Programming Up-to-Congruence, Again

Stephanie Weirich

University of Pennsylvania

August 12, 2014

WG 2.8 Estes Park

Zombie

A functional programming language with a dependent type system intended for "lightweight" verification

With:

Vilhelm Sjöberg

Chris Casinghino
plus Trellys team (Aaron Stump, Tim Sheard, Ki Yung Ahn, Nathan Collins, Harley D. Eades III, Peng Fu, Garrin Kimmell)

Zombie language

- Support for both functional programming (including nontermination) and reasoning in constructive logic
- Full-spectrum dependent-types (for uniformity)
- Erasable arguments (for efficient compilation)
- Simple semantics for dependently-typed pattern matching
- Proof automation based on congruence closure

Nongoal: mathematical foundations, full program verification

Zombie: A language, in two parts

(1) Logical fragment: all programs must terminate (similar to Coq and Agda)

```
log add : Nat }->\mathrm{ Nat }->\mathrm{ Nat
ind add x y = case x [eq] of
    Zero }->\textrm{y}\quad-- eq : x = Zer
    Suc x' }->\mathrm{ add x' [ord eq] y -- eq : x = Suc x', used for ind
```


Zombie: A language, in two parts

(1) Logical fragment: all programs must terminate (similar to Coq and Agda)

```
log add : Nat }->\mathrm{ Nat }->\mathrm{ Nat
ind add x y = case x [eq] of
    Zero }->\textrm{y}\quad-- eq : x = Zer
    Suc x' }->\mathrm{ add x' [ord eq] y -- eq : x = Suc x', used for ind
```

(2) Programmatic fragment: nontermination allowed

```
prog div : Nat }->\mathrm{ Nat }->\mathrm{ Nat
rec div n m = if n < m then 0 else 1 + div (n - m) m
```


Zombie: A language, in two parts

(1) Logical fragment: all programs must terminate (similar to Coq and Agda)

```
log add : Nat }->\mathrm{ Nat }->\mathrm{ Nat
ind add x y = case x [eq] of
    Zero }->\textrm{y}\quad-- eq : x = Zer
    Suc x' }->\mathrm{ add x' [ord eq] y -- eq : x = Suc x', used for ind
```

(2) Programmatic fragment: nontermination allowed

```
prog div : Nat }->\mathrm{ Nat }->\mathrm{ Nat
rec div n m = if n < m then 0 else 1 + div (n - m) m
```

Uniformity: Both fragments use the same syntax, have the same (call-by-value) operational semantics.

One type system for two fragments

Typing judgement specifies the fragment (where $\theta=\mathrm{L} \mid \mathrm{P}$)

$$
\Gamma \vdash^{\theta} a: A
$$

which in turn specifies the properties of the fragment.

> Theorem (Type Soundness)
> If $\cdot \vdash^{\theta} a: A$ and if $a \rightsquigarrow^{*} a^{\prime}$ then $\cdot \vdash a^{\prime}: A$ and a^{\prime} is a value.

Theorem (Logical Consistency)
If $\cdot \vdash^{\mathrm{L}} a: A$ then $a \rightsquigarrow^{*} v$

Reasoning about programs

The logical fragment demands termination, but can reason about the programmatic fragment.
log div62 : div 62 = 3
log div62 $=$ join
(Here join is the proof that two terms reduce to the same value.)

Reasoning about programs

The logical fragment demands termination, but can reason about the programmatic fragment.
log div62 : div $62=3$
log div62 $=$ join
(Here join is the proof that two terms reduce to the same value.)
Type checking join is undecidable, so includes an overridable timeout.

Type checking without β

The type checker reduces terms only when directed by the programmer (e.g. while type checking join).

Type checking without β

The type checker reduces terms only when directed by the programmer (e.g. while type checking join).

Zombie does not include β-convertibility in definitional equality!

In a context with

$$
\begin{aligned}
& \mathrm{f}: \text { Vec Nat } 3 \rightarrow \text { Nat } \\
& \mathrm{x}: \text { Vec Nat (div } 6 \text { 2) }
\end{aligned}
$$

the expression $f \times$ does not type check because div 62 is not equal to 3.

