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Equality

Equality of program terms is one of the thorniest issues
in type theory. Various applications, including:

• justifying compiler optimizations

• dependency: program equality induces type equality
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Equality

Equality of program terms is one of the thorniest issues
in type theory. Various applications, including:

• justifying compiler optimizations

• dependency: program equality induces type equality

Thorny because you often want equality to be

• as coarse as possible

• decidable
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Equality

STLC with finite products and sums:
τ ::= τ1 → τ2 | τ1 × τ2 | 1 | τ1 + τ2 | 0

e ::= . . . | inl e | inr e | case(e, x1 .e1 , x2 .e2 ) | . . .

Equality: congruence Γ ⊢ e ≡ e ′ : τ
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Equality

STLC with finite products and sums:
τ ::= τ1 → τ2 | τ1 × τ2 | 1 | τ1 + τ2 | 0

e ::= . . . | inl e | inr e | case(e, x1 .e1 , x2 .e2 ) | . . .

Equality: congruence Γ ⊢ e ≡ e ′ : τ

How is equality defined?
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Equality for Sums

Standard βη rules for →, ×, 1 capture categorical
universal properties

What is the equivalent for sums?

case(inl e, x1 .e1 , x2 .e2 ) ≡ [e/x ]e1

β+l

case(inr e, x1 .e1 , x2 .e2 ) ≡ [e/x ]e2

β+r
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Equality for Sums

η for sums: “defines the same decision tree”

Pick any subterm of sum type and pivot on it at the
outside:

e : τ1 + τ2
[e/x ]e ′ ≡ case(e, x1 .[inl x1/x ]e ′, x2 .[inr x2/x ]e ′)

η+

C.f. the uniqueness condition of the categorical universal
property for coproducts.
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Equality for Sums: Consequences

Reconstruction:

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2 )
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Equality for Sums: Consequences

Reconstruction:

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2 )

Commuting conversions:

(case(e, x1 .e1 , x2 .e2 )) e ′ ≡ case(e, x1 .e1 e ′, x2 .e2 e ′)
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Equality for Sums: Consequences

Reconstruction:

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2 )

Commuting conversions:

(case(e, x1 .e1 , x2 .e2 )) e ′ ≡ case(e, x1 .e1 e ′, x2 .e2 e ′)

Permuting conversion (c.f. BDD variable ordering):
case(e, x1 .case(f , y1 .f1 , y2 .f2 ), x2 .e2 ) ≡
case(f , y1 .case(e, x1 .f1 , x2 .e2 ), y2 .case(e, x1 .f2 , x2 .e2 ))
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Deciding Coproduct Equality is Tricky

η+ has a very non-local flavor: pick any subterm and
pivot on it

Previous decision procedures:

• Ghani (1995), Lindley (2007) using rewriting

• Altenkirch et al. (2001), Balat et al. (2004) using
NBE/TDPE
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This Work

• Give a new decision procedure for coproduct equality
based on a canonical forms technique

• Mechanize the proof of its correctness in Twelf
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This Work

• Give a new decision procedure for coproduct
equality based on a canonical forms technique

• Mechanize the proof of its correctness in Twelf
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Our Decision Procedure

To prove: Γ ⊢ e ≡ e ′ : τ is decidable

Our approach: give a sound, complete, and decidable
algorithmic definition of equality

1. Translate terms into a language of canonical forms.
Many equal terms have the same canonical form

2. Compare canonical forms with a structural
congruence to get the remaining equalities

Dan Licata WMM 2007 9



Canonical Forms

Goal: only one way to write equivalent terms.
You can’t write:

β→ (λ x . x ) y , only y

β+ case(inl x , x1 .inl x1 , x2 .()), only inl x

η1 x at type 1 , only ()

η→,1 f at type 1 → 1 , only λ _. f ()
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Canonical Forms

Goal: only one way to write equivalent terms.
You can’t write:

β→ (λ x . x ) y , only y

β+ case(inl x , x1 .inl x1 , x2 .()), only inl x

η1 x at type 1 , only ()

η→,1 f at type 1 → 1 , only λ _. f ()

