOSUBST, which additionally derives substitu-
tion operations and proofs of substitution lemmas for custom term types.
We demonstrate the effectiveness of the approach with several case studies,
including part A of the POPLmark challenge.

Singletons library (Eisenberg, Scott, ...)

S(singletons [d|

data Ty =
Basely
VarTy Nat -- de Bruijn index
FnTy Ty Ty -- single argument function types
PolyTy Nat Ty -- multiple binding polymorphic types

1)

-- "foralla. a ->a"
idTy = PolyTy (S Z) (FnTy (Var Z) (Var Z))

sidTy :: Sing (PolyTy (S Z) (FnTy (Var Z) (Var Z))
sidTy = SPolyTy (SS SZ) (SFnTy (SVar SZ) (SVar SZ))

Strongly-typed Expressions

S(singletons [d]
idx :: [Ty] -> Nat -> Maybe Ty

data Exp :: [Ty] -> Ty -> Type where

BaseE :: Exp g Basely idx (ty: _)Z =lJustty
VarE ::(ldxgn~Justt) idx (_ :tys) (Sn)=idxtysn
: , idx [] _ = Nothing
=>Sing n -- index)
>Expgt Idx ::[Ty] -> Nat -> Maybe Ty
LamE ::Singtl -- type of binaer
-> Exp (t1:g) t2 -- body of lambda

-> Exp g (FnTy t1 t2)

AppE ::Exp g (FnTytlt2) --function
->Expgtl -- argument
-> Exp g t2

Strongly-typed Expressions w/ Polymorphism

data Exp :: [Ty] -> Ty -> Type where

-- num of tyvars to bind
-- need to shift the context

TyLam ::Singn
-> Exp t
-> Exp g (PolyTy n t)

TyApp :: (k~ Length ts) -- length requirement
=> Exp g (PolyTy kt) -- polymorphic term
-> Sing ts -- type arguments

->Exp g -- need to substitute {ts /0.. k-1 }t

de Bruijn indices with Parallel Substitutions

* Substitution o type Sub = Nat -> Ty

* Operation subst :: Sub -> Ty -> Ty

 Substitution algebra
identity id x = VarTy x
composition (01 0 02) x =subst 02 (o1 x)
increment inc x = VarTy (x+1)

* View as infinite list of types (t0, t1, t2, ...)
cons t-(t0, t1,...) =(t, t0, t1, ...)

e Simultaneous substitution

{t0,t1,..tk/0,1,...k } fromlList [tO, t1, ..., tk] =t0 - t1-...- tk -

id

Defunctionalize for GHC

data Sub =
Inc Nat -- increment by n,n==0is id
| Ty :-Sub -- cons
| Sub :o Sub -- compose substitutions

applyS :: Sub -> Nat -> Ty
applyS (Incn) x =VarTy (n + x)
applyS (ty :-s) x =case x of
L >ty
(Sm) ->applySsm
applyS (s1:0s2) x =substs2 (applyS sl x)

de Bruijn indices with Parallel Substitutions

subst :: Sub -> Ty -> Ty If you are playing along in a proof
assistant, this is NOT structurally
subst o BaseTy = BaseTy recursive. The definition of subst
refers to lift, which refers to compose,
subst o (Va rTy X) = appIyS O X which refers to subst.

Solution: define renaming first

subst o (FNTyar) =FnTy (subst o a) (subst o r)
subst o (PolyTy 1 a) = PolyTy 1 (subst (liftl o) a)

lift1 :: Sub -> Sub
liftl o = (VarTy 0) :- (0 :o inc) -- leave variable 0 alone, shift domain of o
-- increment all free vars in range of o by 1

de Bruijn indices with Parallel Substitutions

subst :: Sub -> Ty -> Ty

subst o BaseTy = BaseTy

subst o (VarTy x) = spplyS o x

subst o (FNTyar) =FnTy (subst o a) (subst o r)
subst o (PolyTy na) = PolyTy n (subst (lift n o) a)

lift :: Nat -> Sub -> Sub
liftno = .. -- leave variables 0 .. n-1 alone, shift domain of o
-- increment all free vars in range of o by n

Strongly-typed Expressions w/ Polymorphism

data Exp :

TyLam

TyApp

: [Ty] -> Ty -> Type where

.. Sing n -- num of tyvars to bind
-> Exp (Inclistng)t -- body of type abstraction
-> Exp g (PolyTy n

IncList n g == Map (Subst (Incn)) g

.. (k ~ Length ts) -- length requirement
=> Exp g (PolyTy kt) -- polymorphic term
-> Sing ts -- type arguments

-> Exp g (Subst (FromlList ts) t)

Type substitution in well-typed terms

substTy :: forall s g ty.