Type checking without β

The type checker reduces terms only when directed by the programmer (e.g. while type checking join).

Zombie does not include β-convertibility in definitional equality!

In a context with

$$
\text { f }: \text { Vec Nat } 3 \rightarrow \text { Nat }
$$

$$
\mathrm{x}: \text { Vec Nat (div } 6 \text { 2) }
$$

the expression $f \times$ does not type check because div 62 is not equal to 3.

In other words, β-convertibility is only available for propositional equality.

Isn't type checking without β awful?

Isn't type checking without β awful?

Yes.

Isn't type checking without β awful?

Yes. And our simple semantics for dependently-typed pattern matching makes it worse.

```
log npluszero : (n : Nat) }->(\textrm{n}+0=n
ind npluszero n =
    case n [eq] of
        Zero }->\mathrm{ (join : 0 + 0 = 0)
            \triangleright [~ eq + 0 = ~eq] -- explicit type coercion
                        -- eq : 0 = n
    Suc m }
        let ih = npluszero m [ord eq] in
            (join : (Suc m) + 0 = Suc (m + 0))
            \triangleright [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m
            \triangleright [ \sim \text { eq + 0 = ~eq] -- eq : Suc m = n}
```


Isn't type checking without β awful?

Yes. And our simple semantics for dependently-typed pattern matching makes it worse.

```
log npluszero : (n : Nat) }->(\textrm{n}+0=n
ind npluszero n =
    case n [eq] of
        Zero }->\mathrm{ (join : 0 + 0 = 0)
            \triangleright [~ eq + 0 = ~eq] -- explicit type coercion
                        -- eq : 0 = n
    Suc m }
        let ih = npluszero m [ord eq] in
            (join : (Suc m) + 0 = Suc (m + 0))
            \triangleright [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m
            \triangleright [ \sim ~ e q ~ + ~ 0 ~ = ~ \sim e q ] ~ - - ~ e q ~ : ~ S u c ~ m = n ~ n
```

But we can do better.

Opportunity: Congruence Closure

What if we base definitional equivalence on the congruence closure of equations in the context?

$$
\begin{array}{cc}
\frac{x: a=b \in \Gamma}{\Gamma \vdash a=b} & \frac{\Gamma \vdash a=b}{\Gamma \vdash\{a / x\} c=\{b / x\} c} \\
\frac{\Gamma \vdash a=a}{\Gamma \vdash a=a} \quad \frac{\Gamma \vdash a=b}{\Gamma \vdash b=a} & \frac{\Gamma \vdash a=b \quad \Gamma \vdash b=c}{\Gamma \vdash a=c}
\end{array}
$$

Efficient algorithms for deciding this relation exist [Nieuwenhuis and Oliveras, 2007].
But, extending this relation with β-conversion makes it undecidable.

Example with CC

The type checker automatically takes advantage of equations in the context.

```
log npluszero : (n : Nat) }->(\textrm{n}+0=n
ind npluszero n =
    case n [eq] of
        Zero }->\mathrm{ (join : 0 + 0 = 0)
            -- coercion by eq inferred
        Suc m }
            let ih = npluszero m [ord eq] in
            (join : (Suc m) + 0 = Suc (m + 0))
            -- coercion by eq and ih inferred
```


Zombie language design

- Semantics defined by an explicitly-typed core language [Casinghino et al. POPL '14][Sjöberg et al., MSFP'12]
- Definitional equality is α-equivalence (no CC)
- All uses of propositional equality must be explicit
- Core language is type sound

Zombie language design

- Semantics defined by an explicitly-typed core language [Casinghino et al. POPL '14][Sjöberg et al., MSFP'12]
- Definitional equality is α-equivalence (no CC)
- All uses of propositional equality must be explicit
- Core language is type sound
- Concise surface language for programmers [Sjöberg and Weirich, draft paper]
- Specified via bidirectional type system
- Definitional equality is Congruence Closure
- Elaborates to core language