How do canonical forms control η+?
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Canonical Forms

• Monadic language based on CLF [Watkins et al., ’02]

• Distinction between asynchronous and synchronous
types based on focussing [Andreoli ’92]

A ::= A1 → A2 |A1 × A2 | 1 | {S}

S ::= A | S1 + S2 | 0

Intuition:
⊲ elims for synchronous types involve a third party

⊲ monad controls the use of these elims
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Canonical Forms

Consider or : bool → bool → bool . Two implementations:

1. λx.if x then λ_.true else λy.y

2. λx. λy.if x then true else y
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Canonical Forms

Consider or : bool → bool → bool . Two implementations:

1. λx.if x then λ_.true else λy.y

2. λx. λy.if x then true else y

In canonical forms

• bool → (bool → bool) is {bool} → ({bool} → {bool})

• Cannot write (1): case-analysis only when producing
something of type {S}
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Structural Congruence

Canonical forms don’t get rid of all instances of η+:

• Permuting conversion:
case(e, x1 .case(f , y1 .f1 , y2 .f2 ), x2 .e2 ) and
case(f , y1 .case(e, x1 .f1 , x2 .e2 ), y2 .case(e, x1 .f2 , x2 .e2 ))

• Dead code: case(e, x1 .(), x2 .case(e, x1 .dead , x2 .())) and
case(e, x1 .(), x2 .())

• Indifference: case(e, x1 .(), x2 .()) and ()
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Structural Congruence

Consequently, we compare canonical forms up to
permuting conversions, dead code, and indifference.

Why bundle the three together?

• Permuting conversions are inherently symmetric, so
neither side is to be preferred

• Permuting creates dead code and indifference
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Translation to Canonical Forms

Need meta-operations to witness expected principles:

• Hereditary substitution: compute the canonical result
of substituting one canonical form into another
(witnesses cut admissibility)

• Expansion: expand a variable into a canonical term
(witnesses identity principle)

• Inversion: rearrange a decision tree so that a
specified term is case-analyzed first (witnesses
coproduct reasoning)
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Translation to Canonical Forms

Need meta-operations to witness expected principles:

• Hereditary substitution: compute the canonical result
of substituting one canonical form into another
(witnesses cut admissibility)

• Expansion: expand a variable into a canonical term
(witnesses identity principle)

• Inversion: rearrange a decision tree so that a
specified term is case-analyzed first (witnesses
coproduct reasoning)

Translation from STLC to canonical forms is a simple
outer induction using these judgements
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Properties

• Totality: translation is a type-correct function

• Completeness: if two terms are equal, then they
translate to congruent canonical forms

• Soundness: if two terms translate to congruent
canonical forms, then they’re equal

• Decidability: congruence of canonical forms is
decidable
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Properties

OK Totality: translation is a type-correct function

Almost Completeness: if two terms are equal, then they
translate to congruent canonical forms
[everything but functionality of hered. subst.]

To do Soundness: if two terms translate to congruent
canonical forms, then they’re equal

To do Decidability: congruence of canonical forms is
decidable
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This Work

• Give a new decision procedure for coproduct equality
based on a canonical forms technique

• Mechanize the proof of its correctness in Twelf
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Syntax = LF Types and Constants

A ::= A1 → A2 |A1 × A2 | 1 | {S}

S ::= A | S1 + S2 | 0

atp : type.
stp : type.

arrow : atp -> atp -> atp.
prod : atp -> atp -> atp.
one : atp.
circ : stp -> atp.
...
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Syntax = LF Types and Constants

Terms (→ and + fragment):
LF type Syntactic Category

rtm R ::= x |R N

ntm N ::= λ x .N | {E}

etm E ::= M |R ≫ I

mtm M ::= N | inl M | inr M

itm I ::= case(I1 , I2 ) | asynch(x .E )
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Judgements = Indexed Type Families

Hereditary substitution [N /x ]
A
R = N ′ : A′

represented by

hsubst-rr : ntm -> atp -> (rtm -> rtm)

-> ntm -> atp

-> type.
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Inference Rules = Constants

