Real World Binding Structures

Susmit Sarkar
with Peter Sewell and Francesco Zappa Nardelli

Paradigm Binding

- Single binders

$$
\begin{aligned}
\exp \quad & :=X \\
& \mid \quad \exp \exp ^{\prime}
\end{aligned} \quad \text { bind } X \text { in } \exp
$$

Paradigm Binding

- Single binders

$$
\begin{array}{rlr}
\exp \quad::= & X \\
& \mid & \lambda X \cdot \exp \quad \text { bind } X \text { in } \exp \\
& \mid & \exp \exp ^{\prime}
\end{array}
$$

- Lots of work on representations
- deBruijn
- HOAS
- Locally nameless
- Nominal

How about: Patterns?

- Many binders

$$
\operatorname{let}(x, y)=z \text { in } x y
$$

How about: Patterns?

- Many binders

$$
\operatorname{let}(x, y)=z \text { in } x y
$$

$\exp ::=X$
\mid (exp, exp $\left.{ }^{\prime}\right)$
| let pat $=\exp$ in $\exp ^{\prime} \quad$ bind $b(p a t)$ in $e x p p^{\prime}$
pat $::=X$
| -
| (pat, pat')

How about: Patterns?

- Many binders

$$
\operatorname{let}(x, y)=z \text { in } x y
$$

$\exp \quad::=X$
\mid (exp, exp $\left.{ }^{\prime}\right)$
$\left\lvert\, \begin{array}{ll}\text { let } p a t=e x p \text { in } e x p^{\prime} & \text { bind } b(p t) \\ ::=X & b=X\end{array}\right., ~$
pat $::=X$
\mid
\mid
|
$b=\{ \}$
$b=b(p a t) \cup b\left(p a t^{\prime}\right)$

How about: Let rec?

- Binding one variable in multiple scopes

$$
\text { letrec } x=(x, y) \text { in }(x, y)
$$

How about: Let rec?

- Binding one variable in multiple scopes

$$
\text { letrec } x=(x, y) \text { in }(x, y)
$$

exp $::=x$
| ()
| (exp, exp ${ }^{\prime}$)
| let rec $x=\exp$ in $\exp ^{\prime} \quad$ bind x in \exp
bind x in $e x p^{\prime}$

How about: Or-patterns?

- A variable does not have a binding occurrence
let
(\quad None, Some x)
$\|($ Some x, None) $)=w$
in

$$
(x, x)
$$

How about: Dependent Patterns?

- Binding within binders
let

$$
\operatorname{val}[X<: \operatorname{top}, x: X]=w
$$

in

$$
[X,(x, y)]
$$

This work

- A language for binding structures
- What does it mean, mathematically?
- What does it really mean, mechanically?

Bindspec language annotations

element, $e::=$
| terminal
| metavar
| nonterm
prod, $p::=$
$\left|\mid\right.$ element $_{1} .$. element $_{m}:::$ prodname $\left(+b s_{1} . . b s_{n}+\right)$
bindspec, bs ::=
| bind mse in nonterm
| ...

Metavariable set expressions

- Bind arbitrary sets of metavariables in declared nonterminals

```
metavar_set_expression, mse ::=
```

| \{\}
| metavar
| mse union $m s e^{\prime}$
| auxfn(nonterm)

Empty
Singleton
Union
Auxiliary function

Auxiliary Functions

- Collect some particular set of metavariables
- User-defined, primitive recursive functions

Annotation of bindspec language
bindspec, bs ::=

```
    | ...
    | auxfn = mse
```


Example: Multiple Letrec

$$
\left.\begin{array}{rlll}
\exp : & :=X & \\
& \mid & \text { let rec } l r b s \text { in } \exp & (+ \text { bind } b(l r b s) \text { in } l r b s+) \\
& & (+ \text { bind } b(l r b s) \text { in } \exp +)
\end{array}\right)
$$

What does it mean?

- There is no notion of binding occurrence
- Recall: binders collected by user-defined auxfns

What does it mean?