Sing s SubstList s g == Map (Subst s) g
->Exp gty
-> Exp (SubstList s g) (Subst s ty) sSubst :: Sing s -> Sing t -> Sing (Subst s t)
substTy s (VarE n) =VarEn
substTy s BaseE = BaseE

substTy s (LamE ty e) = LamE (sSubst s ty) (substTy s e)
substTy s (AppE el e2) = AppE (substTy s el) (substTy s e2)

sysf.lhs:898:6: error:
e Could not deduce: Idx (Map (SubstSyml s) g) n
~ 'Just (Subst s ty)
arising from a use of ‘VarE’
from the context: Idx g n ~ 'Just ty
bound by a pattern with constructor:
VarE :: forall (g :: [Ty]) (n :: Nat) (t :: Ty).
(Idx g n ~ "Just t) =>
Sing n -> Exp g t,
in an equation for ‘substTy’
at sysf.lhs:896:12-17
e In the expression: VarE n
In an equation for ‘substTy’: substTy s (VarE n) = VarE n
e Relevant bindings include
n :: Sing n (bound at sysf.lhs:896:17)
s :: Sing s (bound at sysf.lhs:896:9)
substTy :: Sing s -> Exp g ty -> Exp (SubstList s g) (Subst s ty)

(bound at sysf.lhs:896:1)

|
898 | = VarE n

I AAAAAN

Failed, one module loaded.
Nat> ||

Type substitution in terms

substTy :: forall s g ty.
Sing s ldx g n ~ Just t implies
->Exp gty ldx (SubstList s g) n ~ Just (Subst s t)
-> Exp (SubstList s g) (Subst s ty)
substTy s (VarE n)
| Refl <- axiom_Substldx (undefined :: Sing g) ns
=VarE n
substTy s BaseE = BaseE

substTy s (LamE ty e) = LameE (sSubst s ty) (substTy s e)
substTy s (AppE el e2) = AppE (substTy s el) (substTy s e2)

Why should we believe this axiom?

* Vigorous assertion
axiom_Substldx :: (ldx g n ~ Just t) =>
Sing g -> Sing n -> Sing s -> Idx (SubstList s g) n :~: Just (Subst s t)
axiom_Substldx g n s =unsafeCoerce Refl

* "Provable" in Haskell
lemma_Substldx :: (ldx g n ~ Just t) =>
Sing g -> Sing n -> Sing s -> ldx (SubstList s g) n :~: Just (Subst s t)
lemma_Substldx (SCons) SZ s =Refl
lemma_Substldx (SCons xs) (SS n) s | Refl <- lemma_Substldx xs n s = Refl

* |t's an easy lemma, even in Haskell

* BUT, runtime cost and need to have "Sing g"
available

Why should we believe this axiom?

* Vigorous assertion
axiom_Substldx :: (ldx g n ~ Just t) =>
Sing g -> Sing n -> Sing s -> Idx (SubstList s g) n :~: Just (Subst s t)
axiom_Substldx g n s =unsafeCoerce Refl

* "Provable" in Coq
Lemma fldx : forall {a}{b} (f:a ->b) nyts,
idx n ts = Some y -> * It's an easy lemma
idx n (map f ts) = Some (fy). * Coqg and Haskell are close

Proof. but aren't the same
induction n; destruct ts; simpl; try done.

- intros h; inversion h; done.
- intros h; eauto.
Qed.

Why should we believe this axiom?

* Vigorous assertion
axiom_Substldx :: (ldx g n ~ Just t) =>
Sing g -> Sing n -> Sing s -> Idx (SubstList s g) n :~: Just (Subst s t)
axiom_Substldx g n s =unsafeCoerce Refl
» "Testable" in Haskell
prop_Substldx :: [Ty] -> Nat -> Sub -> Bool

prop_Substldxgns =
idx (substList s g) n == (subst s <S> idx g n)

* Singletons means we already have non-refined implementation

* Small modification necessary to make testing effective
(idx g n ==Just t) ==> (idx (substList s g) n == Just (subst s t))

Other axioms needed for substTy

axiom_LiftIncList :: forall s k g.
LiftList k s (IncList k g) :~: IncList k (SubstList s g)

Easy to test w/ QuickCheck

axiom_SubstFromlList :: forall t s tys.
Subst s (Subst (FromList tys) t)

:~: Subst (FromList (SubstList s tys))
(Subst (Lift (Length tys) s) t)

Much, much more difficult to
prove in Haskell and Coq

axiom_LengthSubstList :: forall s tys.
Length (SubstList s tys) :~: Length tys

What can you do with this in GHC?

* System F
* Type checker
* Type-safe evaluation
* Parallel reduction

e CPS conversion (cf. Pottier,
"Revisiting the CPS Transformation and its Implementation")

* Crucible
e wip-poly branch
* mir-verifier project

Conclusions

* I'm ok with unsafeCoerce, backed by QuickCheck
* Benefits of strong typing, yet assumptions clearly marked in code
* Hard to test typed ASTs, easy to test (type) substitution
* Mistakes are fatal though
* What else can we do, really?

e Code available:
https://github.com/sweirich/challenge/debruijn/sysf.lhs