Zombie language design

- Semantics defined by an explicitly-typed core language [Casinghino et al. POPL '14][Sjöberg et al., MSFP'12]
- Definitional equality is α-equivalence (no CC)
- All uses of propositional equality must be explicit
- Core language is type sound
- Concise surface language for programmers [Sjöberg and Weirich, draft paper]
- Specified via bidirectional type system
- Definitional equality is Congruence Closure
- Elaborates to core language
- Implementation available, with extensions https://code.google.com/p/trellys/

Properties of elaboration

- Elaboration is sound If elaboration succeeds, it produces a well-typed core language term.
- Elaboration is complete

If a term type checks according to the surface language specification, then elaboration will succeed.

- Elaboration doesn't change the semantics If elaboration succeeds, it produces a core language term that differs from the source term only in erasable information (type annotations, type coercions, erasable arguments).

Zombie-style Congruence Closure

(1) Works up-to-erasure

Zombie-style Congruence Closure

(1) Works up-to-erasure
(2) Supports injectivity of type (and data) constructors

$$
\frac{\Gamma \vDash\left(\left(x: A_{1}\right) \rightarrow B_{1}\right)=\left(\left(x: A_{2}\right) \rightarrow B_{2}\right)}{\Gamma \vDash A_{1}=A_{2}}
$$

Zombie-style Congruence Closure

(1) Works up-to-erasure
(2) Supports injectivity of type (and data) constructors

$$
\frac{\Gamma \vDash\left(\left(x: A_{1}\right) \rightarrow B_{1}\right)=\left(\left(x: A_{2}\right) \rightarrow B_{2}\right)}{\Gamma \vDash A_{1}=A_{2}}
$$

(3) Makes use of assumptions that are equivalent to equalities

$$
\frac{x: A \in \Gamma \quad \Gamma \vDash A=(a=b)}{\Gamma \vDash a=b}
$$

Zombie-style Congruence Closure

(1) Works up-to-erasure
(2) Supports injectivity of type (and data) constructors

$$
\frac{\Gamma \vDash\left(\left(x: A_{1}\right) \rightarrow B_{1}\right)=\left(\left(x: A_{2}\right) \rightarrow B_{2}\right)}{\Gamma \vDash A_{1}=A_{2}}
$$

(3) Makes use of assumptions that are equivalent to equalities

$$
\frac{x: A \in \Gamma \quad \Gamma \vDash A=(a=b)}{\Gamma \vDash a=b}
$$

(1) Only includes typed terms

Zombie-style Congruence Closure

(1) Works up-to-erasure
(2) Supports injectivity of type (and data) constructors

$$
\frac{\Gamma \vDash\left(\left(x: A_{1}\right) \rightarrow B_{1}\right)=\left(\left(x: A_{2}\right) \rightarrow B_{2}\right)}{\Gamma \vDash A_{1}=A_{2}}
$$

(3) Makes use of assumptions that are equivalent to equalities

$$
\frac{x: A \in \Gamma \quad \Gamma \vDash A=(a=b)}{\Gamma \vDash a=b}
$$

(1) Only includes typed terms
(6) and generates proof terms in the core language

Examples and Extensions

Proof inference

Congruence closure can supply proofs of equality

```
log npluszero : (n : Nat) }->(\textrm{n}+0=n
ind npluszero n =
    case n [eq] of
        Zero }
        let _ = (join : 0 + 0 = 0) in _
        Suc m }
        let _ = npluszero m [ord eq] in
        let _ = (join : (Suc m) + 0 = Suc (m + 0)) in _
```


Extension: Unfold

```
log npluszero : (n : Nat) }->\mathrm{ (n + 0 = n)
ind npluszero n =
    case n [eq] of
        Zero }->\mathrm{ unfold (0 + 0) in _
        Suc m }
            let _ = npluszero m [ord eq] in
            unfold ((Suc m) + 0) in _
```

