
Mechanizing a Decision Procedure
for Coproduct Equality in Twelf

Arbob Ahmad (applying to PhD programs this fall!)

Dan Licata

Robert Harper

Carnegie Mellon University

Equality

Equality of program terms is one of the thorniest issues
in type theory. Various applications, including:

• justifying compiler optimizations

• dependency: program equality induces type equality

Dan Licata WMM 2007 . . .1

Equality

Equality of program terms is one of the thorniest issues
in type theory. Various applications, including:

• justifying compiler optimizations

• dependency: program equality induces type equality

Thorny because you often want equality to be

• as coarse as possible

• decidable

Dan Licata WMM 2007 1

Equality

STLC with finite products and sums:
τ ::= τ1 → τ2 | τ1 × τ2 | 1 | τ1 + τ2 | 0

e ::= . . . | inl e | inr e | case(e, x1 .e1 , x2 .e2) | . . .

Equality: congruence Γ ⊢ e ≡ e ′ : τ

Dan Licata WMM 2007 . . .2

Equality

STLC with finite products and sums:
τ ::= τ1 → τ2 | τ1 × τ2 | 1 | τ1 + τ2 | 0

e ::= . . . | inl e | inr e | case(e, x1 .e1 , x2 .e2) | . . .

Equality: congruence Γ ⊢ e ≡ e ′ : τ

How is equality defined?

Dan Licata WMM 2007 2

Equality for Sums

Standard βη rules for →, ×, 1 capture categorical
universal properties

What is the equivalent for sums?

case(inl e, x1 .e1 , x2 .e2) ≡ [e/x]e1

β+l

case(inr e, x1 .e1 , x2 .e2) ≡ [e/x]e2

β+r

Dan Licata WMM 2007 3

Equality for Sums

η for sums: “defines the same decision tree”

Pick any subterm of sum type and pivot on it at the
outside:

e : τ1 + τ2
[e/x]e ′ ≡ case(e, x1 .[inl x1/x]e ′, x2 .[inr x2/x]e ′)

η+

C.f. the uniqueness condition of the categorical universal
property for coproducts.

Dan Licata WMM 2007 4

Equality for Sums: Consequences

Reconstruction:

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2)

Dan Licata WMM 2007 . . .5

Equality for Sums: Consequences

Reconstruction:

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2)

Commuting conversions:

(case(e, x1 .e1 , x2 .e2)) e ′ ≡ case(e, x1 .e1 e ′, x2 .e2 e ′)

Dan Licata WMM 2007 . . .5

Equality for Sums: Consequences

Reconstruction:

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2)

Commuting conversions:

(case(e, x1 .e1 , x2 .e2)) e ′ ≡ case(e, x1 .e1 e ′, x2 .e2 e ′)

Permuting conversion (c.f. BDD variable ordering):
case(e, x1 .case(f , y1 .f1 , y2 .f2), x2 .e2) ≡
case(f , y1 .case(e, x1 .f1 , x2 .e2), y2 .case(e, x1 .f2 , x2 .e2))

Dan Licata WMM 2007 5

Deciding Coproduct Equality is Tricky

η+ has a very non-local flavor: pick any subterm and
pivot on it

Previous decision procedures:

• Ghani (1995), Lindley (2007) using rewriting

• Altenkirch et al. (2001), Balat et al. (2004) using
NBE/TDPE

Dan Licata WMM 2007 6

This Work

• Give a new decision procedure for coproduct equality
based on a canonical forms technique

• Mechanize the proof of its correctness in Twelf

Dan Licata WMM 2007 7

This Work

• Give a new decision procedure for coproduct
equality based on a canonical forms technique

• Mechanize the proof of its correctness in Twelf

Dan Licata WMM 2007 8

Our Decision Procedure

To prove: Γ ⊢ e ≡ e ′ : τ is decidable

Our approach: give a sound, complete, and decidable
algorithmic definition of equality

1. Translate terms into a language of canonical forms.
Many equal terms have the same canonical form

2. Compare canonical forms with a structural
congruence to get the remaining equalities

Dan Licata WMM 2007 9

Canonical Forms

Goal: only one way to write equivalent terms.
You can’t write:

β→ (λ x . x) y , only y

β+ case(inl x , x1 .inl x1 , x2 .()), only inl x

η1 x at type 1 , only ()

η→,1 f at type 1 → 1 , only λ _. f ()

Dan Licata WMM 2007 . . .10

Canonical Forms

Goal: only one way to write equivalent terms.
You can’t write:

β→ (λ x . x) y , only y

β+ case(inl x , x1 .inl x1 , x2 .()), only inl x

η1 x at type 1 , only ()

η→,1 f at type 1 → 1 , only λ _. f ()

How do canonical forms control η+?