- There is no notion of binding occurrence
- Recall: binders collected by user-defined auxfns
- Let us think about alpha-equivalence classes

Alpha-equivalence classes

- Concrete variables that must all vary together
- Relate by partial equivalence relations of occurrence of variables

Alpha-equivalence classes

- Concrete variables that must all vary together
- Relate by partial equivalence relations of occurrence of variables

$$
\begin{aligned}
& \text { let rec } f x=g(x-1) \\
& \quad \text { and } g x=f x+h x \\
& \text { and } h x=0 \\
& \text { in }(g 5)
\end{aligned}
$$

Alpha-equivalence classes

- Concrete variables that must all vary together
- Relate by partial equivalence relations of occurrence of variables

$$
\begin{aligned}
& \text { let rec } f x=g(x-1) \\
& \quad \text { and } g x=f x+h x \\
& \text { and } h x=0 \\
& \text { in }(g 5)
\end{aligned}
$$

- Alpha-equivalence is equivalence upto identity of these concrete variables

Calculating closed PER

- Calculated by induction on term structure

Calculating closed PER

- Calculated by induction on term structure
- Case: bind mse in $n t$ annotation

$$
\begin{aligned}
\exp \quad:=\text { let rec } l r b s \text { in } \exp \quad & (+ \text { bind } b(l r b s) \text { in } l r b s+) \\
& (+ \text { bind } b(l r b s) \text { in } \exp +)
\end{aligned}
$$

Calculating closed PER

- Calculated by induction on term structure
- Case: bind mse in $n t$ annotation

$$
\begin{aligned}
\exp ::=\text { let rec } l r b s \text { in } \exp \quad & (+ \text { bind } b(l r b s) \text { in } l r b s+) \\
& (+ \text { bind } b(l r b s) \text { in } \exp +)
\end{aligned}
$$

- Collect relevant occurences of variables and relate them

$$
\begin{aligned}
& \text { let rec } f x=f(x-1) \\
& \text { in } f 4
\end{aligned}
$$

Calculating closed PER

- Calculated by induction on term structure
- Case: bind mse in $n t$ annotation

$$
\begin{aligned}
\exp \quad:=\text { let rec } l r b s \text { in } \exp \quad & (+ \text { bind } b(l r b s) \text { in } l r b s+) \\
& (+ \text { bind } b(l r b s) \text { in } \exp +)
\end{aligned}
$$

- Collect relevant occurences of variables and relate them

$$
\begin{aligned}
& \text { let } \operatorname{rec} f x=f(x-1) \\
& \text { in } f 4
\end{aligned}
$$

- Seal the equivalence relation of all such variables (forget its identity). . .

Open PER

- . . but not always!
- Consider when there is binding within binding
let

$$
\begin{aligned}
& \quad \operatorname{val}[X<: \operatorname{top}, x: X]=w \\
& \operatorname{in}[X, \ldots]
\end{aligned}
$$

Open PER

- ...but not always!
- Consider when there is binding within binding

$$
[X<: \operatorname{top}, x: X]
$$

- Cannot forget the concrete variable (more binding possible)
- Syntactically analyze when safe to seal

Well-formed Substitution

- Defined over our alpha-equivalence classes
- Must avoid capture (PER's undisturbed)
- When substituting closed terms, cheap solution possible
- Check for equality when descending binders
- Clearly not what you want to use in general

What does it Really Mean?

- Proof assistant representations
- Translations to a proper alpha-equivalent representation: deBruijn, HOAS, locally nameless, nominal...
- Not clear how to translate the entire language

The way forward?

- Simple cases are easy
- Single binders in one or more terms

The way forward?

- Simple cases are easy
- Single binders in one or more terms
- Translate (almost) everything to single binders?
- Possibly, cases without nested binding

The way forward?

- Simple cases are easy
- Single binders in one or more terms
- Translate (almost) everything to single binders?
- Possibly, cases without nested binding
- .. without loss of expressiveness?

The way forward?

- Simple cases are easy
- Single binders in one or more terms
- Translate (almost) everything to single binders?
- Possibly, cases without nested binding
- ... without loss of expressiveness?
- ... making idiomatic proofs possible?

Related work

- Much work on single binders
- Rich binding specifications: FreshML, C $\alpha \mathrm{ml}$
- $\mathrm{C} \alpha \mathrm{ml}$: similar goals, but different expressivities
- Alpha-equivalence classes coincides on large subset
- Multiple auxiliary functions, or multiple binding occurences, in $\mathrm{C} \alpha \mathrm{ml}$?
- Bind only in some subterms in Ott bindspec?

Current and future work

- Mechanized rich theory of binding (mini-Ott in Ott)
- Showed correspondence with usual notions in simple cases
- Define a notion of correctness (aka adequacy)
- Want: a translation to a practical representation

Thank you!

http://www.cl.cam.ac.uk/~pes20/ott

Inexpressible binding

- Binding non-terminals in non-terminals

$$
\begin{aligned}
& \text { let } x: \text { bool }=e \\
& \text { in }(x: \text { bool, } x: \text { int })
\end{aligned}
$$

- Note: It is handled in the implementation with concrete atoms
- First match patterns
- First occurrence of variable in pattern is binding, others bound