The expression unfold a in b expands to

$$
\begin{aligned}
& \text { let _ = (join : a = a1) in } \\
& \text { let _ = (join : a1 = ...) in } \\
& \text { let _ = (join : ... = an) in } \\
& \text { b }
\end{aligned}
$$

when a \rightsquigarrow a1 $\rightsquigarrow \ldots \rightsquigarrow$ an

Extension: Reduction Modulo

```
log npluszero : (n : Nat) }->\mathrm{ (n + 0 = n)
ind npluszero n =
    case n [eq] of
        Zero }->\mathrm{ unfold (n + 0) in _
        Suc m }
            let ih = npluszero m [ord eq] in
            unfold (n + 0) in _
```

The type checker makes use of congruence closure when reducing terms with unfold.
E.g., if we have $h: n=0$ in the context, allow the step

$$
n+0 \rightsquigarrow c b v 0
$$

Extension: Smart join

```
log npluszero : (n : Nat) }->\mathrm{ (n + 0 = n)
ind npluszero n =
    case n [eq] of
        Zero }->\mathrm{ smartjoin
        Suc m }
            let ih = npluszero m [ord eq] in
            smartjoin
```

Use unfold (and reduction modulo) on both sides of an equality when type checking join.

Smart case

An Agda Puzzle

Consider an operation that appends elements to the end of a list.

```
snoc : List }->\textrm{A}->\mathrm{ List
snoc xs x = xs ++ (x :: [])
```

How would you prove the following property in Agda?
snoc-inv : \forall xs ys $z \rightarrow$ (snoc $x s z \equiv \operatorname{snoc} y s z) \rightarrow$ xs \equiv ys
snoc-inv (x : : xs') (y : : ys') z pf = ?

An Agda Puzzle

Consider and operation that appends elements to the end of a list.

```
snoc : List }->\textrm{A}->\mathrm{ List
snoc xs x = xs ++ x :: []
```

How would you prove the following property in Agda?

```
snoc-inv : }\forall\mathrm{ xs ys z }->\mathrm{ (snoc xs z # snoc ys z) }->\mathrm{ xs 三 ys
snoc-inv (x :: xs') (y :: ys') z pf with (snoc xs' z) | (snoc ys' z)
    | inspect (snoc xs') z | inspect (snoc ys') z
snoc-inv (.y :: xs') (y :: ys') z refl | .s | s
    | [ p ] | [ q ] with (snoc-inv xs' ys' z (trans p (sym q)))
snoc-inv (.y :: .ys') (y :: ys') z refl | .s | s
    | [ p ] | [ q ] | refl = refl
```

Uses Agda idiom called "inspect on steroids."

Smart case

Zombie solution is more straightforward:

```
log snoc_inv : (xs ys: List A) }->\mathrm{ (z : A)
    ->(snoc xs z)=(snoc ys z) }->\textrm{xs}=\textrm{ys
ind snoc_inv xs ys z pf =
    case xs [eq], ys of
        Cons x xs' , Cons y ys' }
            let _ = smartjoin : snoc xs z = Cons x (snoc xs' z) in
        let _ = smartjoin : snoc ys z = Cons y (snoc ys' z) in
        let _ = snoc_inv xs' [ord eq] ys' z _ in
```

 . . .
 Pattern matching introduces equalities (like eq) into the context in each branch. CC takes advantage of them automatically.

Conclusion and Future Work

- We should be thinking about the combination of dependently-typed languages and nontermination.

Conclusion and Future Work

- We should be thinking about the combination of dependently-typed languages and nontermination.
- Restriction on β-reduction leads us to the exploration of alternative forms of definitional equality, specifically congruence closure

Conclusion and Future Work

- We should be thinking about the combination of dependently-typed languages and nontermination.
- Restriction on β-reduction leads us to the exploration of alternative forms of definitional equality, specifically congruence closure
- Congruence closure powers smart case, a simple specification of dependently-typed pattern matching

Conclusion and Future Work

- We should be thinking about the combination of dependently-typed languages and nontermination.
- Restriction on β-reduction leads us to the exploration of alternative forms of definitional equality, specifically congruence closure
- Congruence closure powers smart case, a simple specification of dependently-typed pattern matching
- Proof automation is an important part of the design of dependently-typed languages, but should be backed up by specifications