Dan Licata WMM 2007 10

Canonical Forms

• Monadic language based on CLF [Watkins et al., ’02]

• Distinction between asynchronous and synchronous
types based on focussing [Andreoli ’92]

A ::= A1 → A2 |A1 × A2 | 1 | {S}

S ::= A | S1 + S2 | 0

Intuition:
⊲ elims for synchronous types involve a third party

⊲ monad controls the use of these elims

Dan Licata WMM 2007 11

Canonical Forms

Consider or : bool → bool → bool . Two implementations:

1. λx.if x then λ_.true else λy.y

2. λx. λy.if x then true else y

Dan Licata WMM 2007 . . .12

Canonical Forms

Consider or : bool → bool → bool . Two implementations:

1. λx.if x then λ_.true else λy.y

2. λx. λy.if x then true else y

In canonical forms

• bool → (bool → bool) is {bool} → ({bool} → {bool})

• Cannot write (1): case-analysis only when producing
something of type {S}

Dan Licata WMM 2007 12

Structural Congruence

Canonical forms don’t get rid of all instances of η+:

• Permuting conversion:
case(e, x1 .case(f , y1 .f1 , y2 .f2), x2 .e2) and
case(f , y1 .case(e, x1 .f1 , x2 .e2), y2 .case(e, x1 .f2 , x2 .e2))

• Dead code: case(e, x1 .(), x2 .case(e, x1 .dead , x2 .())) and
case(e, x1 .(), x2 .())

• Indifference: case(e, x1 .(), x2 .()) and ()

Dan Licata WMM 2007 13

Structural Congruence

Consequently, we compare canonical forms up to
permuting conversions, dead code, and indifference.

Why bundle the three together?

• Permuting conversions are inherently symmetric, so
neither side is to be preferred

• Permuting creates dead code and indifference

Dan Licata WMM 2007 14

Translation to Canonical Forms

Need meta-operations to witness expected principles:

• Hereditary substitution: compute the canonical result
of substituting one canonical form into another
(witnesses cut admissibility)

• Expansion: expand a variable into a canonical term
(witnesses identity principle)

• Inversion: rearrange a decision tree so that a
specified term is case-analyzed first (witnesses
coproduct reasoning)

Dan Licata WMM 2007 . . .15

Translation to Canonical Forms

Need meta-operations to witness expected principles:

• Hereditary substitution: compute the canonical result
of substituting one canonical form into another
(witnesses cut admissibility)

• Expansion: expand a variable into a canonical term
(witnesses identity principle)

• Inversion: rearrange a decision tree so that a
specified term is case-analyzed first (witnesses
coproduct reasoning)

Translation from STLC to canonical forms is a simple
outer induction using these judgements

Dan Licata WMM 2007 15

Properties

• Totality: translation is a type-correct function

• Completeness: if two terms are equal, then they
translate to congruent canonical forms

• Soundness: if two terms translate to congruent
canonical forms, then they’re equal

• Decidability: congruence of canonical forms is
decidable

Dan Licata WMM 2007 16

Properties

OK Totality: translation is a type-correct function

Almost Completeness: if two terms are equal, then they
translate to congruent canonical forms
[everything but functionality of hered. subst.]

To do Soundness: if two terms translate to congruent
canonical forms, then they’re equal

To do Decidability: congruence of canonical forms is
decidable

Dan Licata WMM 2007 17

This Work

• Give a new decision procedure for coproduct equality
based on a canonical forms technique

• Mechanize the proof of its correctness in Twelf

Dan Licata WMM 2007 18

Syntax = LF Types and Constants

A ::= A1 → A2 |A1 × A2 | 1 | {S}

S ::= A | S1 + S2 | 0

atp : type.
stp : type.

arrow : atp -> atp -> atp.
prod : atp -> atp -> atp.
one : atp.
circ : stp -> atp.
...

Dan Licata WMM 2007 19

Syntax = LF Types and Constants

Terms (→ and + fragment):
LF type Syntactic Category

rtm R ::= x |R N

ntm N ::= λ x .N | {E}

etm E ::= M |R ≫ I

mtm M ::= N | inl M | inr M

itm I ::= case(I1 , I2) | asynch(x .E)

Dan Licata WMM 2007 20

Judgements = Indexed Type Families

Hereditary substitution [N /x]
A
R = N ′ : A′

represented by

hsubst-rr : ntm -> atp -> (rtm -> rtm)

-> ntm -> atp

-> type.

Dan Licata WMM 2007 21

Inference Rules = Constants

[N0/x]
A0

R1 = λ y .N ′ : A2 → A

[N0/x]
A0

N2 = N ′

2

[N ′

2
/y]

A2
N ′ = N ′′

[N0/x]
A0

R1 N2 = N ′′ : A

c : hsubst-rr N0 A0 ([x] app (R1 x) (N2 x)) N” A

<- hsubst-rr N0 A0 R1 (lam N’) (arrow A2 A)

<- hsubst-n N0 A0 N2 N2’

<- hsubst-n N2’ A2 ([y] N’) N”.

Dan Licata WMM 2007 22

Twelf Proves Termination

hsubst-rr : ntm -> atp -> (rtm -> rtm)

-> ntm -> atp

-> type.