[N0/x ]
A0

R1 = λ y .N ′ : A2 → A

[N0/x ]
A0

N2 = N ′

2

[N ′

2
/y ]

A2
N ′ = N ′′

[N0/x ]
A0

R1 N2 = N ′′ : A

c : hsubst-rr N0 A0 ([x] app (R1 x) (N2 x)) N” A

<- hsubst-rr N0 A0 R1 (lam N’) (arrow A2 A)

<- hsubst-n N0 A0 N2 N2’

<- hsubst-n N2’ A2 ([y] N’) N”.
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Twelf Proves Termination

hsubst-rr : ntm -> atp -> (rtm -> rtm)

-> ntm -> atp

-> type.

%reduces A’ <= A0 (hsubst-rr _ A0 _ _ A’).

%worlds (x:rtm) * (hsubst-rr _ _ _ _ _) ... .

%terminates {(A0 ...) (R ...)}

(hsubst-rr _ A0 R _ _) ... .

(Ellipses: mutually recursive with hsubst for the other
syntactic categories)
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Thm. Statements = Annotated Type Families

Theorem: If Γ, y ⇒ A2 ⊢ N ⇐ A and Γ ⊢ N2 ⇐ A2

then [N2/y ]
A2

N = N ′ and Γ ⊢ N ′ ⇐ A.

thm : {A2}

({y : rtm} {dy : synth y A2} ncheck (N y) A)

-> ncheck N2 A2

-> hsubst-n N2 A2 ([y] N y) N’

-> ncheck N’ A

-> type.

%mode thm +A2 +D1 +D2 -D3 -D4.

%worlds (x:tm, dx: synth x A) * (thm _ _ _ _ _).
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Proofs = Constants + Totality Check

l : thm A2

([x] [dx] (ncheck-lam ([y] [dy] DcN x dx y dy)))

DcN2

(hsubst-n-lam DsN)

(ncheck-lam DcN’)

<- ({y} {dy : synth y Af}

thm A2 ([x] [dx] (DcN x dx y dy)) DcN2

(DsN y) (DcN’ y dy)).

%total {(A ...) (D ...)} (thm A D _ _ _) ... .
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Proof So Far

(768) Represent syntax and judgements

(5558) Functionality and type-correctness of translation to
canonical forms

(7617) Several lemmas leading up to completeness. E.g.
both sides of

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2 )

have the same canonical form
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Proof Techniques

Uses lots of Twelf techniques:

• using %reduces for termination

• mutual induction and lexicographic induction

• reasoning with equality and respects lemmas

• proving uniqueness lemmas

• output factoring

• reasoning from false

• catch-all cases

Dan Licata WMM 2007 27



http://twelf.plparty.org
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http://twelf.plparty.org
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http://twelf.plparty.org
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Arbob’s Experience

“Determining the Twelf representation for the syntax and
judgments was generally straightforward. Typically, the
correct mechanization could be seen by direct analogy to
some similar construct that appeared in an example on
the wiki. In one case, the process of mechanizing the
syntax and judgments actually revealed a superfluous
term in our language, which we were then able to
eliminate.”
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Arbob’s Experience

“Of course, mechanizing the proofs was more
challenging. Often when a proof seemed difficult to
formalize or I was uncertain which lemmas the Twelf
proof would require, there was a case study on the wiki
that described the mechanization of a similar proof. The
mechanized proofs themselves generally resembled my
paper proofs. Typically, they just required some
additional lemmas, which I had glossed over in doing the
paper proof. I found that mechanizing the proofs typically
increased my confidence in their correctness. Moreover,
mechanized proofs are far more useful for keeping a
clear and comprehensible record than informal proofs
which are typically scattered across numerous sheets of
paper or tex documents.”
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Summary

• New, fully syntactic decision procedure for
coproducts based on canonical forms methodology
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Summary

• New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

• So far, straightforward to mechanize in Twelf
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Summary

• New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

• So far, straightforward to mechanize in Twelf

• Accept Arbob to your PhD programs and he will do
your proofs instead!
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Thanks for listening!

The Twelf Wiki: http://twelf.plparty.org
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