
Programming Up-to-Congruence, Again

Stephanie Weirich

University of Pennsylvania

August 12, 2014

WG 2.8 Estes Park

Zombie

A functional programming language with a dependent type
system intended for “lightweight” verification

With:

Vilhelm Sjöberg Chris Casinghino

plus Trellys team (Aaron Stump, Tim Sheard, Ki Yung Ahn,
Nathan Collins, Harley D. Eades III, Peng Fu, Garrin
Kimmell)

Zombie language

Support for both functional programming (including
nontermination) and reasoning in constructive logic

Full-spectrum dependent-types (for uniformity)

Erasable arguments (for efficient compilation)

Simple semantics for dependently-typed pattern matching

Proof automation based on congruence closure

Nongoal: mathematical foundations, full program verification

Zombie: A language, in two parts

1 Logical fragment: all programs must terminate (similar to
Coq and Agda)

log add : Nat → Nat → Nat

ind add x y = case x [eq] of

Zero → y -- eq : x = Zero

Suc x’ → add x’ [ord eq] y -- eq : x = Suc x’, used for ind

2 Programmatic fragment: nontermination allowed

prog div : Nat → Nat → Nat

rec div n m = if n < m then 0 else 1 + div (n - m) m

Uniformity: Both fragments use the same syntax, have the
same (call-by-value) operational semantics.

Zombie: A language, in two parts

1 Logical fragment: all programs must terminate (similar to
Coq and Agda)

log add : Nat → Nat → Nat

ind add x y = case x [eq] of

Zero → y -- eq : x = Zero

Suc x’ → add x’ [ord eq] y -- eq : x = Suc x’, used for ind

2 Programmatic fragment: nontermination allowed

prog div : Nat → Nat → Nat

rec div n m = if n < m then 0 else 1 + div (n - m) m

Uniformity: Both fragments use the same syntax, have the
same (call-by-value) operational semantics.

Zombie: A language, in two parts

1 Logical fragment: all programs must terminate (similar to
Coq and Agda)

log add : Nat → Nat → Nat

ind add x y = case x [eq] of

Zero → y -- eq : x = Zero

Suc x’ → add x’ [ord eq] y -- eq : x = Suc x’, used for ind

2 Programmatic fragment: nontermination allowed

prog div : Nat → Nat → Nat

rec div n m = if n < m then 0 else 1 + div (n - m) m

Uniformity: Both fragments use the same syntax, have the
same (call-by-value) operational semantics.

One type system for two fragments

Typing judgement specifies the fragment (where θ = L | P)

Γ `θ a : A

which in turn specifies the properties of the fragment.

Theorem (Type Soundness)

If · `θ a : A and if a ∗ a ′ then · ` a ′ : A and a ′ is a value.

Theorem (Logical Consistency)

If · `L a : A then a ∗ v

Reasoning about programs

The logical fragment demands termination, but can reason
about the programmatic fragment.

log div62 : div 6 2 = 3

log div62 = join

(Here join is the proof that two terms reduce to the same value.)

Type checking join is undecidable, so includes an overridable
timeout.

Reasoning about programs

The logical fragment demands termination, but can reason
about the programmatic fragment.

log div62 : div 6 2 = 3

log div62 = join

(Here join is the proof that two terms reduce to the same value.)

Type checking join is undecidable, so includes an overridable
timeout.

Type checking without β

The type checker reduces terms only when directed by the
programmer (e.g. while type checking join).

Zombie does not include β-convertibility in definitional equality!

In a context with

f : Vec Nat 3 → Nat

x : Vec Nat (div 6 2)

the expression f x does not type check because div 6 2 is not
equal to 3.

In other words, β-convertibility is only available for
propositional equality.

Type checking without β

The type checker reduces terms only when directed by the
programmer (e.g. while type checking join).

Zombie does not include β-convertibility in definitional equality!

In a context with

f : Vec Nat 3 → Nat

x : Vec Nat (div 6 2)

the expression f x does not type check because div 6 2 is not
equal to 3.

In other words, β-convertibility is only available for
propositional equality.

Type checking without β

The type checker reduces terms only when directed by the
programmer (e.g. while type checking join).

Zombie does not include β-convertibility in definitional equality!

In a context with

f : Vec Nat 3 → Nat

x : Vec Nat (div 6 2)

the expression f x does not type check because div 6 2 is not
equal to 3.

In other words, β-convertibility is only available for
propositional equality.

Isn’t type checking without β awful?

Yes. And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

. [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m →
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

. [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

. [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Isn’t type checking without β awful?