%reduces A’ <= A0 (hsubst-rr _ A0 _ _ A’).

%worlds (x:rtm) * (hsubst-rr _ _ _ _ _)

%terminates {(A0 ...) (R ...)}

(hsubst-rr _ A0 R _ _)

(Ellipses: mutually recursive with hsubst for the other
syntactic categories)

Dan Licata WMM 2007 23

Thm. Statements = Annotated Type Families

Theorem: If Γ, y ⇒ A2 ⊢ N ⇐ A and Γ ⊢ N2 ⇐ A2

then [N2/y]
A2

N = N ′ and Γ ⊢ N ′ ⇐ A.

thm : {A2}

({y : rtm} {dy : synth y A2} ncheck (N y) A)

-> ncheck N2 A2

-> hsubst-n N2 A2 ([y] N y) N’

-> ncheck N’ A

-> type.

%mode thm +A2 +D1 +D2 -D3 -D4.

%worlds (x:tm, dx: synth x A) * (thm _ _ _ _ _).

Dan Licata WMM 2007 24

Proofs = Constants + Totality Check

l : thm A2

([x] [dx] (ncheck-lam ([y] [dy] DcN x dx y dy)))

DcN2

(hsubst-n-lam DsN)

(ncheck-lam DcN’)

<- ({y} {dy : synth y Af}

thm A2 ([x] [dx] (DcN x dx y dy)) DcN2

(DsN y) (DcN’ y dy)).

%total {(A ...) (D ...)} (thm A D _ _ _)

Dan Licata WMM 2007 25

Proof So Far

(768) Represent syntax and judgements

(5558) Functionality and type-correctness of translation to
canonical forms

(7617) Several lemmas leading up to completeness. E.g.
both sides of

e : τ1 + τ2
e ≡ case(e, x1 .inl x1 , x2 .inr x2)

have the same canonical form

Dan Licata WMM 2007 26

Proof Techniques

Uses lots of Twelf techniques:

• using %reduces for termination

• mutual induction and lexicographic induction

• reasoning with equality and respects lemmas

• proving uniqueness lemmas

• output factoring

• reasoning from false

• catch-all cases

Dan Licata WMM 2007 27

http://twelf.plparty.org

Dan Licata WMM 2007 28

http://twelf.plparty.org

Dan Licata WMM 2007 29

http://twelf.plparty.org

Dan Licata WMM 2007 30

Arbob’s Experience

“Determining the Twelf representation for the syntax and
judgments was generally straightforward. Typically, the
correct mechanization could be seen by direct analogy to
some similar construct that appeared in an example on
the wiki. In one case, the process of mechanizing the
syntax and judgments actually revealed a superfluous
term in our language, which we were then able to
eliminate.”

Dan Licata WMM 2007 31

Arbob’s Experience

“Of course, mechanizing the proofs was more
challenging. Often when a proof seemed difficult to
formalize or I was uncertain which lemmas the Twelf
proof would require, there was a case study on the wiki
that described the mechanization of a similar proof. The
mechanized proofs themselves generally resembled my
paper proofs. Typically, they just required some
additional lemmas, which I had glossed over in doing the
paper proof. I found that mechanizing the proofs typically
increased my confidence in their correctness. Moreover,
mechanized proofs are far more useful for keeping a
clear and comprehensible record than informal proofs
which are typically scattered across numerous sheets of
paper or tex documents.”

Dan Licata WMM 2007 32

Summary

• New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

Dan Licata WMM 2007 . . .33

Summary

• New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

• So far, straightforward to mechanize in Twelf

Dan Licata WMM 2007 . . .33

Summary

• New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

• So far, straightforward to mechanize in Twelf

• Accept Arbob to your PhD programs and he will do
your proofs instead!

Dan Licata WMM 2007 33

Thanks for listening!

The Twelf Wiki: http://twelf.plparty.org

Dan Licata WMM 2007 34

	Equality
	Equality

	Equality
	Equality

	Equality for Sums
	Equality for Sums
	Equality for Sums: Consequences
	Equality for Sums: Consequences
	Equality for Sums: Consequences

	Deciding Coproduct Equality is Tricky
	This Work
	This Work
	Our Decision Procedure
	Canonical Forms
	Canonical Forms

	Canonical Forms
	Canonical Forms
	Canonical Forms

	Structural Congruence
	Structural Congruence
	Translation to Canonical Forms
	Translation to Canonical Forms

	Properties
	Properties
	This Work
	Syntax = LF Types and Constants
	Syntax = LF Types and Constants
	Judgements = Indexed Type Families
	Inference Rules = Constants
	Twelf Proves Termination
	Thm. Statements = Annotated Type Families
	Proofs = Constants + Totality Check
	Proof So Far
	Proof Techniques
	http://twelf.plparty.org
	http://twelf.plparty.org
	http://twelf.plparty.org
	Arbob's Experience
	Arbob's Experience
	Summary
	Summary
	Summary

