
A Mechanized Framework for Aspects in
Isabelle/HOL

Florian Kammüller and Henry Sudhof

Institut für Softwaretechnik und Theoretische Informatik

WMM, 4 October 2007

Motivation and Background

⇒ Verification of object-oriented paradigms
• Aspect-oriented programming (AOP)
• Distributed objects (ASP)

• Isabelle/HOL
• Isabelle: generic interactive theorem prover
• Embedding: types, constants, and definitions constitute

object logic (theory)
• Isabelle/HOL: instance for classical HOL
• Many applications for programming language semantics,

e.g. Java,
• also specification languages: CSP, TLA, Object-Z, . . .

2

Overview

1 Aspect-Orientation

2 The Theory of Objects in Isabelle/HOL

3 A Theory of Aspects

4 Discussion

3

Aspect-Oriented Programing (AOP)

• Idea: Weave Advice into
OO-Program

• Advice = code fragments

• Pointcuts: points at
which advice is woven in

• Aspect = Advice +
Pointcut-definition

• Weave produces
combination

• AOP-language: base
language (programs and
advice)+ Pointcut
definition language

Advice

OO-ProgramPointcuts

l1

l2

l3

OO-Program

Advicel1

Advice

Advicel2

l3

5

AOP-Constructs

• Pointcut selection
• call: syntactic selection of method calls

e.g., all methods whose name contains “set”
• cflow: selection of control flow points

e.g., from entry to exit of method x

• Advice insertion
• before, after
• around: instead of selected command,
• or around with proceed: before/after original command

⇒ Change of semantics

⇒ Endangers properties of programs

6

Foundations of AOP

• Formalization of AOP in Isabelle/HOL

• Idea: simple, functional calculus

• Represent pointcuts by labels, e.g.

〈L, λ x . e〉 ⇓ v1 + l1(v2)
l1∈L−→ v1 + e[v2/x]

with poincuts L , advice λ x . e, and weaving operator ⇓
• Based on object calculus (Theory of Objects ς)

• Advanced features: type preserving compilation

7

Theory of Objects: ς-calculus

• Terms in the ς-calculus: “labelled lists” of methods/fields
• Objects: [l1 = ς(x0)b0, . . . , ln = ς(xn)bn] where xj

“self”-parameter
• Method call/ field selection: a.lj where j ∈ 1..n
• Update of method/field: a.lj := ς(x)b where j ∈ 1..n

• Semantics: reduction relation →β

• Substitution of formal parameter with a it”self”

a ≡ [lj = ς(xj)bj]
j∈1..n

a.lj →β bj [a/xj] j ∈ 1..n

9

First step: ς-calculus in Isabelle/HOL

• Formalization of finite maps L ⇀ T

• Simple datatype for (de Bruijn) object terms
datatype term =

Var nat

| Obj Label ⇀ term

| Call term Label

| Upd term Label term

• Definition of substitution on de Bruijn terms t [s / k]

• Reduction relation →β

inductive beta

intros

beta: l ∈ dom f =⇒ Call (Obj f) l →β the(f l)[(Obj f)/0]

upd : l ∈ dom f =⇒ Upd (Obj f) l a →β Obj (f (l7→a))

sel : s →βt =⇒ Call s l →β Call t l

updL: s →βt =⇒ Upd s l u →β Upd t l u

updR: s →βt =⇒ Upd u l s →β Upd u l t

obj : [s →βt; l ∈ dom f]=⇒ Obj(f(l 7→s)) →β Obj(f(l 7→t))

10

Confluence and Type Safety for ς-calculus

• Confluence (diamond property)
M
@@R��	N0 N1

@@R ��	
L

• If a term M can be reduced in n ≥ 0 reduction steps to
terms N0 and N1, then there exists L such that N0 and N1

can be reduced to L.

• We define simple type system for ς-calculus,
E ` t : T

i.e., term t has type T in type environment E
• We prove type safety for first-order type system of ς

Theorem (preservation)

[| t →∗
β t'; E ` t : T |] =⇒ E ` t' : T

Theorem (progress)

[| [] ` t : A; 6 ∃ c . t = Obj c |] =⇒ ∃ b . t →β b

11

Aspects

• Extend terms t by (aspect-)labelled terms, e.g. l〈t〉
datatype term = Var nat

| Obj label ⇀ term

| Call term label

| Upd term label term

| Asp Label term ("_ 〈_〉")
• Aspect = 〈 pointcut (set of Labels), advice (term function) 〉
datatype aspect = Aspect (Label set) term ("〈_, _〉")

13

Weaving

• Idea of weaving: replace existing labels in program with
advice
weave :: [term, aspect] ⇒ term ("⇓")

• For example, central rule now:
l〈t〉⇓a = if l ∈ pct a then l〈adv a [t/0]〉 else l〈t〉
where pct 〈L, a〉= L and adv 〈L, a〉= a

14

Typing of Aspects

• Problem: AOP not type safe in general

• Example: around advice exchanges return value
[Kammüller, Vösgen: FOAL06]

• Type system to exclude pathological cases:
• Extend previous type relation by labels L

E, L ` t : T

i.e., term t has type T in type/label environment E, L

• Idea: label types represent “legal” advice

• Define well-formedness of program t wrt set of aspects A

(wf t A)

• Goal: prove that weaving preserves type relation.

Theorem

Jwf t A; [], L ` t : T K=⇒ [], L ` Weave t A: T

15

Summary

• The ς-calculus as a Basis for AOP (and ASP) in
Isabelle/HOL

[1] L. Henrio, F. Kammüller. A Mechanized Model of the
Theory of Objects. FMOODs’07.

• Labels representing pointcuts in programs

• Definition of weaving function

• Typing of advice and labels :

⇒ type safety for aspects in Isabelle/HOL

17

Discussion

• Nominal Techniques vs HOAS vs de Bruijn

• Code extraction

• Structural vs Nominal Type Systems

• Is ς-calculus unrealistic (type preserving compilations)?

18

	Aspect-Orientation
	The Theory of Objects in Isabelle/HOL
	A Theory of Aspects
	Discussion
	Additional Slides on Aspects