Yes.

And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

. [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m →
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

. [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

. [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Isn’t type checking without β awful?

Yes. And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

. [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m →
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

. [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

. [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Isn’t type checking without β awful?

Yes. And our simple semantics for dependently-typed pattern
matching makes it worse.

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

. [~eq + 0 = ~eq] -- explicit type coercion

-- eq : 0 = n

Suc m →
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

. [(Suc m) + 0 = Suc ~ih] -- ih : m + 0 = m

. [~eq + 0 = ~eq] -- eq : Suc m = n

But we can do better.

Opportunity: Congruence Closure

What if we base definitional equivalence on the congruence
closure of equations in the context?

x : a = b ∈ Γ

Γ ` a = b

Γ ` a = b

Γ ` {a/x} c = {b/x} c

Γ ` a = a

Γ ` a = b

Γ ` b = a

Γ ` a = b Γ ` b = c

Γ ` a = c

Efficient algorithms for deciding this relation exist [Nieuwenhuis
and Oliveras, 2007].
But, extending this relation with β-conversion makes it
undecidable.

Example with CC

The type checker automatically takes advantage of equations in
the context.

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

-- coercion by eq inferred

Suc m →
let ih = npluszero m [ord eq] in

(join : (Suc m) + 0 = Suc (m + 0))

-- coercion by eq and ih inferred

Zombie language design

Semantics defined by an explicitly-typed core language
[Casinghino et al. POPL ’14][Sjöberg et al., MSFP’12]

Definitional equality is α-equivalence (no CC)
All uses of propositional equality must be explicit
Core language is type sound

Concise surface language for programmers
[Sjöberg and Weirich, draft paper]

Specified via bidirectional type system
Definitional equality is Congruence Closure
Elaborates to core language

Implementation available, with extensions
https://code.google.com/p/trellys/

https://code.google.com/p/trellys/

Zombie language design

Semantics defined by an explicitly-typed core language
[Casinghino et al. POPL ’14][Sjöberg et al., MSFP’12]

Definitional equality is α-equivalence (no CC)
All uses of propositional equality must be explicit
Core language is type sound

Concise surface language for programmers
[Sjöberg and Weirich, draft paper]

Specified via bidirectional type system
Definitional equality is Congruence Closure
Elaborates to core language

Implementation available, with extensions
https://code.google.com/p/trellys/

https://code.google.com/p/trellys/

Zombie language design

Semantics defined by an explicitly-typed core language
[Casinghino et al. POPL ’14][Sjöberg et al., MSFP’12]

Definitional equality is α-equivalence (no CC)
All uses of propositional equality must be explicit
Core language is type sound

Concise surface language for programmers
[Sjöberg and Weirich, draft paper]

Specified via bidirectional type system
Definitional equality is Congruence Closure
Elaborates to core language

Implementation available, with extensions
https://code.google.com/p/trellys/

https://code.google.com/p/trellys/

Properties of elaboration

Elaboration is sound
If elaboration succeeds, it produces a well-typed core
language term.

Elaboration is complete
If a term type checks according to the surface language
specification, then elaboration will succeed.

Elaboration doesn’t change the semantics
If elaboration succeeds, it produces a core language term
that differs from the source term only in erasable
information (type annotations, type coercions, erasable
arguments).

Zombie-style Congruence Closure

1 Works up-to-erasure

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b

2 Supports injectivity of type (and data) constructors

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2

3 Makes use of assumptions that are equivalent to equalities

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b

4 Only includes typed terms

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Works up-to-erasure

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b

2 Supports injectivity of type (and data) constructors

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2

3 Makes use of assumptions that are equivalent to equalities

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b

4 Only includes typed terms

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Works up-to-erasure

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b

2 Supports injectivity of type (and data) constructors

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2

3 Makes use of assumptions that are equivalent to equalities

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b

4 Only includes typed terms

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Works up-to-erasure

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b

2 Supports injectivity of type (and data) constructors

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2

3 Makes use of assumptions that are equivalent to equalities

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b

4 Only includes typed terms

5 and generates proof terms in the core language

Zombie-style Congruence Closure

1 Works up-to-erasure

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b

2 Supports injectivity of type (and data) constructors

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2

3 Makes use of assumptions that are equivalent to equalities

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b

4 Only includes typed terms

5 and generates proof terms in the core language

Examples and Extensions

Proof inference

Congruence closure can supply proofs of equality

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero →
let _ = (join : 0 + 0 = 0) in _

Suc m →
let _ = npluszero m [ord eq] in

let _ = (join : (Suc m) + 0 = Suc (m + 0)) in _

Extension: Unfold

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → unfold (0 + 0) in _

Suc m →
let _ = npluszero m [ord eq] in

unfold ((Suc m) + 0) in _

The expression unfold a in b expands to

let _ = (join : a = a1) in

let _ = (join : a1 = ...) in

...

let _ = (join : ... = an) in

b

when a a1 . . . an

Extension: Reduction Modulo

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → unfold (n + 0) in _

Suc m →
let ih = npluszero m [ord eq] in

unfold (n + 0) in _

The type checker makes use of congruence closure when
reducing terms with unfold.
E.g., if we have h : n = 0 in the context, allow the step

n+ 0 cbv 0

Extension: Smart join

log npluszero : (n : Nat) → (n + 0 = n)

ind npluszero n =

case n [eq] of

Zero → smartjoin

Suc m →
let ih = npluszero m [ord eq] in

smartjoin

Use unfold (and reduction modulo) on both sides of an equality
when type checking join.

Smart case

An Agda Puzzle

Consider an operation that appends elements to the end of a
list.

snoc : List → A → List

snoc xs x = xs ++ (x :: [])

How would you prove the following property in Agda?

snoc-inv : ∀ xs ys z → (snoc xs z ≡ snoc ys z) → xs ≡ ys

snoc-inv (x :: xs’) (y :: ys’) z pf = ?

...

An Agda Puzzle

Consider and operation that appends elements to the end of a
list.

snoc : List → A → List

snoc xs x = xs ++ x :: []

How would you prove the following property in Agda?

snoc-inv : ∀ xs ys z → (snoc xs z ≡ snoc ys z) → xs ≡ ys

snoc-inv (x :: xs’) (y :: ys’) z pf with (snoc xs’ z) | (snoc ys’ z)

| inspect (snoc xs’) z | inspect (snoc ys’) z

snoc-inv (.y :: xs’) (y :: ys’) z refl | .s | s

| [p] | [q] with (snoc-inv xs’ ys’ z (trans p (sym q)))

snoc-inv (.y :: .ys’) (y :: ys’) z refl | .s | s

| [p] | [q] | refl = refl

...

Uses Agda idiom called “inspect on steroids.”

Smart case

Zombie solution is more straightforward:

log snoc_inv : (xs ys: List A) → (z : A)

→ (snoc xs z) = (snoc ys z) → xs = ys

ind snoc_inv xs ys z pf =

case xs [eq], ys of

Cons x xs’ , Cons y ys’ →
let _ = smartjoin : snoc xs z = Cons x (snoc xs’ z) in

let _ = smartjoin : snoc ys z = Cons y (snoc ys’ z) in

let _ = snoc_inv xs’ [ord eq] ys’ z _ in

_

...

Pattern matching introduces equalities (like eq) into the context
in each branch. CC takes advantage of them automatically.

Conclusion and Future Work

We should be thinking about the combination of
dependently-typed languages and nontermination.

Restriction on β-reduction leads us to the exploration of
alternative forms of definitional equality, specifically
congruence closure

Congruence closure powers smart case, a simple
specification of dependently-typed pattern matching

Proof automation is an important part of the design of
dependently-typed languages, but should be backed up by
specifications

Conclusion and Future Work

We should be thinking about the combination of
dependently-typed languages and nontermination.

Restriction on β-reduction leads us to the exploration of
alternative forms of definitional equality, specifically
congruence closure

Congruence closure powers smart case, a simple
specification of dependently-typed pattern matching

Proof automation is an important part of the design of
dependently-typed languages, but should be backed up by
specifications

Conclusion and Future Work

We should be thinking about the combination of
dependently-typed languages and nontermination.

Restriction on β-reduction leads us to the exploration of
alternative forms of definitional equality, specifically
congruence closure

Congruence closure powers smart case, a simple
specification of dependently-typed pattern matching

Proof automation is an important part of the design of
dependently-typed languages, but should be backed up by
specifications

Conclusion and Future Work

We should be thinking about the combination of
dependently-typed languages and nontermination.

Restriction on β-reduction leads us to the exploration of
alternative forms of definitional equality, specifically
congruence closure

Congruence closure powers smart case, a simple
specification of dependently-typed pattern matching

Proof automation is an important part of the design of
dependently-typed languages, but should be backed up by
specifications

	Examples and Extensions
	Smart case
	Thanks!
	Larger Examples
	Challenges for CC and dependent types
	Core language
	Surface language
	Thanks!

